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Tueorem 1. Let G? be a doubly transitive permutation group in which the
stabilizer of 2 points has 2-rank 1. Then either

(1) G has a regular normal subgroup, or

(2) G < Aut(L) and L? is Ly(q), Sx(g), Us(g), or R(q), in its natural
doubly transitive vepresentation, or Ly(11) or My on 11 letters.

R(g) denotes a group of Ree T'ype on ¢ + 1 letters.

For odd degree, Theorem 1 is a corollary to the classification of finite groups
with a proper 2-generated core [2]. For even degree, Theorem 1 is a corollary
to the following theorem:

TurOREM 2. Let G2 be a doubly transitive group of even degree in which a
Sylow 2-subgroup of the stabilizer of 2 points is cyclic, quaternion, or dihedral.
Then either

(1) G2 has a regular normal subgroup, or
group

(2) G < Aut(L), and L? is Ly(g), Us(q), R(g), Ag , or Ag , in its natural
doubly transitive representation, or My on 12 letters.

The proof of Theorem 2 involves work of M. O’Nan [17] and of the author
[3] on doubly transitive groups in which the stabilizer of a point is local.

The author would like to thank Professor Michael O’Nan for a careful
reading of this manuscript, leading to a number of improvements.

1. NortatIoN

Let G be a permutation group on a set 2, X C G, and 4 C 2. Then F(X)
is the set of fixed points of X on 2. G(4) and G, are the global and pointwise
stabilizer of 4 in G, respectively. Set G4 = G(4)/G ;4 with induced permutation
representation.
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2~-TRANSITIVE GROUPS 99

Usually G2 is 2-transitive, o, €2, H = G5, ¢ is an involution with
cycle («, B), D* = D{t>, U e Syly(D), and U* = Uz e Syly(D¥).

“Regular normal subgroup” is abbreviated by RNS and “fixed point free”
is abbreviated by FPF.

Most of the group theoretic notation is standard and taken from [81.

Given groups 4 and B, AYB denotes the central product of 4 and B with
identified centers.

Fit(G) is the Fitting subgroup of G. E(G) is the product of all quasisimple
subnormal subgroups of G. F¥*{G) == Fit(G) E(G).

S(g) is the group of transformations x — ax? 4 & on GF(g), where 0 5= a
and b are in GF(g) and 8 € Aut{GF(g)).

2. PRELIMINARY RESULTS

Lemma 2.1, (Manning, [16]) Let G® be a transitive permutation group,
acl, H=G,, and X C H. Let k be the number of orbits of H on X° N I,
=X, s =|XNH| and m = | F(X)|. Then

1y NXFE has exactly k orbits, and

Q) oD | = mrls.

2.1 will be applied to situations where X is an ordered or an unordered set.

Lemva 2.2, Let Q be a subgroup of prime order in G, R a 2-subgroup of G,
and £ = Cg(Q). Assume RQ <1 G, R=[R,0, Z<G, m(Z) <2, and G
15 transitive on (R|ZY*. Then one of the following holds:

1) o® =1=2
(2) RO = SLy3),
(3) G s tramsitive on Z# and R is a Suzuki 2-group.

Proof. Assume (1) does not hold. Thean by 2.3 in [3], 2,(R) < Z. Fusther
if Z < Z(G) the proof shows RQ == SL,(3). We may take G = O%G), so as
m(Z) < 2, we may assume G is transitive on Z# and hence R is a Suzuki
2-group.

Lemma 2.3, Let U be a dihedral 2-group of order 2r and assume U* is
an extension of U by an involution i. Then U* is isomorphic to one of the
Jollowing:
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(1) B,=<v,u,s:v" =u2 =¢ =1, 0% = vL, 4® = y, 0¥ = o3,
@ Du,

3) Z,YU,

4 Z, x U.

Proof. 1If| U| = 4 the result is trivial, so assume | U | > 4. Let V = (o)
be the cyclic subgroup of index 2in Uand ue U — V. Then I <] U*.

Suppose V is self-centralizing. Then by 5.4.8 in [8], U* is either dihedral
or W = Cy(OYV)) is modular. In the latter case we may pick € W. Then
{t,ay = (W) <t U* with ta conjugate to @ under V, so we may pick
to centralize . Thatis U* =~ B,..

Next assume x € U* — U centralizes V. If V < (x) then {x) is a cyclic
subgroup of index 2 in U*, so U* is dihedral. Thus we may take x = ¢ to
be an involution. Let @ be an element of order 4 in V. Then either [, ] = 1
and U* o~ Z, X Uor[u, tw] = land U*¥ = Z,YU.

Levva 2.4. Let G2 be a transitive permutation group whose degree is a
power of 2. Assume for each pasr of distinct points « and B in §2 that there is a
unique FPT involution with cycle («, B). Then if G® is primitive or Oy(G,) = 1
then G has a RNS.

Proof, Let H = G, and 4 the set of FPF involutions. If s, € 4 and s
is a p-element acting FPF on £, then as the degree of G is a power of 2,
» = 2. On the other hand if st € H then s and ¢ are both FPF involutions with
cycle (x, o), so s = . It follows that st is always a 2-element, so by a result
of Baer [4], T' = (4 is a 2~group. So if G? is primitive then T is regular.
Also T, < O4(G,) s0 if Oy(G,) = 1 then again T is regular.

LemMA 2.5. Let X be a group acting on the group Y of odd ovder and assume

(1) X has a normal 2-group T of order at least 4 and X acts transitively
on T#,

@) Ifte T then Y, t] is cyclic.
Then [T,Y] = 1.
Proof. See 2.9 in [5].
Levmma 2.6. Let X, Y, and Z be groups with X acting on' Y and Y acting
on Z, such that

(1) Y has odd ovder.

(2) X has a normal 2-group T or order at least 4 and X acts transitively
on T#,
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(3) IfteT and ye'Y is inverted by t, then y acts semivegularly on Z.
Then [T, V] = 1.

Progf. 'This follows from 2.5, and 2.4 in [S].

Lemwma 2.7. Let G? be a transitive permutation group, c€fd, H =G, , @
an involution in Z¥(H), m = |F(a)l,n = | 2 { and 4 the set of FPF involutions
in G. Assume

(L) T is an elementary 2-subgroup normal in C(a) with T|{a) regular
on F(a) and T# = (C(a) N 4) U (C(a) N af).
(i} Every 2 points of &2 is fixed by some conjugate of a.
(i) Cla)™@ is 3)2-transitive of rank vy < 4. Ifr = 4 then {a) ¢ SyL,(H).

