2-Transitive Groups Whose 2-Point Stabilizer has 2-Rank 1*

MICHAEL ASCHBACHER

California Institute of Technology, Pasadena, California 91109 Communicated by M. Hall, Jr. Received April 3, 1974

THEOREM 1. Let G^{Ω} be a doubly transitive permutation group in which the stabilizer of 2 points has 2-rank 1. Then either

(1) G has a regular normal subgroup, or

(2) $G \leq \operatorname{Aut}(L)$ and L^{Ω} is $L_2(q)$, Sz(q), $U_3(q)$, or R(q), in its natural doubly transitive representation, or $L_2(11)$ or M_{11} on 11 letters.

R(q) denotes a group of Ree Type on $q^3 + 1$ letters.

For odd degree, Theorem 1 is a corollary to the classification of finite groups with a proper 2-generated core [2]. For even degree, Theorem 1 is a corollary to the following theorem:

THEOREM 2. Let G^{Ω} be a doubly transitive group of even degree in which a Sylow 2-subgroup of the stabilizer of 2 points is cyclic, quaternion, or dihedral. Then either

(1) G^{Ω} has a regular normal subgroup, or

(2) $G \leq \operatorname{Aut}(L)$, and L^{Ω} is $L_2(q)$, $U_3(q)$, R(q), A_6 , or A_8 , in its natural doubly transitive representation, or M_{11} on 12 letters.

The proof of Theorem 2 involves work of M. O'Nan [17] and of the author [3] on doubly transitive groups in which the stabilizer of a point is local.

The author would like to thank Professor Michael O'Nan for a careful reading of this manuscript, leading to a number of improvements.

1. NOTATION

Let G be a permutation group on a set Ω , $X \subseteq G$, and $\Delta \subseteq \Omega$. Then F(X) is the set of fixed points of X on Ω . $G(\Delta)$ and G_{Δ} are the global and pointwise stabilizer of Δ in G, respectively. Set $G^{\Delta} = G(\Delta)/G_{\Delta}$ with induced permutation representation.

* Research partially supported by NSF GP-35678.

Usually G^{Ω} is 2-transitive, $\alpha, \beta \in \Omega$, $H = G_{\alpha\beta}$, t is an involution with cycle $(\alpha, \beta), D^* = D\langle t \rangle, U \in \text{Syl}_2(D)$, and $U^* = U\langle t \rangle \in \text{Syl}_2(D^*)$.

"Regular normal subgroup" is abbreviated by RNS and "fixed point free" is abbreviated by FPF.

Most of the group theoretic notation is standard and taken from [8].

Given groups A and B, AYB denotes the central product of A and B with identified centers.

Fit(G) is the Fitting subgroup of G. E(G) is the product of all quasisimple subnormal subgroups of G. $F^*(G) = Fit(G) E(G)$.

S(q) is the group of transformations $x \to ax^{\theta} + b$ on GF(q), where $0 \neq a$ and b are in GF(q) and $\theta \in Aut(GF(q))$.

2. PRELIMINARY RESULTS

LEMMA 2.1. (Manning, [16]) Let G^{Ω} be a transitive permutation group, $\alpha \in \Omega$, $H = G_{\alpha}$, and $X \subseteq H$. Let k be the number of orbits of H on $X^{G} \cap H$, $r = |X^{H}|, s = |X^{G} \cap H|$, and m = |F(X)|. Then

(1) $N(X)^{F(X)}$ has exactly k orbits, and

 $(2) | \alpha^{N(X)} | = mr/s.$

2.1 will be applied to situations where X is an ordered or an unordered set.

LEMMA 2.2. Let Q be a subgroup of prime order in G, R a 2-subgroup of G, and $Z = C_K(Q)$. Assume $RQ \leq G$, R = [R,Q], $Z \leq G$, $m(Z) \leq 2$, and G is transitive on $(R/Z)^{\neq}$. Then one of the following holds:

- (1) $\Phi(R) = 1 = Z$,
- (2) $RQ \simeq SL_2(3)$,
- (3) G is transitive on $Z^{\#}$ and R is a Suzuki 2-group.

Proof. Assume (1) does not hold. Then by 2.3 in [3], $\Omega_1(R) \leq Z$. Further if $Z \leq Z(G)$ the proof shows $RQ \cong SL_2(3)$. We may take $G = O^2(G)$, so as $m(Z) \leq 2$, we may assume G is transitive on $Z^{\#}$ and hence R is a Suzuki 2-group.

LEMMA 2.3. Let U be a dihedral 2-group of order 2r and assume U^* is an extension of U by an involution t. Then U^* is isomorphic to one of the following:

- (1) $B_r = \langle v, u, s: v^r = u^2 = s^2 = 1, v^u = v^{-1}, u^s = u, v^s = v^{r/2+1} \rangle$,
- (2) D_{4r} ,
- (3) $Z_4 Y U$,
- (4) $Z_2 \times U$.

Proof. If |U| = 4 the result is trivial, so assume |U| > 4. Let $V = \langle v \rangle$ be the cyclic subgroup of index 2 in U and $u \in U - V$. Then $V \leq U^*$.

Suppose V is self-centralizing. Then by 5.4.8 in [8], U^* is either dihedral or $W = C_{U^*}(\mathcal{O}^1(V))$ is modular. In the latter case we may pick $t \in W$. Then $\langle t, a \rangle = \Omega_1(W) \leq U^*$ with ta conjugate to a under V, so we may pick u to centralize t. That is $U^* \cong B_r$.

Next assume $x \in U^* - U$ centralizes V. If $V \leq \langle x \rangle$ then $\langle x \rangle$ is a cyclic subgroup of index 2 in U^* , so U^* is dihedral. Thus we may take x = t to be an involution. Let w be an element of order 4 in V. Then either [u, t] = 1 and $U^* \cong Z_2 \times U$ or [u, tw] = 1 and $U^* \cong Z_4 YU$.

LEMMA 2.4. Let G^{Ω} be a transitive permutation group whose degree is a power of 2. Assume for each pair of distinct points α and β in Ω that there is a unique FPF involution with cycle (α, β) . Then if G^{Ω} is primitive or $O_2(G_{\alpha}) = 1$ then G has a RNS.

Proof. Let $H = G_{\alpha}$ and Δ the set of FPF involutions. If $s, t \in \Delta$ and st is a *p*-element acting FPF on Ω , then as the degree of G is a power of 2, p = 2. On the other hand if $st \in H$ then s and t are both FPF involutions with cycle (α, α^t) , so s = t. It follows that st is always a 2-element, so by a result of Baer [4], $T = \langle \Delta \rangle$ is a 2-group. So if G^{Ω} is primitive then T is regular. Also $T_{\alpha} \leq O_2(G_{\alpha})$ so if $O_2(G_{\alpha}) = 1$ then again T is regular.

LEMMA 2.5. Let X be a group acting on the group Y of odd order and assume

(1) X has a normal 2-group T of order at least 4 and X acts transitively on $T^{\#}$.

(2) If $t \in T^{\#}$ then [Y, t] is cyclic.

Then [T, Y] = 1.

Proof. See 2.9 in [5].

LEMMA 2.6. Let X, Y, and Z be groups with X acting on Y and Y acting on Z, such that

(1) Y has odd order.

(2) X has a normal 2-group T or order at least 4 and X acts transitively on $T^{\#}$.

(3) If $t \in T$ and $y \in Y$ is inverted by t, then y acts semiregularly on Z. Then [T, Y] = 1.

Proof. This follows from 2.5, and 2.4 in [5].

LEMMA 2.7. Let G^{Ω} be a transitive permutation group, $\alpha \in \Omega$, $H = G_{\alpha}$, a an involution in $Z^*(H)$, $m = |F(\alpha)|$, $n = |\Omega|$ and Δ the set of FPF involutions in G. Assume

(i) T is an elementary 2-subgroup normal in C(a) with $T|\langle a \rangle$ regular on F(a) and $T^{\#} = (C(a) \cap \Delta) \cup (C(a) \cap a^{G})$.

- (ii) Every 2 points of Ω is fixed by some conjugate of a.
- (iii) $C(a)^{F(a)}$ is 3/2-transitive of rank $r \leq 4$. If r = 4 then $\langle a \rangle \in Syl_2(H)$.

Then one of the following holds:

(1) G has a RNS and $n = m^2$.

(2) G is an extension of $L_2(8)$ or $L_2(32)$ and n = 28 or 496, respectively.

(3) $G \cong Z_2 \times S_4$ and n = 8, $G \cong Z_2 \times A_5$ and n = 12, or $G \cong A_5$ and n = 6.

Proof. Let (γ, γ^a) be a cycle in a. $a \in Z^*(H)$ and by (i) and 2.1, $a^G \cap H = a^H$, so a centralizes some conjugate b of a fixing γ and γ^a . Suppose a fixes a second such conjugate c. Then as $a \in Z^*(H)$ and $a^G \cap H = a^H$, bchas odd order. But $b, c \in T$, so bc is a 2-element. Thus b is the unique conjugate of a fixing γ and γ^a , and centralizing a. Let $K = O(G_{\gamma\gamma a})$. It follows that $C_K(a) \leq C_K(b)$. Also $a \in O_2(C(b))$, so $C_K(b) \leq C_K(a)$. Thus ab centralizes K.

Next, let $n = |\Omega|$, m = |F(a)|, $\Gamma = a^G \cap T$ and $|\Gamma| = k$. Then |T| = 2m and $(n - m)/m = |\Gamma| - 1 = k - 1$. So n = mk.

Suppose $T^{\#}$ is fused in G. Then Shult's fusion theorem [19] implies $\langle a^G \rangle \cong L_2(2m)$. As $C(a)^{F(a)}$ is 3/2-transitive of rank at most 4 we conclude G is an extension of $L_2(4)$, $L_2(8)$, or $L_2(32)$ on 6, 28, or 496 letters, respectively. Thus we may assume $T^{\#}$ is not fused.

Suppose $C(a)^{F(a)}$ is 2-transitive. Then $C_H(a)$ has 2 orbits on $T - \langle a \rangle$, so as $T^{\#}$ is not fused, k = m. Then the first paragraph implies there exists a unique element of Δ with cycle (α, β) for each $\alpha, \beta \in \Omega$, so by 2.4, G^{Ω} has a RNS.

So we may assume $C(a)^{F(a)}$ is of rank 4 and $\langle a \rangle$ is Sylow in H. k = r(m-1)/3 + 1, $1 \leq r \leq 6$. If r = 3 then k = m and as above G^{Ω} has a RNS. If k = 1 or 5 then $k \equiv \pm (2/3) \mod m$, so as |G:H| = mk, $|N(\Gamma)^{\Gamma}| \equiv 2 \mod 4$ and in particular $N(\Gamma)^{\Gamma}$ is solvable. If r is even then k is odd, $T \in \text{Syl}_2(G)$, and clearly $N(\Gamma)^{\Gamma}$ is solvable.

So $N(\Gamma)^{\Gamma}$ is solvable 3/2-transitive of rank at most 7. Thus N^{Γ} is regular, primitive, or a Frobenius group, and in any event has a RNS.

 $a^G \cap H = a^H$. Also $a \in Z^*(H)$ and any two points of Ω are fixed by some conjugate of a, so a fixes a point in each orbit of H. Thus $a \notin Z(H)$.

Suppose k is odd. Then T is an abelian Sylow 2-group of G and $\langle a^G \rangle$ is the direct product of a 2-group with simple groups isomorphic to $L_2(2^i)$, with a projecting on each factor. As $a \notin Z(H)$, $\langle a^G \rangle$ is not a 2-group. So if |T| = 8, then $\langle a^G \rangle \cong L_2(8)$ and T^{\neq} is fused or $\langle a^G \rangle \cong Z_2 \times A_5$ and n = 12. Thus we may take |T| > 8, so that $N(T/\langle a \rangle)$ acts irreducibly on $T/\langle a \rangle$, and again we conclude $\langle a^G \rangle$ is simple and T^{\neq} is fused.

So k is even. Then there exists a 2-element u in N(T) - T with $u^2 \in T$. Suppose m = 4. Then k = 2, 4 or 6. Also as $T \in \operatorname{Syl}_2 C(b)$ for each $b \in \Gamma$, $C_{\Gamma}(u)$ is empty. Thus $k \neq 6$, and if k = 4 then as above G^{Ω} has a RNS. So take k = 2, Then n = 8. If G possesses elements of order 5 or 7 then G^{Ω} and then $C(a)^{F(\alpha)}$ is 2-transitive, so no such elements exists, and G is a $\{2, 3\}$ -group. As H contains a Sylow 3-group of G, $O_3(G) = 1$. Then $X = O_2(G)$ is transitive on Ω and as $a \notin Z(H)$, $a \notin X$, so X is regular. H contains an element y or order 3 acting nontrivially on X, so as $G \ncong SL_2(3)$, X is elementary. Thus G is as in (3).

So assume m > 4, and let Q^{Γ} be the RNS for N^{Γ} . If k is not a power of 2, then N^{Γ} is not primitive and therefore is Frobenius. k is even so Q is not a p-group. But then N^{Γ} has rank greater than 7, a contradiction.

