the Oxford Hip Score (OHS) questionnaire. The “Encuesta de expectativas, percepción y satisfacción usuaria con modelo de salud familiar” (survey of patient expectations, perception and satisfaction with the family health model) was used to assess patient satisfaction level, and self-evaluated health, respectively. Using a logistic regression model, the mean EQ-5D score based on responses to the OHS questionnaire. Length of hospital stay was divided into four tertiles: (1) <60 days, (2) 60-120 days, (3) 121-180 days, and (4) >180 days. The CAT was developed for people with COPD and has been validated in several languages and cultures. The CAT scores were compared between patients with different levels of airflow limitation and dyspnea (MRC scale). The effect size in CAT scores for ECOPD patients reporting moderate (MRC 2-3) and severe (MRC 4-5) dyspnea was 0.37 (p < 0.01) and 0.63 (p < 0.001), respectively. The CAT discriminated between stable and ECOPD patients (15.8 vs 22.4, p < 0.01). Change in CAT during ECOPD correlated well with change in SGRQ (r = 0.63, p < 0.001) and the LCADL (r = 0.82; p < 0.001). The CAT was found to be responsive to change in ECOPD patients and had good validity and reliability.

CONCLUSIONS: The Spanish version of the CAT is sensitive to change during ECOPD and has similar properties to those of the original English version. Funded by GlaxoSmithKline.

PODIUM SESSION II: RESEARCH ON METHODS

RM1
COMPARING THE USE OF DYNAMIC AND STATIC INFECTIOUS DISEASE MODELS IN LATIN AMERICA WITH NORTH AMERICA, EUROPE, ASIA AND OTHER REGIONS.

Vargas-Palacios A1, Stevenson M1, Dueñas A2, Wailloo A1

OBJECTIVES: To establish whether there are differences in the type of methodology (static or dynamic) used to assess the cost-effectiveness of vaccination programs among different regions. Methods: A systematic review from 1950 to 2010 of the cost-effectiveness of vaccine interventions was performed. Modelling methodologies were categorised as static where the number infected was not related to the number infectious, and where herd immunity (an immunity that occurs when the vaccinated proportion of the population provides protection to unprotected individuals) was not incorporated. Models were categorised as dynamic otherwise. Static models were sub-classified into Decision trees (DT) and static Markov models (dMM), System dynamic models including Susceptible, Exposed, Immune and Recovered models (SD), Discrete event simulation (DES) and Agent-based models (ABM). RESULTS: A total of 310 relevant studies were found. 251 (81%) adopted a static approach (131 eMMA and 120 DT) whilst 59 (19%) used a dynamic approach (52 SD, 3 DES, 3 ABM and 1 DMM). The majority of papers were set in Europe (120, 39%) and North America (97, 31%), with 26 (8%) in Latin America, 37 (12%) in Asia and 30 (10%) in other regions. The proportion of papers that used a dynamic approach varied widely across regions: 40% (14) in Latin America, 37 (12%) in Asia and 10 (3.3%) in other regions (19% used a dynamic approach (52 SD, 3 DES, 3 ABM and 1 DMM). The majority of papers were set in Europe (120, 39%) and North America (97, 31%), with 26 (8%) in Latin America, 37 (12%) in Asia and 30 (10%) in other regions. The proportion of papers that used a dynamic approach varied widely across regions: 40% (14) in Latin America, 37 (12%) in Asia and 10 (3.3%) in other regions.

CONCLUSIONS: Despite the limitations associated with static models these are more prevalent than dynamic methodologies. Modelling the cost-effectiveness of vaccine interventions was applicable to all regions, with the results for Latin America comparable with other regions. This systematic review suggests that worldwide education of researchers in the advantages of dynamic methodologies is needed.

RM2
APLICACION DE MODELOS DE REGENES CON ESTATA PARA EL ESTUDIO DEL CONSUMO DE RECURSOS EN UNIDADES DE CUIDADOS INTENSIVOS NEONATALES

Reyes-Lopez A

OBJECTIVES: To establish whether there are differences in the type of methodology (static or dynamic) used to assess the cost-effectiveness of vaccination programs among different regions. Methods: A systematic review from 1950 to 2010 of the cost-effectiveness of vaccine interventions was performed. Modelling methodologies were categorised as static where the number infected was not related to the number infectious, and where herd immunity (an immunity that occurs when the vaccinated proportion of the population provides protection to unprotected individuals) was not incorporated. Models were categorised as dynamic otherwise. Static models were sub-classified into Decision trees (DT) and static Markov models (dMM), System dynamic models including Susceptible, Exposed, Immune and Recovered models (SD), Discrete event simulation (DES) and Agent-based models (ABM). RESULTS: A total of 310 relevant studies were found. 251 (81%) adopted a static approach (131 eMMA and 120 DT) whilst 59 (19%) used a dynamic approach (52 SD, 3 DES, 3 ABM and 1 DMM). The majority of papers were set in Europe (120, 39%) and North America (97, 31%), with 26 (8%) in Latin America, 37 (12%) in Asia and 30 (10%) in other regions. The proportion of papers that used a dynamic approach varied widely across regions: 40% (14) in Latin America, 37 (12%) in Asia and 10 (3.3%) in other regions. However, two of the six dynamic studies undertaken in Latin America used models based in Europe or North America. CONCLUSIONS: Despite the limitations associated with static models these are more prevalent than dynamic methodologies. Modelling the cost-effectiveness of vaccine interventions was applicable to all regions, with the results for Latin America comparable with other regions. This systematic review suggests that worldwide education of researchers in the advantages of dynamic methodologies is needed.