Then one of the following holds:

(1) G has a RNS and n = m?2.

(2) G is an extension of Ly(8) or Ly(32) and n = 28 or 496, respeciively.

B) G2 Zy X Syandn =8, G2 Zy, X Asand n = 12, or G =~ 4,
and n = 6.

Proof. Let (y,y%) be a cycle in a. ae Z*(#H) and by (i) and 2.1,
a® N H = a¥, so a centralizes some conjugate b of a fixing y and y% Suppose
a fixes a second such conjugate c. Then as a € Z*(H) and a N H = a¥, b
has odd order. But b, ¢ € T, 50 bc is a 2-element. Thus b is the unique conjugate
of g fixing y and 9%, and centralizing a. Let K = O(G,,,). It follows that
Cyla) < Cg(h). Also a € O4(C(b)), so Cx(b) < Cila). Thus ab centralizes K.

Next, let n=|Q|, m =|F@), '=aNn7T and | I'| =& Then
IT)=2mand (n —m)jm = |I'| — 1 =%k — 1. So n = mk.

Suppose T# is fused in G. Then Shult’s fusion theorem [19] implies
{a% =2 Lyo(2m). As Ca)™® is 3/2-transitive of rank at most 4 we conclude G
is an extension of Ly(4), Ly(8), or Ly(32) on 6, 28, or 496 letters, respectively.
Thus we may assume 7* is not fused.

Suppose C(@)F® is 2-transitive. Then Cy{a) has 2 orbits on T — (a), so
as T# is not fused, & = m. Then the first paragraph implies there exists a
unique element of 4 with cycle (o, B) for each «, B € 2, so by 2.4, G¥ has
a RNS.

So we may assume C(2)7® is of rank 4 and (&) is Sylow in I.
E=r(m—1)f3+1, 1<r 6. If r =3 then 2 = m and as above G2
has a RNS. If £ == 1 or 5 then &k = 4-(2/3) mod m, so as | G: H | = mk,
[ N(IY*' | = 2 mod 4 and in particular N(I')" is solvable. If 7 is even then % is
odd, T & Syly(G), and clearly N(I') is solvable.

So N(I')" is solvable 3/2-transitive of rank at most 7. Thus N7 is regular,
primitive, or a Frobenius group, and in any event has a RNS.
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a® N H = a¥. Also a € Z*(H) and any two points of {2 are fixed by some
conjugate of a, so a fixes a point in each orbit of H. Thus a ¢ Z(H).

Suppose % is odd. Then 7' is an abelian Sylow 2-group of G and (a®) is the
direct product of a 2-group with simple groups isomorphic to Ly(2¢), with
a projecting on each factor. As a ¢ Z(H), {a®) is not a 2-group. So if | T'] = 8§,
then (a%) = L,(8) and T is fused or {(a% o< Z, X Az and n = 12. Thus
we may take | T'| > 8, so that N(T'/{a)) acts irreducibly on T/{a), and again
we conclude (4% is simple and T* is fused.

So & is even. Then there exists a 2-clement # in N(T) — T with u? ¢ T.
Suppose m = 4. Then & = 2, 4 or 6. Also as T e Syl, C(b) for each be T,
Cr(u) is empty. Thus & 54 6, and if & = 4 then as above G? has a RNS. So
take £ =2, Then n = 8. If G possesses elements of order 5 or 7 then G2 and
then C(@)T® is 2-transitive, so no such elements exists, and G is a {2, 3}-
group. As H contains a Sylow 3-group of G, O4(G) = 1. Then X = Oy G)
is transitive on £ and as a € Z(H), a ¢ X, so X is regular. H contains an
element y or order 3 acting nontrivially on X, so as G & SL,(3), X is elemen-
tary. Thus G is as in (3).

So assume m > 4, and let QF be the RNS for N. If % is not a power of 2,
then NT is not primitive and therefore is Frobenius. % is even so Q is not a
p-group. But then N7 has rank greater than 7, a contradiction.

Thus %k is a power of 2. As m > 4, N(T/{a)) acts irreducibly on T/<{a>
and thus if T'<{ PeSyl,(Q) we find T = (Z(P)N T) X {a>. So as Cp(n)
isempty, Z(P)N T# = 4 N T. So as above, # = m? and G has a RNS X.

Levmma 2.8. Let p = 3 or 5, H << GLy( p) and assume O,(H) = 1, H has
dihedral Sylow 2-groups, and H has no normal 2-compliment. Then either
A <HLSS,,orp=5and 4; <H<LS;.

Proof. p?+ p -+ 1 is a prime and if p? + p + 1 divides the order of a
subgroup H of GL4(p) with dihedral Sylow 2-groups, then H has a normal
2-complement. Thus if p = 3 then H is a {2, 3}-group, so as Oy(H) =1,
A, <HLS,.

So we may take p = 5 and H a {2, 3, 5}-group. GL,(5) has a Sylow 3-group
of order 3, so as H has no normal 2-complement, O(H) is a 3’-group. Then as
O,(H)=1,0H)=1.S0etther 4, < H < S,or 4; < H<S;.

Lemma 2.9. Let G be a group, a an involution in G, S € Syl,(C(a)), and
T <1 N(S). Then
(1) IfaecTthena® N Z(S)CT.
Q) Ifa¢ T, each of aT* and T# is fused, and a is fused to an element of
ay T, then aT = a® N T{a) and S ¢ Syly,(G).
Proof. 1In (1) if a? € Z(S) then we may choose g € N(S). (1) implies (2).
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3. 2-TransiTive GROUPS

In this section G2 is a 2-transitive group, «, B3, H=G,, D = G,
t is an involution with cycle (w, B), D* = D), U e Syly{D)}, and
U* = UG e Syly(D¥). Setn = | 2.

Levmva 3.1, Assume n is even and G is solvable. Ther G < S(n).

Proof. See [15].

Levvia 3.2, Assume G has a RNS T of even order and a cyclic subgroup X
which acts transitively on 2. Then G® = S, .

Proof. Tet 2" = | T and X = {x). As 7% is transitive, x = id, where
te T, and 4 is a 2-element fixing 2 or more points of . Then #* = [¢, d-1] g2
and by induction on 7, ¥ = [t, d-1, d2,..., d-2'"] %\

Let u = d¥". As d fixes 2 or more points, | d | < | £ | = 27 and hence u
is an involution. X% is regular, so 2" +£ 1 and thus [¢, d~%,..., &2, 4] 5= 1.