Thus k is a power of 2. As m > 4, $N(T/\langle a \rangle)$ acts irreducibly on $T/\langle a \rangle$ and thus if $T \leq P \in \text{Syl}_2(Q)$ we find $T = (Z(P) \cap T) \times \langle a \rangle$. So as $C_{\Gamma}(u)$ is empty, $Z(P) \cap T^{\#} = \mathcal{A} \cap T$. So as above, $n = m^2$ and G^{Ω} has a RNS X.

LEMMA 2.8. Let p = 3 or 5, $H \leq GL_3(p)$ and assume $O_p(H) = 1$, H has dihedral Sylow 2-groups, and H has no normal 2-compliment. Then either $A_4 \leq H \leq S_4$, or p = 5 and $A_5 \leq H \leq S_5$.

Proof. $p^2 + p + 1$ is a prime and if $p^2 + p + 1$ divides the order of a subgroup H of $GL_3(p)$ with dihedral Sylow 2-groups, then H has a normal 2-complement. Thus if p = 3 then H is a $\{2, 3\}$ -group, so as $O_3(H) = 1$, $A_4 \leq H \leq S_4$.

So we may take p = 5 and $H a \{2, 3, 5\}$ -group. $GL_3(5)$ has a Sylow 3-group of order 3, so as H has no normal 2-complement, O(H) is a 3'-group. Then as $O_5(H) = 1$, O(H) = 1. So either $A_4 \leq H \leq S_4$ or $A_5 \leq H \leq S_5$.

LEMMA 2.9. Let G be a group, a an involution in G, $S \in Syl_2(C(a))$, and $T \leq N(S)$. Then

(1) If $a \in T$ then $a^G \cap Z(S) \subseteq T$.

(2) If $a \notin T$, each of $aT^{\#}$ and $T^{\#}$ is fused, and a is fused to an element of $\langle a \rangle T$, then $aT = a^{G} \cap T \langle a \rangle$ and $S \notin Syl_{2}(G)$.

Proof. In (1) if $a^g \in Z(S)$ then we may choose $g \in N(S)$. (1) implies (2).

3. 2-TRANSITIVE GROUPS

In this section G^{Ω} is a 2-transitive group, $\alpha, \beta \in \Omega$, $H = G_{\alpha}$, $D = G_{\alpha\beta}$, t is an involution with cycle (α, β) , $D^* = D\langle t \rangle$, $U \in \text{Syl}_2(D)$, and $U^* = U\langle t \rangle \in \text{Syl}_2(D^*)$. Set $n = |\Omega|$.

LEMMA 3.1. Assume n is even and G is solvable. Then $G \leq S(n)$.

Proof. See [15].

LEMMA 3.2. Assume G has a RNS T of even order and a cyclic subgroup X which acts transitively on Ω . Then $G^{\Omega} = S_4$.

Proof. Let $2^n = |T|$ and $X = \langle x \rangle$. As T^{Ω} is transitive, x = td, where $t \in T$, and d is a 2-element fixing 2 or more points of Ω . Then $x^2 = [t, d^{-1}] d^2$ and by induction on i, $x^{2^i} = [t, d^{-1}, d^{-2}, ..., d^{-2^{i-1}}] d^{2^i}$.

Let $u = d^{2^{n-3}}$. As d fixes 2 or more points, $|d| < |\Omega| = 2^n$ and hence u is an involution. X^{Ω} is regular, so $x^{2^{n-1}} \neq 1$ and thus $[t, d^{-1}, ..., d^{-2^{n-3}}, u] \neq 1$.

Let $T_{n-2} = C_T(u)$ and $T_{n-i}/T_{n-i+1} = C_{T/T_{n-i+1}}(d^{2^{n-i}})$. Then as $u^2 = 1$, $|T:T_{n-2}| \leq |T_{n-2}|$, so $|T/T_{n-2}| \leq 2^{[n/2]}$. Similarly by induction on *i*, $|T/T_{n-i}| \leq 2^{n/2^{i-1}}$. Now if $n \geq 4$ then $n \leq 2^{n-2}$, so $|T/T_1| \leq 2^{n/2^{n-2}} \leq 2$, and if n = 3 then $|T/T_1| \leq 2^{[3/2]} = 2$. We may assume $n \geq 3$, so $[T, d] \leq T_1$.

Now by induction on k = n - i we find

$$[T, d^{-1}, ..., d^{-2^k}] \leqslant T_{k+1} = C_{T/T_{k+2}}(d^{2^{k+1}}).$$

In particular

$$[t, d^{-1}, ..., d^{-2^{n-3}}] \in T_{n-2} = C_T(u).$$

Therefore $[t, d^{-1}, \dots, d^{-2^{n-3}}, u] = 1$, a contradiction.

LEMMA 3.3. Assume n is odd and G has dihedral Sylow 2-subgroups. Then either

(1) G has a RNS, or

(2) $G \leq \operatorname{Aut}(L)$ and L^{Ω} is A_5 , A_7 , or $L_3(2)$ in its natural 2-transitive representation, $L_2(11)$ on 11 letters, or A_7 on 15 letters.

Proof. We may assume G has no RNS, so O(G) = 1. Then by [11], $G \leq \operatorname{Aut}(L), L \cong L_2(q), q$ odd, or A_7 . If $L \cong L_2(q)$, then [7] yields the result. One can inspect the maximal subgroups of A_7 to determine its representations.

LEMMA 3.4. Assume G has wreathed, semidihedral, dihedral or abelian Sylow 2-subgroups and n is even. Then either

(1) G has a RNS

(2) $G \leq \operatorname{Aut}(L)$ and L^{Ω} is $L_2(q)$, $U_3(q)$, R(q), or A_6 in its natural doubly transitive representation, or M_{11} on 12 letters.

Proof. Either G has a RNS or G is contained in the automorphism group of a simple group L, so we may assume the latter. L is a group of known type. Now apply [7], unless $G = M_{11}$. By inspection of the character table of M_{11} , if G is M_{11} then n = 12.

LEMMA 3.5. Let X be weakly closed in D with respect to G and assume $n = |F(X)|^2$. Then G has a RNS.

Proof. This follows from 2.1 and a result of Wagner [20].

LEMMA 3.6. Let a be an involution in D with $C(a)^{F(a)}$ transitive. Set $e = |a^G \cap D^* - D|$, $r = |a^D|$, $s = |a^H \cap D|$, and m = |F(a)|. Then n = m(m-1) e/s + m.

Proof. Let Γ be the set of pairs (a^g, c) with c a cycle in a^g . Then $|a^G|(n-m)/2 = |\Gamma| = n(n-1)e/2$. Also as $C(a)^{F(a)}$ is transitive, $|a^G| = n |a^H|/m$. Finally by 2.1,

$$|a^{H}| = |H: C_{H}(a)| = (n-1)|D: C_{D}(a)|/|C_{H}(a): C_{D}(a)|$$
$$= (n-1)r/(m-1)r/s.$$

4. Preliminaries to Theorem 2

In this section we continue the hypothesis and notation of Section 3. In addition assume n is even and U is cyclic, quaternion or dihedral.

LEMMA 4.1. Assume G has a RNS T, U is cyclic or dihedral, and t is a FPF involution. Then either $t \in T$ or n = 8 and $H \cong L_3(2)$.

Proof. Assume $t \notin T$. As T^{Ω} is transitive, $T\langle t \rangle = T\langle u \rangle$ where $\langle u \rangle = T\langle t \rangle \cap H$ has order 2. So t = us, $s \in T$. Now $|F(u)| = |C_T(u)| = m$ and $n \leq m^2$. If $n = m^2$ then $C_T(u) = [T, u]$ so that $t = us \in u^T$, impossible as t is FPF.

So $n < m^2$. Then by 3.1, *H* is not solvable. Let L/O(H) = E(H/O(H)). Then $\overline{L} = L/O(H)$ has dihedral Sylow 2-groups. So either $\overline{U} \leq \overline{L} \cong L_2(q)$ or A_7 , or $\overline{UL} \cong PGL_2(q)$. Suppose u inverts an element $x \in H$ acting FPF on T^{\neq} . Then $C_T(u) \cap C_T(ux) \leq C_T(x) = 1$, so as $|T| \leq |C_T(a)|^2$ for each involution $a \in H$, we get $n = m^2$. So no such x exists.

Now if $u \in \overline{L} \cong L_2(q)$ then u inverts cyclic groups \overline{X}_{ϵ} of order $(q - \epsilon)/2$, $\epsilon = \pm 1$, so there are conjugates Y_{ϵ} of X_{ϵ} in D. Further if $q \equiv 1 \mod 4$, u inverts a group \overline{Q} of order q, so some conjugate Q_1 of Q is in D. Then $Y = \langle U \cap L, Y_1, Y_2, Q_1 \rangle \leq D$. It follows that either all involutions in $U \cap L$ are fused in $Y \leq D$ or q = 7 and $\overline{L} \cap \overline{D} \cong S_4$. Similarly if $\overline{L} \cong A_7$ we conclude $\overline{L} \cap \overline{D} \cong A_6$ and all involutions of U are fused in D. Finally if $u \in U - L$ and $\overline{UL} \cong PGL_2(q)$, then $u^H \cap U = u^U$, so $u^G \cap D = u^D$.

Thus either $u^{H} \cap D = u^{D}$ and by 2.1, $C(u)^{F(u)}$ is 2-transitive, or $\overline{L} \cong L_{2}(7)$ and $\overline{L} \cap D \cong S_{4}$.

In the former case $C_H(u)$ is transitive on $C_T(u)^{\#}$ and then on $uC_T(u)^{\#}$. But for $r \in [T, u] \leq C_T(u)$, $ur \in u^T$, so $t = us \in (ur)^H \leq u^G$, a contradiction.

In the latter case let \overline{H}_1 be a subgroup of order 7 in \overline{L} . Then H_1T is solvable and 2-transitive, so by 3.1, $Fit(H_1)$ and then also Fit(H) is cyclic. So $L^{\infty} \cong L_2(7)$. Now let Δ be the set of pairs (u^h, γ) , where $\alpha \neq \gamma \in F(u^h)$ and $h \in H$. Then $(m-1) | u^H | = | \Delta | = | u^G \cap D | (n-1)$. $| u^H | = 21$ and $| u^G \cap D | = 9$, so n = 7(m-1)/3 + 1. But $n = 2^i$ and $m = 2^j$ with i > j. So $0 \equiv 2^i = n = 7(m-1)/3 + 1 \equiv -4/3 \mod 2^j$, and then m = 4and n = 8.

LEMMA 4.2. Assume $n \equiv 2 \mod 4$. Then G is contained in the automorphism group of $L_2(q)$, $U_3(q)$ or A_6 , acting in its natural 2-transitive representation.

Proof. By [1], G contains a simple normal subgroup M with M^{Ω} 2-transitive and $G \leq \operatorname{Aut}(M)$. Now $M \cap U$ is cyclic, quaternion or dihedral. In the first two cases [1] implies the desired result. So we may take M = G and assume U is dihedral. Then $U^* \in \operatorname{Syl}_2(G)$ and as G contains no subgroup of index 2, $|F(u)| \equiv n \equiv 2 \mod 4$, for each involution $u \in U^*$.

By 2.3, U^* has one of 4 forms. In the last two cases U^* is not Sylow in a simple group unless $U^* \cong E_8$. In that case we appeal to 3.4.

Suppose $U^* \cong B_r$. Then $\langle v^2, u \rangle = C_U(s)$ is dihedral and as $|F(s)| \equiv 2 \mod 4$, $C_U(s)$ contains a subgroup W of index 2 with $\langle W, s \rangle$ conjugate to a subgroup of U. But $\langle W, s \rangle$ is neither cyclic or dihedral.

It follows that U^* is dihedral. Now appeal to 3.4.

LEMMA 4.3. Let a and b be commuting, conjugate involutions. Assume $C(a)^{F(a)}$ is 2-transitive with RNS $T_0^{F(a)}$ and b acts FPF on F(a). Then $b \in T_0$.

Proof. Assume $b \notin T_0$. By 4.1, $C_H(a)^{F(a)} \cong L_3(2)$ and |F(a)| = 8. Let $T \in \operatorname{Syl}_2(T_0)$ and $S = TU \in \operatorname{Syl}_2(C(a))$. Set $\overline{C(a)} = C(a)/O(C(a))$.

If U is cyclic or dihedral then $C_{H}(a)$ has a normal 2-compliment. So U is

quaternion and even $U_{F(a)} = \langle a \rangle$. As $|T/\langle a \rangle| > 4$ and $C_H(a)$ is transitive on $(\overline{T}/\langle \overline{a} \rangle^{\#})$, T is elmentary. As $b \notin T$, $\langle a \rangle = Z(S)$.