Let 7,y = Cr(w) and T Ty sy = Cpyr (4% . Then as w? =1,
[T Ty | <1 Tpsl, so | TIT, 5| < 20n/2, Snmlarlv by induction on 7,
| T T | < 2027 Nowifn >4 thenn < 272, s0 | T[T, | < 202" < 2,
and if 7 =3 then | T/T,| << 2872 =2, We may assume % > 3, so
[T,d]1< Ty.

Now by induction on & = n — 7 we find
(7,4, 8% < Ty = CT,Tk+2(d2h+1).,
In particular
[t d2, d e T,_, = Cplu).
Therefore [t, d1,..., -2, u] == 1, a contradiction.

Levwva 3.3, Assume n is odd and G has dihedral Sylow 2-subgroups. Then
either

(1} G has a RNS, or

() G<LAu(L)and L? is Ay, A, , or Ly(2) in its natural 2-transitive
representation, Ly(11) on 11 letters, or A, on 15 letters.

Proof. We may assume G has no RNS, so O(G) = 1. Then by [il],
G < Aut(L), L =~ Ly(g), g odd, or 4,. If L o2 L,(g), then [7] yields the
result. One can inspect the maximal subgroups of 4, to determine its repre-
sentations.
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Lemma 3.4. Assume G has wreathed, semidihedral, dihedral or abelian
Sylow 2-subgroups and n is even. Then either

(1) G has a RNS

(2) G < Aut(L) and L is Ly(q), Us(q), R(q), or Ag in its natural doubly
transitive representation, or My on 12 letters.

Proof. ZEither G has a RNS or G is contained in the automorphism group
of a simple group L, so we may assume the latter. L is a group of known type.
Now apply [7], unless G = My, . By inspection of the character table of
My, if Gis My, thenn = 12.

Lemma 3.5. Let X be weakly closed in D with respect to G and assume
n = | F(X)> Then G has a RNS.

Proof. 'This follows from 2.1 and a result of Wagner [20].

LevMa 3.6. Let a be an involution in D with C(a)f'® transitive. Set
e=|aND*—D|, r=|aP|, s=|a"NDJ|, and m = |F(a)l. Then
n = m(m — 1) efs + m.

Proof. Let I' be the set of pairs (a4, ¢) with ¢ a cycle in a’. Then
taS|(n—m)2 =|I"| =nn— 1)ef2. Also as C(a)f'¥ is transitive,
| a®| == n| a¥ |[/m. Finally by 2.1,

la? | = | H: Cy(a)| = (n — 1)| D: Cp(a)|/| Cu(a): Cp(a)]
= (n— 1)r/(m — 1) 7/[s.

4. PRELIMINARIES TO THEOREM 2

In this section we continue the hypothesis and notation of Section 3. In
addition assume 7 is even and U is cyclic, quaternion or dihedral.

Lemma 4.1. Assume G has a RNS T, U is cyclic or dihedral, and t is a
FPF involution. Then either t€ T or n = 8 and H ~ L(2).

Proof. Assume t¢ 7. As T is transitive, T<t) == T<{u) where
(wy = T<t) N H has order 2. So t = us, se T. Now |F(u)| = | Cr(u)] =m
and 7 < w2 If n = m? then Cp(w) = [T, 4] so that ¢ = us € 47, impossible as
tis FPF.

So # < m2 Then by 3.1, H is not solvable. Let L/O(H) = E(H|O(H)).
Then L = LJO(H) has dihedral Sylow 2-groups. So either U << L oz Ly(g)
or A, , or UL == PGLy(q).
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Suppose u inverts an element x € H acting FPT on T7. Then Cilu} N
Crlux) < Cp(x) = 1, so as | T'| < | Cy(a)j? for each involution ae H, we
get # = m% So no such x exists.

Now if # e L o Ly(q) then u inverts cyclic groups X, of order (g — ¢)/2,
e = =1, so there are conjugates Y, of X, in D. Further if ¢ == 1 mod 4,
u inverts a group O of order ¢, so some conjugate Q; of O is in D. Then
Y =<UNL,Y,,Y,,0,)> < D. It follows that either all involutions in
UNLarefusedinY < Dorg=7andL N Dz S,. Similarly if L o~ 4,
we conclude L N D == 4, and all involutions of U are fused in D. Finally
if ue U —L and UL o PGLy(g), then u# N U = %Y, so u€ N D = uP.

Thus either u¥ N D = u? and by 2.1, C(u)*® is 2-transitive, or L o Ly(7)
andZ A D o« Sy .

In the former case Cy(w) is trapsitive on Cr{w)* and then on uCy(u)”
But for r € [T, u] << Cp(u), ur e 9%, so t = us e (wr)¥ < 45, a contradiction.

In the latter case let H; be a subgroup of order 7 in L. Then H, T is solvable
and 2-transitive, so by 3.1, Fi(H,) and then also Fi(H) is cyclic. So
L> o L(7). Now let 4 be the set of pairs (u”, y), where a s£ y e F{u?) and
heH. Then m— D |u¥ | =4 =D (n—1). [47] =21 and
(4N D=9, so n=Tm—1)3+1. But n =2 and m = 2/ with
{>750=2=n="Tm—1)/3+ 1 = —4/3 mod 2/, and then m = 4
and n = §.

Lomma 4.2, Assumen = 2 mod 4. Then G is contained in the automorphism
group of Ly(q), Ugq) or Ag, acting in its natural 2-transitive representation.

Proof. By [1], G contains a simple normal subgroup M with M2 2-transi-
tive and G < Aut{M). Now M N U is cyclic, quaternion or dihedral. In
the first two cases [1] implies the desired result. So we may take M = G and
assume U is dihedral. Then U* e Syly(G) and as & contains no sabgroup of
index 2, | F(u)] = n = 2 mod 4, for each involution 2 & U*,

By 2.3, U* has one of 4 forms. In the last two cases U* is not Sylow in
a simple group unless U* o~ E; . In that case we appeal to 3.4,

Suppose U* =~ B, . Then (22, u) = Cy{s) is dihedral and as | F(5)| =
2 mod 4, Cy(s) contains a subgroup W of index 2 with (¥, 5> conjugate to
a2 subgroup of U. But (W, s is neither cyclic or dihedral.

It follows that U* is dihedral. Now appeal to 3.4.

Levvia 4.3, Lei a and b be commuting, conjugate involutions. Assume
C(@)F» is 2-transitive with RNS T4 and b acts FPF on F(a). Thenbe T,.

Proof. Assume b ¢ T. By 4.1, Cy(a@)7'® o2 Ly(2) and | F(a)| = 8. Let
T € Syly(Ty) and S = TU e Syly(C(a)). Set Cla) = Cla)]O(C(a)).

If U is cyclic or dihedral then Cy(a) has a normal 2-compliment. So U is
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quatirnion and even Up() = <{a). As | T/{a}] > 4 and Cgla) is transitive
on (T/<ay*), T'is elmentary. As b ¢ T, {a) = Z(5).

The initial arguments in Janko’s characterization of M,, [22] now show G
has one class of involutions. Therefore as C(a) is 2-constrained, signalizer
functor arguments show O(C(a)) = 1. [21] Hence [22] implies G = M, .
But a subgroup of M,; isomorphic to SLy(7) does not act nontrivially on a
subgroup of odd order, so My, does not have a representation of the required
sort.

5. SEMIREGULAR GROUPS
In this section assume the following hypothesis:

Hypotuesis 5.1. Q 5 145 a subgroup of odd order of the group G, 2 = QF,
and H = Ng(Q). Represent G by conjugation on 2 and assume H 5= G and O
acis semivegularly on 2 — Q.

Tureorem 5.2. Let K < G, p a prime, and P € Syl (Q). Then

(1) P is strongly closed in S with respect to G for any P < 5 & 8yl(G).
(2) K acts transitively on the set

{O: I KNQ ], # 1}

(B) If KNQ 1 and K L H then the pair (K, KN Q) has hypo-
thesis 5.1.

4 IfK << Geither G = HK or KN Q = 1 and the pair (G[K, QK/K)
has 5.1.

(5) Assume G = (2> and P is not cyclic. Then G = G'O, G" is quasi-
simple, and Q N G' £ 1.

(6) If K <1 Gand K < H then K < Z(G).

Proof. See Section 3 of [3].

Levva 5.3. Let he H be centralized by a Sylow 2-subgroup of H and
assume B2 £ 1 but k is inverted in G. Then Cyo(h) = 1.

Progf. Assume Cy(h) == 1 and choose p to be a prime divisor of the
order of Cyla) and P e Syl (Cy(k)). Choose t with A' = £ and let
L = (Pc®y, By 5.2.2, t normalizes L, and then by 5.2.1, L{> << LN(P) <
LH < C(k) H. So we may choose ¢ to be a 2-clement in H. But this is
impossible as a Sylow 2-subgroup of H centralizes A.
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Hypotussis 5.4. (G, Q) has hypothesis 5.1. a is an involution with {a)
Sylow in H. The stabilizer of any two points of 2 is of even order. G acts
faithfully on 2. C(@)® has @ RNS TED, T e Syl,(T) is elementary of order
at least 8, and C(a) is normal of index at most 3 in a subgroup X (possibly not
contained in ) doubly transitive on F(a) and acting on ¥ = O(C(a)p(y))-

-Lemma 5.5, Assume Hypothesis 5.4. Then G satisfies (1) o (2} of
Lemma 2.7.

Proof. Suppose ye Y# is inverted by f€ 7. Then by 5.3, y acts semi-
regularly on Q. We conclude from 2.6 that T centralizes ¥. Then
T = 0,{C{a)) <1 C(a). Now 2.7, yields the result.

Hyrorassis 5.6. Hypothesis 5.1 is satisfied. H contains no noniviviel cyclic
normal subgroups. If 1 # A is a normal abelian subgroup of H then C(A) i
semiregular on 2 — {O}, and is of odd order.

Levma 5.7 Assume hypothesis 5.1. Let X be a 4-group in H with
| F(X)] == 2™ > 2 and let B be an elementary abelian subgroup of Q which is
normal in H. Assume

(1) CXOF0 has an elementary RNS Y.

(2) P is a subgroup of Cy(X) of odd order such that PFX is of prime
order p and FPF on F(X) — [O}.

(3) If xe X*with F(x) = F(X), then C(x)7*) has a RNS of order 22m.
Then [P, B] = 1 and Hypothesis 5.6 is not satisfied.

Proof. Let xe X*. By hypothesis C(x)7® has a RNS W. If F(x) # F(X)
then [ W | =Y % ¥ = Cy(X), and the representation of P on Y is
equivalent to its representation on W/Y under the map Yw — [w, X]. In
particular PP is semiregular on W*, Now Cy(x) is also semiregular on W#
and normalized by P with ®(B) = 1, so [P, Cp(x)] < Op(y = 1.

Therefore B = [Txx Cp(x) < C(P). Assume Hypothesis 5.6, Then we may
take O = C(B), so that P < Q. Now P is the unique subgroup of order »
in Co(w), so P <1 [Iys Co(®) = Q. Hence we may take P <{ B, and then
P = (Cy(x), each x € X#, So P = B <J H, contrary to Hypothesis 5.5.

6. 2-TRANSITIVE SEMIREGULAR GROUPS
In this section we operate under the following hypothesis:

Hyroruesis 6.1. Hypothesis 5.1 holds with G2 doubly tramsitive.
Q = CHQ) and ais an involution inverting Q with | Fla)) > 2.
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LemMa 6.2. H =QCy(a) and a? 0\ D = {a} for all Q*cF(a) and all
D =HnH:

Proof. As Q = Cy(Q) and «a inverts Q, Q<a)> <1 H. As O has odd order,
H = QCy(a). If Q?cF(a), then Kap N D = {a) as Q is semiregular
on £2 — Q.

Lemma 6.3, Cla)™® &s 2-transitive and a fixes a unique point in each Q
orbit.

Proof. As a? N D = {a}, Cyla) is transitive on F(a) — Q by 2.1. Let
Q #= Q9eF(a). If Cye(a) 7 1 then Cyy(a) moves O to a point Q% ef(a)
inverted by a. So we may choose Q¥ inverted by a. So Cy(a) is transitive on
F{a) — Q7. Thus as | F(a)| > 2, C(a)"*® is 2-transitive.

a¥ = g2 and H is transitive on the nontrivial Q-orbits, so  fixes a point in
each such orbit. As Cy(a) = 1, a fixes a unique point in each orbit.