The initial arguments in Janko's characterization of M_{23} [22] now show G has one class of involutions. Therefore as C(a) is 2-constrained, signalizer functor arguments show O(C(a)) = 1. [21] Hence [22] implies $G = M_{23}$. But a subgroup of M_{23} isomorphic to $SL_2(7)$ does not act nontrivially on a subgroup of odd order, so M_{23} does not have a representation of the required sort.

5. Semiregular Groups

In this section assume the following hypothesis:

HYPOTHESIS 5.1. $Q \neq 1$ is a subgroup of odd order of the group $G, \Omega = Q^G$, and $H = N_G(Q)$. Represent G by conjugation on Ω and assume $H \neq G$ and Q acts semiregularly on $\Omega - Q$.

THEOREM 5.2. Let $K \leq G$, p a prime, and $P \in Syl_p(Q)$. Then

- (1) P is strongly closed in S with respect to G for any $P \leq S \in Syl_p(G)$.
- (2) K acts transitively on the set

$$\{Q^g: | K \cap Q^g |_p \neq 1\}$$

(3) If $K \cap Q \neq 1$ and $K \leq H$ then the pair $(K, K \cap Q)$ has hypothesis 5.1.

(4) If $K \leq G$ either G = HK or $K \cap Q = 1$ and the pair (G/K, QK/K) has 5.1.

(5) Assume $G = \langle \Omega \rangle$ and P is not cyclic. Then G = G'Q, G' is quasisimple, and $Q \cap G' \neq 1$.

(6) If $K \leq G$ and $K \leq H$ then $K \leq Z(G)$.

Proof. See Section 3 of [3].

LEMMA 5.3. Let $h \in H$ be centralized by a Sylow 2-subgroup of H and assume $h^2 \neq 1$ but h is inverted in G. Then $C_O(h) = 1$.

Proof. Assume $C_0(h) \neq 1$ and choose p to be a prime divisor of the order of $C_0(a)$ and $P \in \text{Syl}_p(C_0(h))$. Choose t with $h^t = h^{-1}$ and let $L = \langle P^{C(h)} \rangle$. By 5.2.2, t normalizes L, and then by 5.2.1, $L \langle t \rangle \leq LN(P) \leq LH \leq C(h) H$. So we may choose t to be a 2-element in H. But this is impossible as a Sylow 2-subgroup of H centralizes h.

HYPOTHESIS 5.4. (G, Q) has hypothesis 5.1. *a* is an involution with $\langle a \rangle$ Sylow in *H*. The stabilizer of any two points of Ω is of even order. *G* acts faithfully on Ω . $C(a)^{F(a)}$ has a RNS $T_0^{F(a)}$, $T \in Syl_2(T_0)$ is elementary of order at least 8, and C(a) is normal of index at most 3 in a subgroup X (possibly not contained in *G*) doubly transitive on F(a) and acting on $Y = O(C(a)_{F(a)})$.

-LEMMA 5.5. Assume Hypothesis 5.4. Then G satisfies (1) or (2) of Lemma 2.7.

Proof. Suppose $y \in Y^{\#}$ is inverted by $t \in T$. Then by 5.3, y acts semiregularly on Q. We conclude from 2.6 that T centralizes Y. Then $T = O_2(C(a)) \leq C(a)$. Now 2.7, yields the result.

HYPOTHESIS 5.6. Hypothesis 5.1 is satisfied. H contains no nontrivial cyclic normal subgroups. If $1 \neq A$ is a normal abelian subgroup of H then C(A) is semiregular on $\Omega - \{Q\}$, and is of odd order.

LEMMA 5.7. Assume hypothesis 5.1. Let X be a 4-group in H with $|F(X)| = 2^m > 2$ and let B be an elementary abelian subgroup of Q which is normal in H. Assume

(1) $C(X)^{F(X)}$ has an elementary RNS Y.

(2) P is a subgroup of $C_H(X)$ of odd order such that $P^{F(X)}$ is of prime order p and FPF on $F(X) - \{Q\}$.

(3) If $x \in X^{\#}$ with $F(x) \neq F(X)$, then $C(x)^{F(x)}$ has a RNS of order 2^{2m} . Then [P, B] = 1 and Hypothesis 5.6 is not satisfied.

Proof. Let $x \in X^{\#}$. By hypothesis $C(x)^{F(x)}$ has a RNS W. If $F(x) \neq F(X)$ then $|W| = |Y|^2$, $Y = C_W(X)$, and the representation of P on Y is equivalent to its representation on W/Y under the map $Yw \to [w, X]$. In particular $P^{F(x)}$ is semiregular on $W^{\#}$. Now $C_B(x)$ is also semiregular on $W^{\#}$ and normalized by P with $\Phi(B) = 1$, so $[P, C_B(x)] \leq Q_{F(x)} = 1$.

Therefore $B = \prod_{X^{\#}} C_B(x) \leq C(P)$. Assume Hypothesis 5.6. Then we may take Q = C(B), so that $P \leq Q$. Now P is the unique subgroup of order p in $C_Q(x)$, so $P \leq \prod_{X^{\#}} C_Q(x) = Q$. Hence we may take $P \leq B$, and then $P = C_B(x)$, each $x \in X^{\#}$. So $P = B \leq H$, contrary to Hypothesis 5.6.

6. 2-TRANSITIVE SEMIREGULAR GROUPS

In this section we operate under the following hypothesis:

HYPOTHESIS 6.1. Hypothesis 5.1 holds with G^{Ω} doubly transitive. $Q = C_G(Q)$ and a is an involution inverting Q with |F(a)| > 2. LEMMA 6.2. $H = QC_H(a)$ and $a^H \cap D = \{a\}$ for all $Q^t \in F(a)$ and all $D = H \cap H^t$.

Proof. As $Q = C_G(Q)$ and *a* inverts $Q, Q\langle a \rangle \leq H$. As Q has odd order, $H = QC_H(a)$. If $Q^t \in F(a)$, then $Q\langle a \rangle \cap D = \langle a \rangle$ as Q is semiregular on $\Omega - Q$.

LEMMA 6.3. $C(a)^{F(a)}$ is 2-transitive and a fixes a unique point in each Q orbit.

Proof. As $a^{H} \cap D = \{a\}$, $C_{H}(a)$ is transitive on F(a) - Q by 2.1. Let $Q \neq Q^{g} \in F(a)$. If $C_{Q^{g}}(a) \neq 1$ then $C_{Q^{g}}(a)$ moves Q to a point $Q^{x} \in F(a)$ inverted by a. So we may choose Q^{g} inverted by a. So $C_{H^{g}}(a)$ is transitive on $F(a) - Q^{g}$. Thus as |F(a)| > 2, $C(a)^{F(a)}$ is 2-transitive.

 $a^{H} = a^{Q}$ and H is transitive on the nontrivial Q-orbits, so a fixes a point in each such orbit. As $C_{Q}(a) = 1$, a fixes a unique point in each orbit.

LEMMA 6.4. Let $Y \leq G_{F(a)}$ with $C_Q(Y) \neq 1$ and let $L = \langle a^{C(Y)} \rangle$. Then

- (1) $L^{F(Y)}$ is transitive
- (2) $C_L(a)^{F(a)}$ is transitive.

Proof. By 6.2 and 6.3, $a^{G} \cap H = a^{Q}$. So $a^{G} \cap C_{H}(Y) = a^{C_{Q}(Y)}$. Given points $\gamma, \delta \in F(Y)$, Y centralizes the conjugate b of a fixing γ and δ . Now there exists a conjugate c of a fixing a unique point of F(a) and F(b). Then $a, b \in c^{C(Y)}$ so C(Y) is transitive on the conjugates Δ of a fixing 2 or more points of F(Y). Then $\Delta = a^{C(Y)}$ and $L = \langle \Delta \rangle$.

Let k + 1 = |F(Y)| and m + 1 = |F(a)|. By 6.3, $k = m |C_Q(Y)|$. As $C(Y)^4$ is transitive and $C(a)^{F(a)}$ is 2-transitive, $k = m |C_{Q^g}(Y)|$ for each $Q^g \in F(Y)$. Thus $|C_Q(Y)| = |C_Qg(Y)|$ and by 5.2.2, $L^{F(Y)}$ is transitive. As $a^{C(Y)} \cap H = a^{C_H(Y)}$, 2.1 implies $C_L(a)^{F(a)}$ is transitive.

LEMMA 6.5. Let p be an odd prime and $K = O_p(G_{F(a)})$. Assume either:

(1) $C(a)^{F(a)}$ contains no transitive subgroups with cyclic Sylow 2-groups, or

(2) $C(a)^{F(a)}$ is an extension of $L_2(q)$, $q \equiv -1 \mod 4$, on q + 1 letters, and if $U^{F(a)} \neq 1$ then $U_{F(a)} \leq C(K)$.

Then $C(K\langle a \rangle)^{F(a)}$ is transitive.

Proof. Let X be an abelian subgroup of K. Then there exists $Y \leq X$ with $C_Q(Y) \neq 1$ and X/Y cyclic. By 6.4, $C(\langle a \rangle Y)^{F(a)}$ is transitive. Assume $X \leq N_G(Y) \cap C(a)$ and if $U^{F(a)} \neq 1$ then $u \in N(X)$, for some $u \in U - U_{F(a)}$.

Suppose there exists no 2-element $t \in C(\langle a \rangle X)$ acting nontrivially on F(a). We may take $X = \Omega_1(X)$, so |X/Y| = p. Let $S \in \operatorname{Syl}_2(C(\langle a \rangle Y))$. Then S acts on X/Y, so $S/C_S(X)$ is cyclic. By assumption $C_S(X) \leq G_F(a)$, so $S^{F(a)}$ is cyclic. Therefore Hypothesis (1) cannot hold and then $C(a)^{F(a)}$ is an extension of $L_2(q)$. As $S^{F(a)}$ is cyclic we get $U^{F(a)} \neq 1$. We may assume $T = \langle u, S \rangle$ is a 2-group. Then $T^{F(a)}$ is Sylow in $C(a)^{F(a)}$ and is dihedral with |T:S| = 2. But then T normalizes [S, X] which is of order p, so $T/C_T(X)$ is cyclic and then as $T^{F(a)}$ is dihedral, $C_T(X)^{F(X)} \neq 1$, contrary to assumption.

So there exists a 2-element $t \in C(\langle a \rangle X)$ acting nontrivally on F(a).

Let X_1 be a critical subgroup of K. (That is X_1 is characteristic in K of exponent p and class at most 2, such that all nontrivial p'-automorphisms of K act nontrivally on X_1 .) Let $X_2 = Z(X_1)$, and let Y_2 be a subgroup of index at most p in X_2 with $C_o(Y_2) \neq 1$.

If $X_2 = Y_2$ we may choose $Y_2 \leq Y_1$ of index at most p in X_1 with $C_Q(Y_1) \neq 1$. Now arguing as above there exists a 2-element $t \in C(\langle a \rangle X_1)$ acting nontrivial on F(a). If $X_2 \neq Y_2$ let $X_3 \in SCN(X_1)$. Then $X_3 = Y_3X_2$ for some $Y_2 \leq Y_3$ of index p in X_3 with $C_Q(Y_3) \neq 1$, so $X_3 \leq N_G(Y_3) \cap C(a)$. As u induces an automorphism of order at most 2 on K we may choose $u \in N(X_3)$. We conclude there exists a 2-element $t \in C(X_3 \langle a \rangle)$ acting non-trivially on F(a). As $X_3 \in SCN(X_1)$, the Thompson $A \times B$ lemma implies $[t, X_1] = 1$.

So in any event we may choose $[t, X_1] = 1$. Then as X_1 is critical, [t, K] = 1. So $C(\langle a \rangle K)^{F(a)} \neq 1$. But $K \leq C(a)$, so $C(\langle a \rangle K)^{F(a)} \leq C(a)^{F(a)}$. Then as $C(a)^{F(a)}$ is 2-transitive, it follows that $C(\langle a \rangle K)^{F(a)}$ is transitive.

7. Proof of Theorem 2

For the remainder of this paper G is counterexample of minimal order, to Theorem 2, $\alpha, \beta \in \Omega$, $H = G_{\alpha}$, $D = G_{\alpha\beta}$, t is an involution with cycle $(\alpha, \beta), D^* = D\langle t \rangle, U \in \text{Syl}_2(D)$, and $U^* = U\langle t \rangle \in \text{Syl}_2(D^*)$, and $n = |\Omega|$. Let $V = \langle v \rangle$ be a cyclic subgroup of index 2 in U, and let a be the involution in V.

LEMMA 7.1. $O_{\infty}(G) = 1$.

Proof. G has no RNS.

LEMMA 7.2. G possesses no proper normal 2-transitive subgroup.

Proof. If $G_0 \triangleleft G$ with G_0^{Ω} 2-transitive, then G_0 satisfies the hypothesis

of Theorem 2, and then, by minimality of G, satisfies the conclusion of Theorem 2. This forces G to also satisfy the conclusion of Theorem 2.

LEMMA 7.3. $n \equiv 0 \mod 4$.

Proof. See 4.2.

LEMMA 7.4. Let u be an involution in G. Then $|F(u)| \equiv 0 \mod 4$.