Lemma 6.4. Let ¥V < Gy with Co(Y) 5% 1 and let L = {a®Y"). Then
(1) LFY s transitive

(2) C(a)™'® is iransitrve.

Proof. By 6.2 and 6.3, a° N H = a%. So a® N Cy(Y) = a®e¥), Given
points y, § e F(Y), Y centralizes the conjugate b of a fixing y and 8. Now there
exists a conjugate ¢ of & fixing a unique point of F(a) and F(b). Then
a, bec® so C(Y) is transitive on the conjugates 4 of a fixing 2 or more
points of F(Y). Then 4 = a“® and L = <{4).

Let B+ 1=|F() and m 4+ 1 = | F(a)|. By 6.3, k =m | Cy(Y)]. As
C(Y)4 is transitive and C(a)F@ is 2-transitive, & = m | Cp,(Y)| for each
Q7eF(Y). Thus | Cy(Y)) = | Cog(Y)] and by 52.2, LF¥) is transitive.
As a® N H = g8 21 implies Cp(a)T is transitive.

Levmma 6.5. Let p be an odd prime and K = O,(Gry)). Assume either:

1) C(a)F'® contains no transitive subgroups with cyclic Sylow 2-groups,
or

(2) C(a)F'? is an extension of Ly(q), ¢ = —1 mod 4, on g + 1 letters, and
if UF@ £ 1 then Uy < C(K).

Then C(K{a>)F® is transitive.
Proof. Let X be an abelian subgroup of K. Then there exists ¥ < X

with Co(Y) 54 1 and X/Y cyclic. By 6.4, C({a) Y)F'® is transitive. Assume
X< NgY)N C(a) and if UY® £ 1 thenu € N(X), for somen € U — Up(y .
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Suppose there exists no 2-element i€ C({a) X) acting nontrivially on
F{(a). We may take X = y(X),s0| X/Y | = p. Let § € Syl,(C({ap ¥)). Then
S acts on X/V, so S/Cs(X) is cyclic. By assumption Cg(X) <X Gila), so
SF@ is cyclic. Therefore Hypothesis (1) cannot bold and then C(a)™® is an
extension of Ly{g). As SF@ is cyclic we get UF® 3£ 1. We may assume
T = (u, S) is 2 2-group. Then T7@ is Sylow in C(ag)"'@ and is dihedral
with | T: S| = 2. But then T normalizes [.S, X] which is of order p, so
T/CHX) is cyclic and then as 77® is dihedral, Cp{(X)*X 3£ 1, contrary to
assumption.

So there exists a 2-element ¢ € C((a) X) acting nontrivally on F(e).

Let X, be a critical subgroup of K. (That is X, is characteristic in K of
exponent p and class at most 2, such that all nontrivial p’-automorphisms of
K act nontrivally on X,.) Let X, = Z(X;), and let ¥, be a subgroup of index
at most p in X, with Co{¥,) # 1.

If X, = ¥, we may choose ¥, << Y] of index at most p in X; with
Co(Y;) 5= 1. Now arguing as above there exists a 2-element e C({a)> X;)
acting nontrivial on F(a). If X, # Y, let X; e SCN(X,). Then X = Y, X,
for some ¥, < Y, of index p in X, with C (V) £ 1, s0 X, <I No(V,) N Cla).
As u induces an automorphism of order at most 2 on K we may choose
# € N(X;). We conclude there exists a 2-element ¢ € C{X,(a)) acting non-
trivially on F{a). As X; € SCN(X;), the Thompson A X B lemima implies
[, XJ = 1.

So in any event we may choose [7, X;] = 1. Then as X, is critical,
it, K] = 1.80 C((ay K)F@ =£ 1. But X <7 C{a)}, so C{{a) K)F'® <7 Cla)F'e.
Then as C{a)F* is 2-transitive, it follows that C((e) KDY @ is transitive.

7. ProoF oF THEOREM 2

For the remainder of this paper G is counterexample of minimal orler,
to Theorem 2, o, €2, H = G,, D = G5, ¢ is an involution with cycle
(o, B), D¥ = D<), UeSyly(D), and U* = Uz) e Syly(D*), and n = | 2.
Let V = (%) be a cyclic subgroup of index 2 in ¥, and let a be the involution
V.

Levmia 7.1, OL(G) = 1.

Proof. G has no RNS.

Lemma 7.2. G possesses no proper normal 2-transitive subgroup.

Proof. It Gy <1 G with G 2-transitive, then G, satisfies the hypothesis
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of Theorem 2, and then, by minimality of G, satisfies the conclusion of
Theorem 2. This forces G to also satisfy the conclusion of Theorem 2.

Levma 7.3. 7 = Q0 mod 4.

Proof. See 4.2.

Levmma 7.4. Let u be an involution in G. Then | F(u)] = 0 mod 4.

Proof. We may assume u € U. Then by 7.3, # induces an even permutation
on £. So | F{u)} = n = O0mod 4.

Lemma 7.5. Assume U is dihedral and let x € U with x? % 1. Then either

(1) {x, a1} = xS N U and C(x)¥@ is 2-transitive, or
2) {% a3 Ca®n Uand | F(x) = 2.

Proof. {x, a7} = x? N U and by 2.1, C(x)F® is 2-transitive if and only
ifx? N U =% N U. But as U is dihedral and #® £ 1, X = {x)> is weakly
closed in U with respect to G, so by 2.1, N(X)FX is 2-transitive. As | F(X)]
is even, QX N(X))F'®) is also 2-transitive unless | F(x)] = 2. But as X is
cyclic, OA(NV(X)) < C(X).

LemMA 7.6. If 1 = A is an abelian normal subgroup of H then Cy(A) is
of odd order and acts semiregularly on 2 — «. Further G = (A, A% = G'A
with G' simple and A N G = 1, A is not cyclic.

Proof. Assume A is not semiregular on £ — «. Then by [17], G is an
extension of L,(q) acting on m — 1 dimensional projective space. As 7 is
even, m > 4, so U is not cyclic, quaternion or dihedral.

So A acts semiregularly on £ — . Then by 3.3, Theorem 3 in [2] and
Theorem 4 in [3], G = <4, A%> and Cy(4) acts semiregularly on £2 — «.
Next, by [12], Cx(4) has odd order. Finally, by Theorem 3 in [3], 4 is not
cyelic.

Now the pair (G, A) satisfies hypothesis 5.1, so everything else follows
from 5.2.