Proof. We may assume $u \in U$. Then by 7.3, u induces an even permutation on Ω . So $|F(u)| \equiv n \equiv 0 \mod 4$.

LEMMA 7.5. Assume U is dihedral and let $x \in U$ with $x^2 \neq 1$. Then either

- (1) $\{x, x^{-1}\} = x^G \cap U$ and $C(x)^{F(x)}$ is 2-transitive, or
- (2) $\{x, x^{-1}\} \subset x^{G} \cap U$ and |F(x)| = 2.

Proof. $\{x, x^{-1}\} = x^D \cap U$ and by 2.1, $C(x)^{F(x)}$ is 2-transitive if and only if $x^D \cap U = x^G \cap U$. But as U is dihedral and $x^2 \neq 1$, $X = \langle x \rangle$ is weakly closed in U with respect to G, so by 2.1, $N(X)^{F(X)}$ is 2-transitive. As |F(X)|is even, $O^2(N(X))^{F(X)}$ is also 2-transitive unless |F(x)| = 2. But as X is cyclic, $O^2(N(X)) \leq C(X)$.

LEMMA 7.6. If $1 \neq A$ is an abelian normal subgroup of H then $C_H(A)$ is of odd order and acts semiregularly on $\Omega - \alpha$. Further $G = \langle A, A^g \rangle = G'A$ with G' simple and $A \cap G' \neq 1$. A is not cyclic.

Proof. Assume A is not semiregular on $\Omega - \alpha$. Then by [17], G is an extension of $L_m(q)$ acting on m-1 dimensional projective space. As n is even, $m \ge 4$, so U is not cyclic, quaternion or dihedral.

So A acts semiregularly on $\Omega - \alpha$. Then by 3.3, Theorem 3 in [2] and Theorem 4 in [3], $G = \langle A, A^g \rangle$ and $C_H(A)$ acts semiregularly on $\Omega - \alpha$. Next, by [12], $C_H(A)$ has odd order. Finally, by Theorem 3 in [3], A is not cyclic.

Now the pair (G, A) satisfies hypothesis 5.1, so everything else follows from 5.2.

LEMMA 7.7. Fit(H) $\neq 1$ if and only if E(H) = 1. In any event Fit(H) has odd order.

Proof. By 7.6, Fit(H) is of odd order and if Fit(H) $\neq 1$, then $E(H) \leq C_H(\text{Fit}(H))$ is of odd order.

LEMMA 7.8. If U is dihedral then U does not act semiregularly on $\Omega - F(U)$.

Proof. Assume U is dihedral and acts semiregularly on $\Omega - F(U)$. Then H(F(U)) = X is strongly embedded in H, so by [6], $H/O(H) \cong L_2(4)$ and $X = O(H) N_H(U)$. As $O(H) \leqslant H(F(U))$ and $N(U)^{F(U)}$ is 2-transitive, 7.6 implies O(H) = 1. So $H \cong L_2(4)$. Then D = U or $N_H(U)$ and n-1 = 15 or 5. As $n \equiv 0 \mod 4$, D = U and n = 16. But U is weakly closed in D and |F(U)| = 4, so 3.5 yields a contradiction.

LEMMA 7.9. Assume $C(a)^{F(a)}$ is 2-transitive and let $W = U_{F(a)}$ and $S \in Syl_2(C(a))$. Then

(1) If U is dihedral $|U:W| \leq 2$.

(2) Either $C(a)^{F(a)}$ has a RNS $T_0^{F(a)}$ or a characteristic subgroup $L_0^{F(a)}$ isomorphic to $L_2(q)$, $q \equiv -1 \mod 4$, on q + 1 letters.

(3) $L_0 = G_{F(a)}C_{L_0}(W)$ and $C_{L_0}(W)/O(C_{L_0}(W))$ is isomorphic to $Z(W) \times L_2(q)$ or Z(W) YSL₂(q) with $S \in Syl_2(G)$ in the latter case.

(4) $T_0 = C(a)_{F(a)} C_{T_0}(W)$ and letting $W \leqslant T \in Syl_2(T_0)$ either

(i) T = WYE, where $E = [T, N_H(T) \cap C(W)]$ is elementary or quaternion of order 8, or

(ii) |F(a)| = 4, $W \simeq Q_8$, and $C_T(W)$ is elementary or quaternion, or

(iii) U is quaternion, $\Phi(T) = 1$, and $W = \langle a \rangle$.

Proof. Minimality of G and 7.4 imply either $C(a)^{F(a)}$ has a RNS $T_0^{F(a)}$ or a characteristic subgroup $L_0^{F(a)}$ isomorphic to $L_2(q)$, $U_3(q)$, R(q), $q \equiv -1 \mod 4$, M_{11} or A_8 . By a Frattini argument, $C(a) = G_{F(a)}X$, where $X = N(W) \cap C(a)$. As W is cyclic, dihedral or quaternion and X centralizes a, either $O^2(X) \leq C(W)$, or $W \cong Q_8$ and $O^2(X)/C(W) \cap O^2(X) \cong Z_3$. So C(W) covers L_0 or T_0 as the case may be.

Assume L_0 exists and let $A = C_{L_0}(W)$ and $\overline{A} = A/O(A)$. Then A = Z(W)B, where $B = O^2(A)$. If $L_0^{F(a)} \cong R(q) M_{11}$ or $U_3(q)$, then the multiplier of $L_0^{F(a)}$ is of odd order, so $\overline{A} = Z(\overline{W}) \times \overline{B}$ and $\overline{B} \cong L_0^{F(a)}$. If $\overline{B} = R(q)$ then the outer automorphism group of B is of odd order and $|B \cap U| = 2$. So $U = W \times (B \cap U)$ and U is dihedral of order 4. Now by the Z*-theorem, a is conjugate to an element $b \neq a$ of C(a), and as B has one class of involutions we may pick $b \in U$. As $C(a)^{F(a)}$ is 2-transitive, 2.1 implies b is fused to a in D. So $U^{\#}$ is fused in D. Then all involutions in C(a) are conjugate to a, so $S \in Syl_2(G)$. Now 3.4 implies a contradiction.

Suppose $\overline{B} \cong U_3(q)$. Then $B \cap U$ is cyclic of order greater than 2, so U is not cyclic, quaternion or dihedral. Similarly $\overline{B} \cong M_{11}$.

Suppose $L_0^{F(a)} \cong A_8$. Then $U^{F(a)}$ is dihedral and $H^{F(a)}$ is not solvable, so U is quaternion and $\overline{B} \cong \widehat{A}_8$. Then a is the unique involution in the center

of S, so $S \in Syl_2(G)$. Now by Theorem A in [9], G is McLaughlin's group. But then G does not have a 2-transitive representation.

This yields (2). To complete (3) we remark that if $\overline{A} \cong Z(W) YSL_2(q)$ then *a* is the unique involution in the center of *S*, so $S \in Syl_2(G)$.

Assume U is dihedral. Then $C_H(a)$ has a normal 2-compliment, so $H^{F(a)}$ is solvable, and then with 3.1, $U^{F(a)}$ is cyclic. This yields (1).

Assume T_0 exists and let $W \leq T \in \text{Syl}_2(T_0)$. If $W = \langle a \rangle$ then as $C(a) \cap N(T)$ is transitive on $(T/\langle a \rangle)^{\#}$, $\Phi(T) = 1$. Hence if U is quaternion we may assume $W \neq \langle a \rangle$, so that $C_H(a)$ and then $C(a)^{F(a)}$ is solvable.

Assume |F(a)| > 4. Then with 3.1, there exists $Q^{F(a)} \leq (C_H(W) \cap N(T))^{F(a)}$ of prime order and T = WE where $E = [C_T(W), Q]$. $O^2(C(a))$ is transitive on $(E/(W \cap E))^{\#}$ and as $W \cap E \leq Z(W)$ is not quaternion, $O^2(C(a))$ centralizes $W \cap E$. Hence $\Phi(E) = 1$ by 2.2.

So take |F(a)| = 4. If $C(W)^{F(a)}$ is 2-transitive we argue as above. Hence W is quaternion of order 8 and there is a 3-element $x \in C_H(a)$ inducing an automorphism of order 3 on W. Let $E/\langle a \rangle$ be an x-invariant compliment for $W|\langle a \rangle$ in $C_T(W)$. Then E is elementary or quaternion of order 8.

LEMMA 7.10. Assume U is dihedral. Then one of the following holds:

(1) $C(U)^{F(U)}$ is 2-transitive.

(2) |F(U)| = 2 and |U| > 4.

(3) |U| = 4, $C(U)^{F(U)}$ has a RNS, $U^* \cong E_8$, and $U^{\#}$ is fused in H but not in D.

Proof. By 2.1, $N(U)^{F(U)}$ is 2-transitive of even degree. Further $O^2(N(U)) \leq C(U)$ unless |U| = 4 and $O^2(N(U)/(O^2(N(U)) \cap C(U) \cong Z_3$. Finally $O^2(N(U))^{F(U)}$ is 2-transitive unless |F(U)| = 2. Thus we may assume |U| = 4. If |F(U)| > 2 [5] implies either $N(U)^{F(U)}$ has a RNS or a characteristic subgroup isomorphic to $L_2(q)$. In the latter case $C(U)^{F(U)}$ is 2-transitive and in the former C(U) covers the RNS. Thus we may take |F(U)| = 2, and U^* dihedral. Then $C(a)^{F(a)}$ is 2-transitive by Lemma 4 in [1], so as U^* is dihedral, 7.9 implies a Sylow 2-group of C(a) is semidihedral and Sylow in G. Now appeal to 3.4.

LEMMA 7.11. If U is dihedral then U^* is not dihedral.

Proof. Assume U and U* are dihedral. Then by 7.10, |U| > 4. Now there exists $x \in U^*$ with $x^2 = v$, so $|F(v)| \equiv n \equiv 0 \mod 4$. Then by 7.5, $C(v)^{F(v)}$ is 2-transitive and as $|F(v)| \equiv 0 \mod 4$, there exists an involution b, distinct from a, centralizing v. But we may choose $b \in U^*$.

LEMMA 7.12. Let U be dihedral and $X \leq U$. Then $C(X)^{F(X)}$ is transitive except possibly if $V \leq X$ and $U^* \simeq B_{|V|}$.

Proof. If $V \leq X$ or $U^* \cong B_{|V|}$, then by 2.3 and 7.11, $C_{U^*}(Y) \leq U$ for each subgroup Y of U isomorphic to X.

LEMMA 7.13. Let X be a 4-group in U, and $W = U_{F(X)}$. Then

(1) $N(X)^{F(X)}$ is 2-transitive.

(2) $C(X)^{F(X)}$ has either a RNS $T_0^{F(X)}$ or a characteristic subgroup $L_0^{F(X)} \cong L_2(q), q \equiv -1 \mod 4$, on q + 1 letters.

(3) Assume $C(X)^{F(X)}$ is not 2-transitive and let $T \in Syl_2(T_0)$. Then W = X, $T = W \times E$, E is elementary, and $E = [T, N_H(T) \cap C(W)]$ unless |E| = 4. In any event $|E| = 2^{2i}$ and if $U \neq X$ then i is odd.

Proof. By 7.12, $C(X)^{F(X)}$ is transitive. So as $X^{H} \cap U = X^{U}$, $N(X)^{F(X)}$ is 2-transitive by 2.1. $|N_{U}(X): X| \leq 2$, so minimality of G implies either $N(X)^{F(X)}$ (and then even $C(X)^{F(X)}$) has a RNS $T_{0}^{F(X)}$ or a characteristic subgroup $L_{0}^{F(X)} \cong L_{2}(q)$ or R(q). As X is self-centralizing in U, in the latter case we have $L_{0}^{F(X)} \cong L_{2}(q)$ and $q \equiv -1 \mod 4$.

Assume $C(X)^{F(X)}$ is not 2-transitive. By 2.1, X is fused in H but not in D. By (2), $C(X)^{F(X)}$ has a RNS $T_0^{F(X)}$. If |F(X)| > 4, then by 2.2, either T has the factorization claimed or |F(X)| = 16 and T is a Suzuki 2-group. Assume the latter. If $X \neq U$ then |F(Y)| = 4, where $Y = N_U(X)$. $Y^H \cap U = Y^U$ so $N(Y)^{F(Y)}$ is 2-transitive and then $C(Y)^{F(Y)} = A_4$. But now $C(X)^{F(X)}$ is 2-transitive. So U = X and $T \in Syl_2(G)$, so by [23], $G \simeq U_3(4)$, a contradiction.

Assume |F(X)| = 4 and let $h \in H$ induces an automorphism of order 3 on X. We may assume T is not abelian so $X = Z(T) = \Omega_1(T)$. Now by [14] T is homocyclic. By 7.10, $X \neq U$, so $N_U(X) T = S \in \text{Syl}_2(N(X))$ and S is wreathed of order 32. Further X is characteristic in S, so $S \in \text{Syl}_2(G)$. Now 3.4 yields a contradiction.