Lemmva 7.7. Fit(H) = 1 if and only if E(H) = 1. In any event Fit(H) has
odd order.

Proof. By 7.6, Fit(H) is of odd order and if Fit(H) % 1, then
E(H) < Cy(Fit(H)) is of odd order.

Levma 7.8, If Uds dikedral then U does not act semiregularly on 2 — F(U).
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Proof. Assume U is dihedral and acts semiregularly on £ — F(U). Then
H(F(U)) = X is strongly embedded in H, so by [6], H/O(H)=2 Ly4)
and X = O(H) Ng(U). As O(H) < H(F(U)) and N(U)"U) is 2-transitive,
7.6 implies O(H)=1. So H oz Ly 4). Then D = U or Ny(U) and
n—1=150r 5. Asn=0mod4, D = U and » = 16. But U is weakly
closed in D and | F(U)| = 4, so 3.5 yields a contradiction.

Lavma 7.9. Assume C(a)® is 2-transitive ond let W = Uy and
S € Syly(C(a)). Then

(1) £ Uds dihedral | U: W | < 2.

(2) Either C(@)* has a RNS T} or a characteristic subgroup L§'®
isomorphic to Ly{q), ¢ = —1 mod 4, on g -+ 1 letiers.

(3) Ly = GpCr (W) and Cp (W)O(C, (W) is isomorphic fo
Z(W)y x Ly(q) or Z(W) YSLy(q) with S € Syly(G) in the laiter case.

(4) Ty = Cla)pw) Cr (W) and leiting W < T € Syly(Ty) either

(i) T =WYE, where E=[T,Ny(TYNC(W)] 15 elementary or
guaternion of order 8, or

(i) [Fla)| =4, W = Oy, and C(W) is clementary or quaternion, or
(i1} U is quaternion, ®(TY = 1, and W = {(a).

Proof. Minimality of G and 7.4 imply either C(@)"@ has a RNS 75@
or a characteristic subgroup L{® isomorphic to Ly(g), Uxq), R(g),
g = —1 mod 4, My; or 4g. By a Frattini argument, C{g) = Gy, X, where
X = N(W)n C{a). As W is cyclic, dihedral or quaternion and X centralizes
a, either O X) << CW), or WexQy and O¥X)/C(W)N OFX) = Z,.
5o C(W) covers Ly or T as the case may be.

Assume L, exists and let 4 = Cp (W) and A = AJO(A). Then
A = Z(W) B, where B = O¥4). If LI'*) o~ R(q) My, or U,(g), then the
multiplier of L' is of odd order, so 4 = Z(W) x B and B =~ L{'.
If B = R(g) then the outer automorphism group of B is of odd order and
[ BNU|=2.8 U=W x (BN U)and U is dihedral of order 4. Now
by the Z*-theorem, a is conjugate to an element & = a of C(q), and as B
has one class of involutions we may pick b € U. As C{a)f® is 2-transitive,
2.1 implies b is fused to @ in D. So U# 1s fused in D). Then all involutions
C(a) are conjugate to 4, so S € Syl,(G). Now 3.4 implies a contradiction.

Suppose B =~ Uy(g). Then B U is cyclic of order greater than 2, so
U is not cyclic, quaternion or dihedral. Similarly B o My, .

Suppose LE'® ~ A, . Then UF@ is dihedral and HF@ is not solvable,
so U is quaternion and B ~ A4, . Then a is the unique involution in the center

481/36/1-8
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of S, s0 § e 8yly(G). Now by Theorem 4 in [9], G is McLaughlin’s group.
But then G does not have a 2-transitive representation.

This yields (2). To complete (3) we remark that if 4 o« Z(W) YSLy(q)
then a is the unique involution in the center of S, so .§ € Syly(G).

Assume U is dihedral. Then Cy(a) has a normal 2-compliment, so H¥@ is
solvable, and then with 3.1, UF@ is cyclic. This yields (1).

Assume T, exists and let W< T'eSyly(T,). If W={a) then as C(a)nN(T)
is transitive on (T)Ka))*, @(T) = 1. Hence if U is quaternion we may
assume W =% {a), so that Cy(a) and then C(a)7® is solvable.

Assume | F(a)| > 4. Then with 3.1, there exists Q7@ <1 (Cx(W) N N(T))F @
of prime order and T' = WE where E = [C(W), 0]. O%C{a)) is transitive
on (E/(W N E))* and as W N E < Z(W) is not quaternion, 0% C(a)) centralizes
W N E. Hence §(E) = 1 by 2.2.

So take | F(a)| = 4. If C(W)F® is 2-transitive we argue as above. Hence W
is quaternion of order 8 and there is a 3-element x € Cy(a) inducing an
automorphism of order 3 on W. Let E/{a) be an x-invariant compliment for
Wi{a) in Cz(W). Then E is elementary or quaternion of order 8.

Levmma 7.10.  Assume U is dihedral. Then one of the following holds:
(1) C(UYV) 4s 2-transitive.
Q) |F) =2and | U| >4
(3) 1U| =4, C(UY has a RNS, U* == Eg, and U* is fused in H
but not in D.

Proof. By 2.1, N(U)FU) is 2-transitive of even degree. Further
ON(U)) < C(U)unless | U| = 4 and OYN(UY(OAN(U) N C(U) 2= Z;.
Finally O¥N(U))™V is 2-transitive unless | F(U)] = 2. Thus we may assume
| U| = 4.If [F(U)| > 2 [5] implies either N(U)FV) has a RNS or a charac-
tetistic subgroup isomorphic to Ly(q). In the latter case C({/)FV) is 2-transitive
and in the former C(U) covers the RNS. Thus we may take | F(U)| = 2, and
U* dihedral. Then C(a)f® is 2-transitive by Lemma 4 in [1}, so as U* is
dihedral, 7.9 implies a Sylow 2-group of C(a) is semidihedral and Sylow in G.
Now appeal to 3.4.

Levma 7.11.  If U is dikedral then U* is not dikedral.

Proof. Assume U and U* are dihedral. Then by 7.10, [ U | > 4. Now
there exists x € U* with 2 = v, so |F(v)] = n = 0 mod 4. Then by 7.5,
C(v)P™ is 2-transitive and as | F(v)| = 0 mod 4, there exists an involution 5,
distinct from a, centralizing . But we may choose b & U*.