Finally as X is fused in H but not in D, $|N_H(X): N_D(X)| = 3$, so $|F(X)| \equiv 1 \mod 3$ and then $|E| = |F(X)| = 2^{2i}$. If $U \neq X$ then $|U^{F(X)}| = 2$. $C(N_U(X)^{F(N_U(X))})$ is 2-transitive of degree 2^i , so as $C(X)^{F(X)}$ is not 2-transitive, $2^i + 1 \equiv 0 \mod 3$ and then *i* is odd.

LEMMA 7.14. Assume |U| > 4, U is dihedral, and let B be the cyclic subgroup of order 4 in U. Then $N(B)^{F(B)}$ has RNS or is an extension of $L_2(q)$, $q \equiv -1 \mod 4$.

Proof. By 2.1, $N(B)^{F(B)}$ is 2-transitive. Notice $U^{F(B)}$ is dihedral, or cyclic of order at most 2, and if $U^{F(B)} \neq 1$ then $C(B)^{F(B)}$ is a normal subgroup index 2.

Suppose $|F(B)| \equiv 2 \mod 4$. If |U| > 8 then a generator of B is rooted in U, so $2 \equiv |F(B)| \equiv n \equiv 0 \mod 4$, a contradiction. So |U| = 8 and $|U^{F(B)}| \leq 2$. So minimality of G and remarks in the last paragraph imply |F(B)| = 2.

So we may take $|F(B)| \equiv 0 \mod 4$. Then again minimality of G and the first paragraph give the desired result.

8. The Case
$$a \in Z^*(H)$$

In this section we assume $a \in Z^*(H)$ and produce a contradiction.

LEMMA 8.1. $C(u)^{F(U)}$ is 2-transitive for each involution $u \in U$.

Proof. If m(U) = 1 then $\langle u \rangle$ is weakly closed in U and 2.1 applies. If U is dihedral then as $a \in Z^*(H)$, U has a normal 2-complement in H. Then $u^H \cap U = u^U$, so $C_H(u)$ is transitive on $F(u) - \alpha$ by 2.1. But by 7.12, $C(u)^{F(u)}$ is transitive.

As $a \in Z^*(H)$, $O(H) \neq 1$, so there exists an abelian normal subgroup $A \neq 1$ of H. By 7.6, $C_H(A)$ is semiregular on $\Omega - \alpha$. Let Q be maximal with respect to containing $C_H(A)$, being normal in H, and acting semiregularly on $\Omega - \alpha$. By 7.6, Q is of odd order.

LEMMA 8.2. Assume U is dihedral and let u be in involution in U. Then $|U^{F(u)}| \leq 2$ and if $u \notin Z(U)$ then

- (1) $L = \langle C_Q(u)^{C(u)} \rangle \neq 1 \neq C_A(u).$
- (2) $U_{F(u)} = \langle u \rangle.$
- (3) Either L has a RNS or $L \cong L_2(q), q \equiv -1 \mod 4$
- (4) If Y is RNS for L then $uY = u^G \cap Y \langle u \rangle$.

Proof. By 7.9, $|U^{F(a)}| \leq 2$. Thus we may take $u \notin Z(U)$. Then u is conjugate to ua in U. As $A = C_A(u) C_A(a) C_A(ua)$ and $[A, a] \neq 1$ by 7.6, we get $1 \neq C_A(u) \leq L$. If $U_{F(u)} \neq \langle u \rangle$ then $F(u) = F(ua) \subseteq F(a)$ and $A \leq C(a)$. This yields (2). Now as $|C_U(u)| = 4$, $|U^{F(u)}| \leq 2$.

By 7.4 and minimality of G, either $L/Z(L) = L^{F(u)}$ has a RNS or is isomorphic to $L_2(q)$, $U_3(q)$, $R(q) \equiv -1 \mod 4$, or $L_2(8)$. As $|U^{F(u)}| \leq 2$, $L^{F(u)} \neq U_3(q)$. If $L^{F(u)} \cong L_2(q)$ then $L \cong SL_2(q)$ or $L_2(q)$. But in the former case a Sylow 2-subgroup of C(u) is semidihedral, while by 7.2, $C(\langle u, a \rangle)^{F(\langle u, a \rangle)}$ is transitive.

If $L^{F(u)}$ has a RNS $Y^{F(u)}$, then by 2.2 either Y is regular on F(u) or $L \simeq SL_2(3)$. The latter is impossible as above.

Let $S \in \text{Syl}_2(C(u))$, and $x \in U$ with $u^x = ua$. Then $uC_{Y^x}(u) \subseteq u^{Y^x}$ and $\langle u, a \rangle C_{Y^x}(u) = \langle u, a \rangle C_Y(u)$. Also $C_H(u)$ is transitive on $Y^{\#}$. As $S' = Z(S) \cap Y$, 2.9 implies (4).

It remains to show $L^{F(u)} \cong R(q)$ or $L_2(8)$, so assume otherwise. Then $S = \langle u \rangle \times (L \cap S)$ with $L \cap S^{\#}$ fused in L. So all involutions in S are conjugate to u or a and then we may take $\langle U, S \rangle \leq R \in \text{Syl}_2(C(a)) \subseteq \text{Syl}_2(G)$. Further letting $X = \langle u, a \rangle$, $C(X)^{F(X)} \cong L_2(q)$, so by 7.9, q = 3 and $C(a)^{F(a)}$ has a RNS $T_0^{F(a)}$. Then $L \cong L_2(8)$. Let $T \in \text{Syl}_2(T_0)$. By 7.9, $T = W \times E$, where $W = U_{F(a)}$ and E is elementary.

Suppose $a \neq w$ is an involution in W. If F(a) = F(w) then

$$Q = C_0(a) C_0(w) C_0(aw) \leqslant G(F(a)),$$

contradicting 7.6. So $F(a) \subset F(w)$. Then $\langle C_Q(w)^{C(w)} \rangle$ has a RNS Y_1 of rank 8. So $m(C(w)) \ge 9$, while m(R) = 6, a contradiction. So W is cyclic. Similarly $u^G \cap T$ is empty, so as $S^{\#} \subseteq a^G \cup u^G$, and $C_H(a)$ is transitive on $E^{\#}$, all involutions in T are in a^G . But now considering the transfer of G to S/T, G has a 2-transitive subgroup of index 2 contradicting 7.2.

LEMMA 8.3. Assume $C(a)^{F(a)}$ has a RNS $T_0^{F(a)}$ and let $W = U_{F(a)} \leqslant T \in Syl_2(T_0)$. Then

(1) $W = \langle a \rangle$ and $\Phi(T) = 1$.

(2) $a^G \cap C(a) \subseteq T_0$ and each involution in T is either FPF or conjugate to a.

LEMMA 8.4. Assume $C(a)F^{(a)}$ has a characteristic subgroup $L_0^{F(a)}$ isomorphic to $L_2(q), q > 3$. Then

- (1) $U_{F(a)} = \langle a \rangle$ and $a^{G} \cap C(a) \subseteq L_{0}$.
- (2) $L_0/O(L_0) \cong Z_2 \times L_2(q).$
- (3) G has a class of FPF involutions.

We prove 8.3 and 8.4 together. Set $W = U_{F(a)}$, and let $W \leq S \in Syl_2(C(a))$. As $a \in Z^*(H)$, each $a \neq b = a^g \in S$ acts FPF on F(a) by 8.1. Thus in 8.3, $b \in T$ by 4.3, while in 8.4, $b \in L_0$.

Assume $C(a)^{F(a)}$ has a characteristic subgroup $L_0^{F(a)}$ isomorphic to $L_2(q)$, $q \equiv -1 \mod 4$. By 7.9, $\overline{L}_0 = C_{L_0}(W)/O(C_{L_0}(W)) \cong Z(W) \times L_2(q)$ or $Z(W) YSL_2(q)$ with $S \in Syl_2(G)$ in the latter case.

Suppose W is dihedral. As usual $F(a) \subset F(u)$ for some involution $u \in W$. Now by 8.2.3, q = 3 and $\overline{L}_0 \cong Z(W) \times L_2(3)$. So in 8.4, m(W) = 1.

Suppose U is quaternion and $W \neq U$. Then there exist elements $u \in U - W$ and $w \in W$ of order 4. u and w induce odd and even permutations on F(a), and then even and odd permutations on $\Omega - F(a)$, respectively. So $n - q - 1 \equiv 0 \mod 2 |w|$, a contradiction.

Suppose $\overline{L}_0 \cong Z(W) YSL_2(q)$. Then $S \cap L_0 = WYX$ where $X = \langle x, y \rangle$

is quaternion. Choose $|y| \ge |x|$. Recall in this case $S \in \text{Syl}_2(G)$. Suppose U = W and let e + 1 be the exponent of S. We may choose $t \in a^G$ with $C_S(t) \in \text{Syl}_2(C(a) \cap C(t))$. But a is a root of degree 2^e in $C_S(t)$ while t is not, a contradiction. So W < U, $W = \langle v \rangle$ is cyclic, and U is dihedral or cyclic. If $U = \langle u \rangle$ then $C_S(t) = \langle ux, y \rangle$ is abelian of index 2 in S. Then as $C_S(t)$ is Sylow in $C(a) \cap C(t)$, $C_S(t)$ must be homocyclic. As xt is an involution in $S - C_S(t)$, S is wreathed, contradicting 3.4. So $U = \langle u, v \rangle$ is dihedral. Then $C_S(t) = \langle v, ux \rangle$ and $C_S(t)' = \langle v^2 \rangle$, impossible as $a \in \langle v^2 \rangle$ and $C_S(t)$ is Sylow in $C(t) \cap C(a)$.

With 7.9, the above yields (2) of 8.4 and in 8.3 implies $T = W \times E$, where $\Phi(E) = 1$.

Suppose W is dihedral. Then we have shown we are in 8.3. We may choose $u \in W^{\#}$ with $F(a) \subset F(W)$. Then apply 5.7 to $X = \langle a, w \rangle$, using 7.9 and 8.2, to obtain a contradiction.

So we may assume m(W) = 1. Then $\langle a \rangle E = \langle a^G \cap S \rangle \leq N_G(S)$, so $WZ(E) = C_S(\langle a \rangle E) \leq N(S)$. Then by 2.9, $W = \langle a \rangle$.

Assume we are in 8.4. If S is abelian, 3.4 implies $S \notin \text{Syl}_2(G)$, so S contains FPF involutions. Thus $1 \neq S' \cap Z(S) \leq L_0'$, so by 2.9 $S \notin \text{Syl}_2(G)$ and the involution t in $S' \cap Z(S)$ is not fused to a. t is 2-central and we may assume t is not FPF, so t is fused to $u \in U$. Then replacing a by u we get a contradiction by symmetry, since u is 2-central.

So we are in 8.3. $a^G \cap S \subseteq T$, hence if 8.3 is false, U is a 4-group and some $u \in U - \langle a \rangle$ is fused into T. Further by 7.9 we may take $E = [T, C_H(a)]$ and $S' \cap Z(S) \leq E$. Now we argue as in the last paragraph.

LEMMA 8.5. $C(a)^{F(a)}$ has a characteristic subgroup $L_0^{F(a)}$ isomorphic to $L_2(q), 3 < q \equiv -1 \mod 4$.

Proof. Assume not. Then by 7.9, $C(a)^{F(a)}$ has a RNS $T_0^{F(a)}$. Let $T \in Syl_2(T_0)$. By 8.3, 4.3, and 2.7 it suffices to show T centralizes $C(a)_{F(a)}$.

Assume first $L = \langle C_0(a)^{C(a)} \rangle \neq 1$. Then $[L, C(a)_{F(a)}] = 1$ and $T = \langle a \rangle E \leq \langle a \rangle L$.

So L = 1 and *a* inverts *Q*. Then *G* satisfies Hypothesis 6.1. Now by 3.2 and 6.5, $C(O_x(G_{F(a)}\langle a \rangle)^{F(a)})$ is transitive for each odd prime *p* and thus covers *T*. It follows that *T* centralizes Fit($O(G_{F(a)})$) and then $O(G_{F(a)})$. By 8.3, $G_{F(a)} = \langle a \rangle O(G_{F(a)})$, and the proof is complete.

LEMMA 8.6. Let $t \in a^G$ and $W = \langle a, t \rangle$. Then

 $n-1 = (q+1) q |C_D(a): C_D(W)|/|C_D(t): C_D(W)| + q.$

Proof. Let $s = |a^{D}|, e = |t^{D}|$. By 3.6 and 8.4, n - 1 = q(q + 1) e/s + q.

LEMMA 8.7. a inverts Q and $a \in Z(D)$.