Levma 7.12. Let U be dikedral and X < U. Then C(X)FX) is transitive
except possibly if V << X and U* = By .
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Proof. IV & X or U* & By, then by 2.3 and 7.11, Cy(Y) L U for
each subgroup Y of U isomorphic to X.

Lemva 7.13. Let X be a 4-group in U, and W = Upryy . Then
(1) NXFX {s 2-transitive.

(2) CLNOFD has either a RNS T{® or a characteristic subgroup
L% =~ Ly(g), g = —1mod 4, on g -+ 1 letiers.

(3) Assume C(X)X) is not 2-transitive and let T e Syly(Ty). Then
W=X T=W XL, Eis elementary, and E = [T, Ng(T) N C(W)] unless
|E| =4.Inany event | E| = 2% and {f U = X ihen {45 odd.

Proof. By 7.12, C(X)f%) is transitive. So as X¥ N U = XV, N(X)FO
is 2-transitive by 2.1. | Ng{X): X'| < 2, so minimality of G implies either
N(X)FX) (and then even C(X)FX) has a RNS T{ or a characteristic sub-
group L§¥) o Ly(q) or R(g). As X is self-centralizing in U, in the latter
case we have LT ~ L,(¢) and ¢ = —1 mod 4.

Assume C(X)% is not 2-transitive. By 2.1, X is fused in H but not in D
By (2), C(X)F has a RNS TEW If | F(X)| > 4, then by 2.2, either 7" has
the factorization claimed or | F(X)| = 16 and T is a Suzuki 2-group. Assume
the latter. If X 5= U then | F(Y)| = 4, where ¥ = Ny(X). YA N U = VU
so N(Y)F) is 2-transitive and then C(Y)) = 4,. But now C(X)F®
is 2-tramsitive. So U = X and T € Syly(G), so by (23], G =~ Uy4), a contra-
diction.

Assume | F(X)| = 4 and let # e H induces an automorphism of order 3
on X. We may assume T is not abelian so X = Z(T") = Qy(T). Now by [14]
7' is homocyclic. By 7.10, X + U, so Ny(X) T = S e SyL{N(X)) and S is
wreathed of order 32. Further X is characteristic in .S, so § & Syl(G). Now
3.4 yields a contradiction.

Finally as X is fused in H but not in D, | Ny(X): Ny(X)| = 3, so
[F(X)] =1mod3 and then |E| = |F(X)| =2% If U £ X then
| UF® | = 2. O(Np(X)FWNuld) s 2-transitive of degree 2%, so as C{X )X is
not 2-transitive, 2¢ -+ 1 = 0 mod 3 and then 7 is odd.

Levva 7.14.  Assume | U | > 4, U is dikedral, and let B be ithe cyclic
subgroup of order 4 in U. Then N(BY'® has RNS or is an extension of Ly(g),
g = —1mod 4.

Proof. By 2.1, N(B)"B js 2-transitive. Notice UF® is dihedral, or
cyclic of order at most 2, and if UF® = 1 then C(B)F® is a normal subgroup
index 2.

Suppose | F(B)| = 2mod 4. If | U| > 8§ then a generator of B is rooted
in U, so 2= |F(B)| =#n = 0mod4, a contradiction. S¢ | U | = § and
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| UF® | < 2. So minimality of G and remarks in the last paragraph imply
|F(B)| = 2.

So we may take | F(B)| = 0 mod 4. Then again minimality of G and the
first paragraph give the desired result,

8. THE Cast ae Z*(H)

In this section we assume a € Z*(H) and produce a contradiction.

Lemma 8.1. C{u)FV s 2-tramsitive for each involution u € U.

Proof. If m(U) = 1 then {u) is weakly closed in U and 2.1 applies. If
U is dihedral then as @ € Z*(H), U has a normal 2-complement in H. Then
u® N U = uY, so Cy(u) is transitive on F(#) — a by 2.1. But by 7.12, C(u)F®
is transitive.

As ae Z*(H), O(H) s 1, so there exists an abelian normal subgroup
A 5 1 of H. By 7.6, Cy(A4) is semiregular on £2 — «. Let Q be maximal with
respect to containing Cy(4), being normal in H, and acting semiregularly
on 2 — a. By 7.6, O is of odd order.

LemMa 8.2. Assume U is dihedral and let u be in involution in U. Then
|UF | < 2 andif u ¢ Z(U) then
(1) L= (Co@f®) #1 # C,fu).
(@ Up = <.
(3) Either L has a RNS or L ~ Ly(q), ¢ = —1 mod 4
(4) If Yis RNS for L then uY = u® N\ Y<u).

Proof. By 7.9, | UF®@ | < 2. Thus we may take ¢ Z(U). Then u is
conjugate to ua in U. As 4 = C,(u) C (a) C,(ua) and [4, a] + 1 by 7.6, we
get 1 == C () < L. If Upgy 7 <{w) then F(u) = F(ua) C F(a)and 4 < C(a).
This yields (2). Now as | Cy(n)] = 4, | UF®™ | < 2.

By 7.4 and minimality of G, either L/Z(L) = L¥® has a RNS or is iso-
morphic to Ly(g), Us(g), R(g) = —1mod4, or Ly8). As | UF™ | < 2,
LFw) =£ Uy(q). If LF™ o~ L.(q) then L ~ SL.(q) or Ly(g). But in the former
case a Sylow 2-subgroup of C(#) is semidihedral, while by 7.2, C(<%, a))F<%-a>)
is transitive.

If LF® has a RNS Y7®), then by 2.2 either Y is regular on F(x) or
L =~ SL,(3). The latter is impossible as above.

Let S eSyly(C(®)), and xe U with u® == ua. Then uCyo(u) Cu’" and
{u, @) Cyulu) = <u, ay Cy(u). Also Cy(u) 1s transitive on Y# As
S = Z(S)n Y, 2.9 implies (4).
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It remains to show L7® ot R(q) or Ly(8), so assume otherwise. Then
S = (uy x (LN S) with LN S# fused in L. So all involutions in § are
conjugate to # or @ and then we may take (U, S) << R € Syl,(C(a})) C Syly(G).
Further letting X = (u, a), C(X)F¥) =~ Ly(q), so by 7.9, g = 3 and C(a)F®
has a RNS 7%, Then L o~ Ly(8). Let T eSyly(Ty). By 7.9, T = W X E,
where W = Up(, and E is elementary.