Proof. Assume $L = \langle C_Q(a)^{C(a)} \rangle \neq 1$. By 8.4, $L \simeq L_2(q)$ and $L_0 = L \times C(a)_{F(a)}$. Let $X = L \cap D$. Then $X = [C_D(a), t]$ is of order (q-1)/2 and is centralized by U. So by 5.3, X acts semiregularly on $Q^{\#}$, and then Q is nilpotent. Let $Y = [C_D(t), a]$, where $t = a^g$. a and t are in the center of some $S \in \text{Syl}_2(C(a))$, so $S \in \text{Syl}_2(C(t))$. Also $Y \leq [C(t), a] \leq L^g$ and is normalized by S. It follows that Y = 1. Then by 8.6, $n - 1 = q(q^2 + 1)/2$. So $C_Q(a)$ is Sylow in Q. Then as Q is nilpotent, 7.6 yields a contradiction.

LEMMA 8.8. $[t, G_{F(a)}] = 1.$

Proof. Let p be an odd prime and $K = O_p(G_{F(a)})$. By 6.5, $C(K\langle a \rangle)^{F(a)}$ is transitive and then covers $L_0^{F(a)}$. It follows that t centralizes $Fit(G_{F(a)})$ and then $G_{F(a)}$.

We now derive a contradiction proving:

THEOREM 8.9. $a \notin Z^*(H)$.

For let $L = \langle t^{C(a)} \rangle'$. As $[t, G_{F(a)}] = 1$, 8.4 implies $L \simeq L_2(q)$. Let R be the subgroup of order q in $L \cap H$. Then $QR \leq QC_H(a) = H$ and R is regular on $F(a) - \alpha$, so QR is regular on $\Omega - \alpha$. This contradicts [13].

9. The Case $Fit(H) \neq 1$

It follows from 8.9 that $Z^*(H)$ has odd order. In particular m(H) > 1, so U is dihedral. In this section we assume $O(H) \neq 1$ and derive a contradiction. Define A and Q as in Section 8.

LEMMA 9.1. $C_{\mathcal{A}}(u) \neq 1$ for each involution $u \in U$.

Proof. If u inverts A then $Q\langle u \rangle \leq H$ and then $u \in Z^*(H)$.

LEMMA 9.2. There exists a 4-group $X = \langle a, a_2 \rangle \leq U$ with X^* fused in H and $X_{F(a)} = \langle a \rangle$.

Proof. As $a \notin Z^*(H)$ and U is dihedral, there exists a 4-group $X = \langle a, a_2 \rangle \leqslant U$ with $X^{\#}$ fused in H. If $X \leqslant G_{F(a)}$ then $C_A(a) = C_A(a_2) = C_A(a_2) = A$, contradicting 7.6.

LEMMA 9.3. If $C(a)^{F(a)}$ has a RNS then $|F(a)| \neq |F(X)|^2$.

Proof. Assume $|F(a)| = |F(X)|^2 = m^2$. Then by 7.13 and 5.7, m = 2 or 4, and $C_o(a)$ is of order p = 3 or 5. Then $Q = \prod_{X \neq C_o} C_o(x)$ is elementary or order p^3 . By 7.6, Q is self centralizing. Also $N_H(X)$ acts irreducibly on Q,

so $Q = C_Q(O_p(H))$ and then $O_p(H) = Q$. So $H/Q = H/C_H(Q)$ acts as a subgroup of $GL_3(p)$ with dihedral Sylow 2-groups with no normal 2-compliment, and with $O_p(H/Q) = 1$. Therefore by 2.8, $A_4 \leq H/Q \leq S_4$, or p = 5 and $A_5 \leq H/Q \leq S_5$.

By [13] Q is not regular on $\Omega - \alpha$, so if $H/Q \leq S_4$ then D = U and $n - 1 = |H: D| = 3p^3$. As $n \equiv 0 \mod 4$, p = 5 and n = 376. So $n \equiv 8 \mod 16$, impossible as |F(a)| = 16. Then $H/Q \leq S_5$, p = 5, and D = U. So $n = 3.5^4 + 1 \equiv 4 \mod 8$, again impossible as |F(a)| = 16.

For the remainder of this section let $L_1 = \langle C_Q(a), C_Q(a)^t \rangle$. If $L_1/Z(L_1) \cong L_2(q)$ then let $Y = O(L_1 \cap D)$ and $Y_1 = YO(C(XL_1))$. If |U| > 4, let B be the cyclic subgroup of order 4 in U. Choose X as in 9.2, and if possible choose X so that X^{\neq} is not fused in D.

LEMMA 9.4. Assume $C_Q(X) = 1$ and |U| > 4. Then either

(1) $L_1/Z(L_1) \cong L_2(q), \ 3 < q \equiv -1 \mod 4, \ or$

(2)
$$L_1 \leq S(|F(v)|), C_Q(a) = C_Q(v), and |F(v)| > 4.$$

Proof. Let $u = a_2 v$ and $W = \langle u, a \rangle$. Set $m = |C_0(a)|$, $k = |C_0(v)|$, $w = |C_0(W)|$, and $r = |C_0(u)|$. Notice *ua* is conjugate to *u*.

If $L_1/Z(L_1) \simeq L_2(3)$, then $Q = C_0(a) C_0(a_2) C_0(aa_2)$ is elementary of order 27. Now by 2.8, $H/Q \simeq S_4$, and $n = 82 \equiv 2 \mod 4$, a contradiction. So if $L_1/Z(L_1) \simeq L_2(q)$, then q > 3.

Now m = kw, and $|Q| = m^3$, since $C_Q(X) = 1$ and $X^{\#}$ is fused in H. As au is conjugate to u, $|Q| = r^2 m/w^2 = r^2 k/w$. Therefore $r = kw^2 = mw$. So if $u \in a^G$ then m = r and hence w = 1. Thus m = k, and we appeal to 7.14.

So we may assume $u \notin a^G$ and w > 1. $u^H \cap U = u^U$, so by 2.1 and 7.12, $C(u)^{F(u)}$ is 2-transitive. $W = C_U(u)$, so $|U^{F(u)}| = 2$. Also as w > 1, |F(W)| > 2. Let $L = \langle C_0(u)^{C(u)} \rangle$. Then minimality of G and the remarks above imply $L^{F(u)}$ has a RNS or $L^{F(u)} \cong R(q)$.

In the first case $C_Q(W)$ contains a normal subgroup Z of prime order p, and Z is normal in $C_Q(u)$ and $C_Q(ua)$. As a_2 inverts $C_Q(a)$, Z is normal in $C_Q(a)$. Hence $Z \leq Q$. Let A be a minimal normal subgroup of H containing Z. $\Phi(A) = 1$, so $Z = C_A(u) = C_A(ua)$, since $C(u)^{F(u)} \leq S(|F(u)|)$. Hence $A = C_A(u) C_A(ua) C_A(a) = ZC_A(a) = C_A(a)$, contradicting 7.6.

So $L^{F(u)} \cong R(q)$. Then w = q and $r = q^2$ or q^3 . If k = 1 then $L_1 \leq C(u)$, and we are in (1), so we may take k > 1. Hence $r = kw^2 = kq^2 > q^2$, so $r = q^3$ and k = q. |F(BW)| = 2, so by 7.14, $C(v)^{F(v)}$ is an extension of $L_2(q)$. Also *a* inverts $Z(C_Q(u))$ and the second center $Z_2(C_Q(u))$ of $C_Q(u)$ is $C_Q(W)Z(C_Q(u))$.

As $a \notin Z^*(H)$, a does not invert Z(Q). But $C_Q(a) = C_Q(W) C_Q(v)$ and

 $C_o(W) \cap Z(C_o(u)) = 1$, and $N_H(v)$ acts irreducibly on $C_o(v)$, so $Z(Q) = Z(C_o(u))Z(C_o(ua)) C_o(v)$. Further $Z_2(Q) = Z(Q) C_o(W)$. So a centralizes $Z_2(Q)/Z(Q)$. Thus as $X^{\#}$ is fused in H, X centralizes $Z_2(Q)/Z(Q)$. So $C_o(X) \neq 1$, a contradiction.

THEOREM 9.5. Let $L = \langle C_o(a)^{C(a)} \rangle$. Then

- (1) $L/Z(L) \simeq L_2(q), 3 < q.$
- (2) $|F(Y\langle a \rangle)| = 2.$
- (3) $C_H(a) = C_Q(a) N_H(Y\langle a \rangle).$
- (4) $Y \leq N_G(X)$.

The proof of Theorem 9.5 involves a series of lemmas.

LEMMA 9.6. If $L_1/Z(L_1) \cong L_2(q)$, $3 < q \equiv -1 \mod 4$ and $|F(X)| \leq 4$, then 9.5 holds.

Proof. Let $W = C_U(L_1)$. U/W centralizes Y, so [U, Y] = 1. Further Y is inverted in L_1 , so by 5.3, $C_O(Y) = 1$. $Y_1 \leq D$ and Y_1 acts on F(X), which has order 2 or 4 by hypothesis. Hence Y_1 fixes F(X) pointwise.

There exists $\alpha \neq \alpha^g = \gamma \in F(X)$ such that a_2 is in the center of a Sylow 2-group of H_{γ} containing X. Let $L_2 = \langle C_Q(a_2), C_{Q_g}(a_2) \rangle$, and let P be a subgroup of prime order in Y. P acts on L_2 and semiregularly on $C_Q(a_2)$, so $P \leq L_2C(L_2)$ (e.g., Lemma 2.7 in [3]). As this holds for each prime divisor of |Y| and $[Y_1, P] = 1$ it follows that $Y_1 = O(C(XL_2))(L_2)_{\alpha\gamma}$. Therefore $Y_1 \leq N_G(X)$. Now $Y = [Y_1, t]$ is cyclic. Assume |F(X)| = 4. Then $N(X)^{F(X)} \simeq A_4$ or S_4 , so by 2.5, $[Y_1, t] = 1$, a contradiction.

So |F(X)| = 2. Thus $X^{\#}$ is fused in D, so $C(a)^{F(a)}$ is 2-transitive and then $L_1 = \langle C_0(a)^{C(a)} \rangle = L$. This yields (1)-(3) of 9.5. Also $Y = [Y_1, t] = O(L_2 \cap D)$, so $Y \leq N_G(X)$.

LEMMA 9.7. If $C(a)^{F(a)}$ is 2-transitive then 9.5 holds.

Proof. This follows from 7.9, 9.3, and 9.6. Given 9.7 we may assume $C(X)^{F(X)}$ is not 2-transitive.

LEMMA 9.8. If |U| = 4 then 9.5 holds.

Proof. Assume |U| = 4. Then U = X. $C(X)^{F(X)}$ is not 2-transitive, so by 7.8, 7.10, and 7.13, $L^{F(a)}$ satisfies Hypothesis 5.4. Then 5.5, either $L^{F(a)}$ has a RNS or $L^{F(a)} \cong L_2(8)$ or $5L_2(32)$. By 9.3, it must be the latter. Then $C_o(a)$ is cyclic of order 3, 9, 11, or 33. Take A to be minimal normal in H. Then $|A| = p^3$, p = 3 or 11.

Suppose p = 11. $C_H(X)$ contains an element w inducing an outer automorphism of order 5 on L with $C_L(w)^{F(\langle a,w\rangle)} \cong S_3$. Now Q is abelian of order 11³ or 33³, and in the latter case as w centralizes an element of order 3 in $L^h \cap H$ for each $a^h \in X$, w centralizes $O_3(Q)$, contradicting 7.6. So Q = A. Now $C_L(\langle a, w \rangle)$ acts irreducibly on [a, A] of order 121, so w has scalar action on [a, A]. Indeed this holds for each member a of $X^{\#}$, so w has scalar action on A. Hence $H = AC_H(w)$. $C_H(w)$ is a subgroup of $GL_3(11)$ whose Sylow 2-group U is a 4-group fused in $C_H(w)$ and containing an element of order 6. It follows that $C_H(w) \cong Z_5 \times L_2(11)$ and D = U. Then $n = (11^4 \cdot 5^2 \cdot 3) + 1 \equiv 12 \mod 16$. But $|F(a)| = 496 \equiv 0 \mod 16$, a contradiction.

So p = 3. Then by 2.8, $A_4 \leq H/Q \leq S_4$ and D = U. So $C_0(a)$ has order 9 and Q has order 9³. Then $n = 3^7 + 1 \equiv 4 \mod 7$, so |G| = n |H| is not divisible by 7. But the order of L is divisible by 7.

Given 9.8 we may assume |U| > 4. Recall B is the cyclic subgroup of order 4 in U.

LEMMA 9.9. If $N(B)^{F(B)}$ has a RNS then 9.5 holds.

Proof. Let $W = U_{F(B)}$. As in 7.4, $|U:W| \leq 2$. Suppose |F(BX)| = 2. Then as $|F(X)| = |F(BX)|^2$ and $C(X)^{F(X)}$ is not 2-transitive, $C_Q(X) = 1$. Now appeal to 9.4 and 9.6.

So we may assume |F(BX)| > 2. As $C(a)^{F(a)}$ is not 2-transitive, $F(a) \neq F(B)$. Hence $BX^{F(a)}$ is a 4-group in $C(a)^{F(a)}$, and by 7.13, $C(a)^{F(a)}$ satisfies the hypothesis of Lemma 5.7. Thus choosing P as in 5.7, $[C_A(a), P] = 1$. By symmetry, $[C_A(x), P] = 1$ for each $x \in X^{\#}$, so $P \leq C(A) \leq Q$. Now arguing as in the last paragraph of 5.7, P is the unique subgroup of order p in $C_O(x)$, each $x \in X^{\#}$, so P is even unique in Q. This contradicts 7.6.

LEMMA 9.10. If $N(B)^{F(B)}$ is the extension of $L_2(q)$, then 9.5 holds.

Proof. |F(BX)| = 2, so |F(X)| = 4 and $C_o(X) = 1$. Now appeal to 9.4 and 9.6.

Notice 9.8–9.10 and 7.14 imply Theorem 9.5. We can now complete this section proving:

THEOREM 9.11. O(H) = 1.

Let $K = \Gamma_{1,X}(H)$. By 9.5, $K = Q(K \cap D)$. Now if QD = H then Q is regular on $\Omega - \{\alpha\}$, contradicting [13]. So $K \leq QD \neq H$. But by 9.5, $C(a)^{F(a)}$ is 2-transitive, so $a^H \cap D = a^D$. So $a^H \cap QD = a^{QD}$, and QD has one class of involutions. Thus QD is strongly embedded in H. Therefore $H/O(H) \cong A_5$ and $\overline{D} = D/O(D) \cong A_4$. Also $n - 1 = |Q| |H: K| = 5q^3$. Now t acts on \overline{D} and centralizes U, so we may choose t to centralize \overline{D} . So tU^{\neq} is fused in D. Let $U^* \leq S \in \text{Syl}_2(C(a))$. Then $S = \langle a \rangle \times T$, where $S \cap L \leq T$ is nonabelian dihedral. Let z be the involution in Z(T). By 2.9, $z \notin a^G$. Further $uz \in u^T$ for each $a \neq u \in U$, so $|a^G \cap zU| > 1$. Thus z = t is FPF. Further $[t, C_D(u)] = 1$ for each $u \in U^{\neq}$, so [t, D] = 1.

Define s and e as in 3.6. Then $s = |a^{D}|$, and $e = |at^{D}| = s$, so by 3.6, $n = |F(a)|^{2} = (q + 1)^{2}$. But $(q + 1)^{2} \neq 5q^{3} + 1$.

10. The Case $E(H) \neq 1$

By 9.11, O(H) = 1, so by 7.7, $L = E(H) \neq 1$, and $H \leq \operatorname{Aut}(L)$. As H has dihedral Sylow 2-subgroups it follows from [11] that $L \simeq A_7$ or $L_2(q)$, q > 3 odd, and that L is of index at most 2 in UL with $UL \simeq PGL_2(q)$ if $UL \neq L$.

LEMMA 10.1. $H \not\cong A_7$.

Proof. Assume $H \cong A_7$. We consider the various possibilities for D. Assume first D is solvable. If X is a nilpotent subgroup of odd order in Hwith $|H: N_H(X)|$ odd, then X is of order 1 or 3. Thus we may choose $X = O(D) \leq C(a)$. Suppose X has order 3. Then $UX \leq D \leq N_H(X)$ of order 72, so D has order 24 or 72. Then n - 1 = 105 or 35. As $n \equiv 0 \mod 4$, n = 36. Let N be the number of pairs $(a^h, \gamma), \alpha \neq \gamma \in F(a^h)$. Let m = |F(a)|. Then $35.21 = (n - 1) |a^H \cap D| = N = |a^H| (m - 1) = 105(m - 1)$. So m = 8. But $C(a)^{F(a)}$ is transitive, so if $S \in \text{Syl}_2(C(a))$ then 8 = |S: U|. But $|G: H| = n = 36 \neq 0 \mod 8$, a contradiction.

So X = 1, and either $D \leq C(a)$ or $D \simeq S_4$. If $D \simeq S_4$ then n - 1 = 105and $n \equiv 2 \mod 4$. So $D \leq C(a)$ and then D = U and n - 1 = 315. Calculating as above we find m = 16, whereas $n \neq 0 \mod 8$, a contradiction.

So D is not solvable. As $U \leq D$, $D \simeq A_6$, S_5 , or $L_2(7)$. In the first case $G \simeq A_8$. In the second $n = 22 \neq 0 \mod 4$. So $D \simeq L_2(7)$ and n = 16. Calculating we find m = 4. As D is transitive on its involutions, 2.1 implies $C(a)^{F(a)}$ is 2-transitive. $C_D(a)$ is maximal in D, so $\langle a \rangle = G_{F(a)}$. Then minimality of G implies $C(a)^{F(a)} \simeq S_4$. As m = 4 and n = 16, we may choose t to be FPF. As $G_{F(a)} = \langle a \rangle$, t centralizes U and t is the unique FPF involution in U^* . t acts on $D \simeq L_2(7)$ and centralizes U, so t or ta centralizes D. $ta \in a^G$ and C(a) is solvable, so [t, D] = 1 and t is the unique FPF involution in D^* . Now 2.4 implies G has a RNS.

LEMMA 10.2. One of the following holds:

(1) $L \cap D \leq C(a)$ and $C(a)^{F(a)}$ has rank 3 or 4 for $U \leq L$ or $U \leq L$, respectively.

(2) $L \cap D \cong PGL_2(q_0)$, some odd $q_0 \ge 3$, $U \le L$, and $C(a)^{F(a)}$ has rank 3.

(3) $L \cap D \cong L_2(q_0)$, some odd $q_0 \ge 3$, and $C(a)^{F(a)}$ is 2-transitive.

Proof. By the opening remarks in this section and 10.1, $H \leq \operatorname{Aut}(L)$, with $L \cong L_2(q)$. As D has dihedral Sylow 2-group $U, L \cap D$ has one of the forms claimed. By 2.1 and 7.12, $C(a)^{F(a)}$ is transitive of the stated rank.

LEMMA 10.3. $L \cong L_2(5)$ or $L_2(7)$ and if $L \cong L_2(27)$ then $D \leq LU$. If $H \cong L_2(9)$ then $D \cong S_4$.

Proof. The arguments in 7.8 show $L \not\cong L_2(5)$. If $L \cong L_2(7)$, then D = U or $D \cong S_4$. In the first case $n = 22 \equiv 2 \mod 4$. In the second case n = 8, and it is easy to show, using 2.4, that G has a RNS. Similarly if $H \cong L_2(9)$ then $D \cong S_4$.

So assume $L \cong L_2(27)$ but $D \leq LU$. Then *D* contains an element w of order 3 inducing a field automorphism on *L*. Let $\langle w \rangle = W \leq P \in \text{Syl}_3(D)$. If $P \neq W$ then $D = N_H(U \cap L)$ and $n = 7.9.13 + 1 \equiv 4 \mod 8$. But |F(a)| = 8, a contradiction. So P = W and then by 2.1, $w^G \cap H = w^H$. Further $n \equiv 1 \mod 3$, so *H* contains a Sylow *p* subgroup of *G*. Then as $w^G \cap H = w^H$ and *W* has a normal complement in *H*, *W* has a normal complement in *G*, contradicting 7.2.

LEMMA 10.4. Let Y be the cyclic subgroup of index 2 in $C_{LU}(a)$ containing a. Assume $C(a)^{F(a)}$ is not 2-transitive and let X be a 4-group in U used in H but not in D. Then

(1) $\langle a \rangle = G_{F(a)}$.

(2) Either $Y \cap D = \langle a \rangle$ or $F(Y \cap D) = \alpha \cup \beta^{C_H(a)}$ is a set of imprimitivity for $C(a)^{F(a)}$ and |F(X)| = 4.

Proof. Let $X = \langle a, x \rangle$ and $h \in N_H(X)$ with $a^h = x$. Then as x is not fused to a in D, $Y_{\beta\betah} = \langle a \rangle$. Thus $Y_{F(a)} = \langle a \rangle$. Indeed if $Y \cap D \ge Y_1 \neq \langle a \rangle$ then Y_1 is weakly closed in D with respect to H, so $N_H(Y_1) \leqslant C_H(a)$ is transitive on $F(Y_1) - \alpha$. Further $Y_1 \leq C_H(a)$.

Then $[G_{F(a)}, Y] \leq Y_{F(a)} = \langle a \rangle$. So $G_{F(a)}$ centralizes Y unless possibly |Y| = 4 and $G_{F(a)} = \langle a, u \rangle$ is a 4-group. In the latter case $G_{F(a)} \leq C(a)$, so q = 5, 7 or 9, since Y is self-centralizing for q > 5. By 10.3, q = 9. Then $n = 46 \equiv 2 \mod 4$, a contradiction. This yields (1).

Assume $Y \cap D \neq \langle a \rangle$. Then as $Y \cap D \leq C_H(a)$ and $C_H(a)$ is transitive on $F(Y \cap D) - \alpha$, $\beta^{C_H(a)} = F(Y \cap D) - \alpha$ is an orbit of $C_H(a)$ on $F(a) - \alpha$. $Y \cap D$ is weakly closed in $C_H(a)$ with respect to $C_G(a)$, so $F(Y \cap D)$ is a set of imprimitivity for $C(a)^{F(a)}$. Then $F(Y \cap D) \cap F(X)$ is a set of imprimitivity for $C(X)^{F(X)}$, so by 7.13, |F(X)| = 4.

LEMMA 10.5. Define Y as in 10.4. Assume $C(a)^{F(a)}$ is not 2-transitive and $Y \cap D \neq \langle a \rangle$. Then either

- (1) $D = C_H(a)$ and |F(Y)| = 2, or
- (2) $DY = C_H(a), |Y: Y \cap D| = 3, and |F(Y \cap)| = 4.$

Proof. By 10.4, $F(Y \cap D) = \alpha \cup \beta^{C_H(\alpha)}$ is a set of imprimitivity for $C(a)^{F(\alpha)}$ and |F(X)| = 4. Then $N(Y \cap D)^{F(Y \cap D)}$ is 2-transitive with $|U^{F(Y \cap D)}| = 2$. As |F(X)| = 4, $|F(X(Y \cap D))| = 2$. Finally $U^{F(Y \cap D)} \leq C(Y \cap D)^{F(Y \cap D)}$.

With these facts in mind, minimality of G implies either $|F(Y \cap D)| = 2$ or $N(Y \cap D)^{F(X \cap D)}$ is an extension of $L_2(q_1)$ with $q_1 \equiv -1 \mod 4$.

Now if $|F(Y \cap D)| = 2$ then as $Y \cap D \leq C_H(a)$, $C_H(a) \leq D$. By 10.3, q > 7 and if $H \simeq L_2(9)$ then $D \simeq S_4$, so $C_H(a)$ is maximal in H, and $D = C_H(a)$.

On the other hand if $Y \leq D$ then as $YU \leq C_H(a)$, $F(Y) \leq F(X)$ and then |F(Y)| = 2. So we may assume $Y \leq D$. Then $Y^{F(Y \cap D)}$ is a normal cyclic subgroup of $H^{F(Y \cap D)}$, so $q_1 = |Y^{F(Y \cap D)}| = |Y: Y \cap D|$ is prime. Further $C(Y \cap D)^{F(Y \cap D)}$ covers the socle of $N(Y \cap D)^{F(Y \cap D)}$, so $C_D(Y \cap D)^{F(Y \cap D)}$ contains a cyclic subgroup $W^{F(Y \cap D)}$ of order $(q_1 - 1)/2$ acting semiregularly on $Y^{F(Y \cap D)}$.

Assume $q_1 > 3$. Then as $W \leq C(Y \cap D)$ acts semiregularly on $Y/(Y \cap D)$, we conclude W is of prime order p. Then $q = q_2^p$ and $q_1 = (q_2^p - \epsilon)/(q_2 - \epsilon)$ where $\pm 1 = \epsilon \equiv q \mod 4$. But $(q_1 - 1)/2 = p$, so we must have q = 27 and p = 3, contradicting 10.3.

Thus $q_1 = 3$, and it remains to show $D \leq C(a)$. So assume not. Then by 10.2, $L \cap D \cong PGL_2(q_0)$. Now either $q = q_0^e$ or $q_0 = 3$ or 5. As $3 \neq (q_0^e - \epsilon)/(q_0 - \epsilon), q_0 = 3$ or 5. Thus $|Y \cap D| = 4$ and $q = 4q_1 \pm 1 = 12 \pm 1 = 11$ or 13. But then $|U \cap L| = 4$, a contradiction.

LEMMA 10.6. Define Y as in 10.3 and assume $C(a)^{F(a)}$ is not 2-transitive. Then $Y \cap D = \langle a \rangle$.

Proof. Assume $Y \cap D \neq \langle a \rangle$. Then by 10.4 and 10.5, $F(Y \cap D)$ is a set of imprimitivity for $C(a)^{F(a)}$, and is of order 2 or 4. Let θ be the set of conjugates of $F(Y \cap D)$ under C(a). Let m = |F(a)|, and $s = |a^H \cap D|$. By 10.5, $|F(Y \cap D)| = 2$ or 4 and $s = 1 + (q - \epsilon)/2$ or $1 + (q - \epsilon)/6$, respectively, for $\epsilon = \pm 1 \equiv q \mod 4$.

Now by 10.4, $F(Y \cap D) - \alpha = \beta^{C_H(\alpha)}$ and $a \in Z(D)$. So by 2.1,

 $|F(Y \cap D)| = 1 + (m-1)/s$. Then $m = 2 + (q-\epsilon)/2$ or $4 + (q-\epsilon)/2$ for $|F(Y \cap D)| = 2$, or 4, respectively.

Next, each Δ in θ distinct from $F(Y \cap D)$ corresponds to a unique 4-group, X in $C_L(a)$ fixing 2 points of Δ . Suppose $B = \langle b \rangle$ is a cyclic subgroup of order 4 in U. Then B normalizes each 4-group X in $C_L(a)$ and then also $F(X) - F(Y \cap D) = F(X) \cap \Delta$. So B is in the kernal of the action of C(a)on θ . As $B\langle t \rangle$ is the weak closure of B in the stabilizer of $F(Y \cap D)$ we conclude $B\langle t \rangle \leq C(a)$. B and $\langle bt \rangle$ are the conjugates of B in $B\langle t \rangle$, so C(a)acts on $F(B) \cup F(bt)$. Then $F(a) = F(B) \cup F(bt)$ is of order $2 |F(Y \cap D)|$ so $(q - \epsilon)/2 = |F(Y \cap D)|$ and either q = 5, or q = 7 or 9 and $|Y: Y \cap D| = 3$. By 10.9, q = 9, so Y is a 2-group and $|Y: Y \cap D| \neq 3$.

So |U| = 4. Now $m \equiv 0 \mod 4$, so if $|F(Y \cap D)| = 4$ then $q \equiv \epsilon \mod 8$ and |U| > 4, while if $|F(Y \cap D)| = 2$ then $q \not\equiv \epsilon \mod 8$. So |F(Y)| = 2and $q \not\equiv \epsilon \mod 8$. Then $Y/\langle a \rangle$ acts regularly on the $(q - \epsilon)/4$ 4-groups in $C_L(a)$ and then also on $\theta - F(Y)$. So $C(a)^{\theta}$ is 2-transitive and the stabilizer of F(Y) has a normal cyclic subgroup $Y/\langle a \rangle$ regular on $\theta - F(Y)$. It follows that C(a) either has a RNS or is an extension of $L_2(q_1)$, $q_1 = (q - \epsilon)/4$. In either case C(X) is 2-transitive on the fixed points of X on θ , so as X fixes F(Y) pointwise, any member of θ fixed by X is fixed pointwise, so as |F(X)| = 4, X fixes exactly 2 points of θ . Thus $C(a)^{\theta}$ is an extension of $L_2(q_1)$.

Then $C_D(a)$ contains a subgroup W of order $(q_1 - 1)/2\delta$, $\delta = 1$ or 2, acting semiregularly on $Y\langle a \rangle$. W must induce field automorphisms on L.

If W = 1 then $q_1 = 3$ or 5 and q = 11, 13, or 19 and n = 1 + |H:D| = 56, 92, or 172. If $q_1 = 5$, then $m = 12 \equiv n \mod 8$, so a Sylow 2-group S of C(a) is an abelian Sylow group for G, contradicting 3.4. Similarly $q_1 \neq 3$.

So $W \neq 1$. Then as W acts semiregularly on $Y/\langle a \rangle$, W is of prime order p, and $q = 3^p$ or 5^p . If $q = 5^p$ then $p = (q_1 - 1)/2\delta = ((5^p - 1)/4 - 1)/2\delta = 5(5^{p-1} - 1)/8\delta$. So p = 5. But $5^4 - 1 \neq 8$ or 16. So $q = 3^p$ and as above p = 3, contradicting 10.3.

LEMMA 10.7. $C(a)^{F(a)}$ is 2-transitive.

Proof. Assume $C(a)^{F(\alpha)}$ is not 2-transitive. Then by 10.6, $LU \cap D = U$ is of order 4. By 7.13, $C(U)^{F(U)}$ has a RNS $T_0^{F(U)}$ and if $T \in Syl_2(T_0)$, then T is elementary.

Next D = UK, where K is a cyclic group inducing field automorphisms on L. By 2.5, $[K_{F(U)}, T] = 1$, so we may choose $t \in T$ with [D, t] = 1.

By 7.8, $q \neq 5$, so $1 \neq 0(C_L(a)) = Q \leq C_H(a)$ acts semiregularly on $F(a) - \alpha$. Thus $\langle Q^{C(a)} \rangle^{F(a)}$ satisfies Hypothesis 5.4, so by 5.5, either $C(a)^{F(a)}$ has a RNS or $C(a)^{F(a)} \simeq L_2(8)$ or $5L_2(32)$.

Now $L_2(2^i)$ has no FPF involutions so if $C(a)^{F(a)} \simeq L_2(2^i)$ then all

involutions in G fix points of Ω and hence are conjugate to a. Let $S \in Syl_2(C(a))$. Then $S \in Syl_2(G)$. We find S abelian contradicting 3.4.

So $C(a)^{F(a)}$ has a RNS $E_0^{F(a)}$. Let $E \in \operatorname{Syl}_2(E_0)$ and $S = EU \in \operatorname{Syl}_2(C(a))$. As T is elementary E is elementary. $S' \leq Z(S)$ so by 2.9, $S' \cap a^G$ is empty. So we may choose t to be FPF. Let $U = \langle u, a \rangle$. Then $ut \in u^E$ and u and uaare conjugate to a, so $a^G \cap D^* - D = \{at, ut, aut\}$. We conclude from 3.6 that $n = |F(a)|^2$. Then by 2.4, G has a RNS.

We are now almost in position to derive a contradiction and establish the theorem.

Let Y be the cyclic subgroup of index 2 in $C_{LU}(a)$. Then $Y \cap D \leq C_H(a)$ so as $C(a)^{F(a)}$ is 2-transitive, $Y \cap D \leq G_{F(a)}$. $Y \cap D$ is weakly closed in $C_H(a)$ with respect to $C_G(a)$, so $Y \cap D \leq C(a)$.

By 7.9, $C(a)^{F(a)}$ has a RNS or is an extension of $L_2(r)$, $r \equiv 1 \mod 4$. As $Y \cap D$ is a cyclic normal subgroup of C(a) contained in $G_{F(a)}$ it follows from 2.5, that we may choose t to centralize $Y \cap D$.

Next by 10.2, $L \cap D \cong L_2(q_0)$ for some odd $q_0 \ge 3$. Then as t centralizes $Y \cap D$ and U and acts on $L \cap D$, t induces an inner automorphism on $L \cap D$ and we may choose t to centralize $L \cap D$. Indeed we may take $[D, t] \le O(D)$.

Now $D = K(UL \cap D)$ where K is a cyclic group of odd order inducing field automorphisms in L. Further $O(D) \leq K$. As above, t centralizes $O(D)_{F(a)}$.

Let $\langle d \rangle \in \operatorname{Syl}_p(O(D))$. Then t either inverts or centralizes d. Assume the former. If $|F(d^ia)| > 2$ then by 7.9, t centralizes d^ia . So if $d^i \neq 1$ then $C_H(ad^i) \leq D$. As d induces a field automorphism on L, it follows that $q = q_0^p$, d has order p, and $H = LU\langle d \rangle$. By 7.9, $C(a)^{F(a)}$ is an extension of $L_2(r)$, $r \equiv -1 \mod 4$, so $p = |[D^{F(a)}, t]| = (r-1)/2$. Then $2p + 1 = r = |F(a)| - 1 = |C_H(a): C_D(a)| = (q_0^p - \epsilon)/(q_0 - \epsilon) > q_0^{p-2}(q_0 - 1)$. So q = 27, contradicting 10.3.

Thus we have shown that:

LEMMA 10.8. [D, t] = 1.

It follows from 7.9 that:

LEMMA 10.9. $C(a)^{F(a)}$ has a RNS $T_0^{F(a)}$.

As q > 7, $C_L(a)$ is maximal in L. Thus as $L \cap D \leq C_L(a)$ and $L \leq D$, $Y \leq D$.

Suppose |F(a)| = 4. Then $|Y: Y \cap D| = 3$. Recall $L \cap D \cong L_2(q_0)$. Suppose $q = q_0^r$. Then $3 < (q - \epsilon)/(q_0 - \epsilon) = |Y: Y \cap D|$, a contradiction. So $q_0 = 3$ or 5, and $U = C_{L \cap D}(a)$. Thus $q - \epsilon = 6$, so $q \leq 7$ contradicting 10.3. So |F(a)| > 4. Let $T \in \operatorname{Syl}_2(T_0)$ and $S = UT \in \operatorname{Syl}_2(C(a))$. By 7.9, $T = V \times E$, where $E = [T, N_H(T) \cap C(V)]$. Let $a \neq u = a^h \in U$. Then $uC_E(u) \subseteq u^E$ and $C_E(u) = [C_E(u), N_H(T) \cap C(U)] \leq E^h$. So $uE^h \subseteq a^G$ and then $aE \subseteq a^G$.

Next T is the unique abelian subgroup of index 2 in S, so T is characteristic in S. Further if $V \neq \langle a \rangle$ then $\langle a \rangle = \Omega_1(\mathcal{O}^1(T))$ is characteristic in S, contradicting 2.9. Thus $V = \langle a \rangle$ and $S' = C_E(u)$. Also $U \leq L$ so H has one class of involutions. By 2.9, $a^G \cap S'$ is empty. So E^{\neq} consists of FPF involutions.

Suppose $t = a^g$. Then $U = [U, D] \leq [S^g, D] \leq E^g$, impossible as $E^{\#}$ consists of FPF involutions. So t is the unique FPF involution with cycle (α, β) . Further defining e and s as in 3.6, $s = |a^p| = |(at)^p| = e$. So by 3.6, $n = |F(a)|^2$. Now by 2.4, G has a RNS.

This completes the proof of Theorem 2.

References

- 1. M. ASCHBACHER, On doubly transitive groups of degree $n \equiv 2 \mod 4$, Illinois J. Math. 16 (1972), 276-279.
- M. ASCHBACHER, Finite groups with a proper 2-generated core, Trans. A.M.S. 197 (1974), 87-112.
- 3. M. ASCHBACHER, F-sets and permutation groups, J. Algebra 30 (1974), 400-416.
- R. BAER, Engelsche Elemente noetherscher Gruppen, Math. Ann. 133 (1957), 256-270.
- 5. H. BENDER, Endliche Zweifach transitive Permutations gruppen, deren involutions beine Fixpunkte haben, Math. Z. 104 (1968), 175–204.
- 6. H. BENDER, Transitive Gruppen gerader Ordung in denen jede Involution genan einere Punkt festalt, J. Algebra 17 (1971), 527-554.
- 7. C. CURTIS, W. KANTOR, AND G. SEITZ, The 2-transitive permutation representations of the finite Chevally groups, to appear.
- 8. D. GORENSTEIN, "Finite Groups," Harper and Row, New York, 1968.
- 9. D. GORENSTEIN AND K. HARRADA, On finite groups with Sylow 2-subgroups of type \hat{A}_n , n = 8, 9, 10, and, J. Algebra 19 (1971), 185-227.
- D. GORENSTEIN AND K. HARRADA, Finite groups whose Sylow 2-subgroups are the direct product of two dihedral groups, *Amer. Math.* 95 (1972), 1-54.
- D. GORENSTEIN AND J. WALTER, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Algebra 2 (1964), 85-151, 218-270, 334-393.
- 12. C. HERING, On subgroups with trivial normalizer intersection, J. Algebra 20 (1972), 622–629.
- C. HERING, W. KANTOR, AND G. SEITZ, Finite groups with a split BN-pair of rank 1, J. Algebra 20 (1972), 435–475.
- 14. G. HIGMAN, Suzuki 2-groups, Illinois J. Math. 7 (1963), 79-96.
- 15. B. HUPPERT, Zweifach, transitive, auffasbare Permutationsgruppen, Math. Z. 60 (1954), 409–434.

- 16. W. MANNING, The order of primitive groups, III, Trans. Amer. Math. Soc. 19 (1918), 127-142.
- M. O'NAN, A characterization of L_n(q) as a permutation group, Math. Z. 127 (1972), 301-314.
- D. SHAW, The Sylow 2-subgroups of finite soluble groups with a single class of involutions, J. Algebra 16 (1970), 14-26.
- 19. E. SHULT, On the fusion of an involution in its centralizer, to appear.
- 20. A. WAGNER, On finite affine line transitive planes, Math. Z. 89 (1965), 1-11.
- D. GORENSTEIN AND J. WALTER, Centralizers of involutions in balanced groups, J. Algebra 20 (1972), 284-319.
- Z. JANKO, A characterization of the Mathieu simple groups, II, J. Algebra 9 (1968), 20-41.
- 23. D. GOLDSCHMIDT, 2-fusion in finite groups, Ann. Math. 99 (1974), 70-117.