Suppose a ¥ w is an involution in W, If F(a) = F(w) then

Q = Cola) Co(w) Cofaw) < G(F(a)),

contradicting 7.6. So F(a) C F(w). Then (Cp(w)“™"> has a RNB Y, of rank 8.
So m{C(w)) = 9, while m(R) = 6, a contradiction. So W is cyclic. Similarly
u® N T is empty, so as S* Ca® U uC, and Cyhla) is transitive on E#, all
involutions in 7" are in ¢®. But now considering the transfer of G to §/T, G
has a 2-transitive subgroup of index 2 contradicting 7.2.

Levva 8.3. Assume C(a)*® has a RNS T5'Y and let W = Upy <
T eSyl(7y). Then

(1) W = {a> and &(T) = 1.

(2) a® N C(a) C Ty and each involution in T is either ¥PF or conjugate
o a.

Lavma 8.4. Assume C(a)F'® has a characteristic subgroup LE'® ésomorphic
to Ly(q), ¢ > 3. Then

(1) Upw = <{ay and o 0 C(a) CL, .
(2) Lo/O(Lo) = Zy X Ly(g).
(3) G has a class of FPT involutions.

We prove 8.3 and 8.4 together. Set W = Uy, , and let W < S € SyL(C(a)).

As ae Z%(H), each a = b = a” € S acts FPF on F(g) by 8.1. Thus in 8.3,
be T by4.3, whilein 8.4, bel,.

Assume C(a)@ has a characteristic subgroup L{'® isomorphic to Ly(g),
g= —lmod4. By 79, L,= Cr (W)O(Cp (W) = Z(W) x Lyg) or
Z(W) YSLy(q) with S € Syly(G) in the latter case.

Suppose W is dihedral. As usual F(a) C F() for some involution u ¢ W.
Now by 8.2.3, ¢ = 3 and L, o2 Z(W) x Ly3). Sc in 8.4, m(W) = 1.

Suppose U is quaternion and 1 £ U. Then there exist elementsuc U — W
and w e W of order 4. % and w induce odd and even permutations on F(a),
and then even and odd permutations on 2 — F{a), respectively. So
n—¢—1=0mod2]|wl, acontradiction.

Suppose L, = Z(W) YSLy(g). Then SN Ly = WYX where X = (&, >
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is quaternion. Choose |y | = | # |. Recall in this case .S & Syly(G). Suppose
U= W and let ¢ + 1 be the exponent of S. We may choose ¢ e a with
Cs(t) € Syly(Cla) N C(2)). But a is a root of degree 2¢ in Cg(2) while ¢ is not,
a contradiction. So W << U, W == (v) is cyclic, and U is dihedral or
cyclic. If U = () then Cg(t) = {ux,y) is abelian of index 2 in S. Then
as Cy(?) is Sylow in C(a) N C(¢), Cs(t) must be homocyclic. As #¢ is an
involution in S — Cg(t), S is wreathed, contradicting 3.4. So U = {u, )
is dihedral. Then Cy(f) = {v, ux) and Cg(t)’ = {v*), impossible as a € {v?>
and Ci(z) is Sylow in C(¢) N C(a).

With 7.9, the above yields (2) of 8.4 and in 8.3 implies T'= W X E,
where O(E) = 1.

Suppose W is dihedral. Then we have shown we are in 8.3, We may choose
u € W# with F(a) CF(W). Then apply 5.7 to X = <a, w), using 7.9 and 8.2,
to obtain a contradiction.

So we may assume m{IW) = 1. Then (@) E = <{a® N 5S> <7 N(S), so
WZ(E) = Cy({a) E) <3 N(S). Then by 2.9, W = {a).

Assume we are in 8.4. If S is abelian, 3.4 implies S ¢ Syl,(G), so S contains
FPF involutions. Thus 1 # 8" N Z(S) < Ly, so by 2.9 §¢Syly(G) and
the involution ¢ in S’ N Z(S) is not fused to a.  is 2-central and we may
assume ¢ is not FPF, so ¢ is fused to # € U. Then replacing ¢ by u we get a
contradiction by symmetry, since # is 2-central.

So we are in 8.3. a® N S C T, hence if 8.3 is false, U is a 4-group and some
uec U — {a) is fused into T. Further by 7.9 we may take E = [T, Cy(a)]
and 8" N Z(S) < E. Now we argue as in the last paragraph.

LevMa 8.5. C(a)F® has a chavacteristic subgroup LE'® isomorphic to
Ly(g), 3 < g¢= —1mod4.

Proof. Assume not. Then by 7.9, C(a)"@ has a RNS 7§“. Let
T & Syly(Ty)- By 8.3, 4.3, and 2.7 it suffices to show T centralizes C(@)r(q) -

Assume first L = {(Cy(a)¢®> £ 1. Then [L, Cla)pl =1 and
T =<apE << {aL.

So L =1 and a inverts Q. Then G satisfies Hypothesis 6.1. Now by 3.2
and 6.5, C(O,(Gpy{a>)F'® is transitive for each odd prime p and thus covers
T. It follows that T centralizes Fit(O{Gy(y)) and then O(Gr(y). By 8.3,
Grn = <& O(Gry), and the proof is complete.

Levma 8.6. Let tea® and W =<a, ty. Then
n—1=(g+1)q]Cp(a): Co(W)|/| Cp(8): Co(W)| + ¢-
Proof. Lets=|aP|,e=|#?|.By3.6and84,n—1=gqlg+ 1)efs +q.

LemMa 8.7. a inverts Q and a € Z(D).
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Proof. Assume L = (Co(a)@) 5= 1. By 8.4, L o Ly(g) and Ly = L X
Cla)s( - Let X =L N D. Then X = [Cp(a), t] is of order (g — 1){2 and
is centralized by U. So by 5.3, X acts semiregularly on 0%, and then Q is
nilpotent. Let ¥ = [Cp(t), a], where t = a¢. a and ¢ are in the center of
some S e Syl(C(a)), so SeSyly(C(r)). Also ¥V < [C(t),e] < L7 and is
normalized by S. It follows that Y = 1. Then by 8.6, n — 1 = g(¢* + 1)/2.
So Cyfa) is Sylow in Q. Then as Q is nilpotent, 7.6 yields a contradiction.

Lemma 8.8, [, Grpl = 1.
Proof. Let p be an odd prime and K = O,(Gy(y). By 6.5, C(K{ay)™®

is transitive and then covers L @. It follows that ¢ centralizes Fit(Gr(y))
and then Gy, -

We now derive a contradiction proving:

TreorEm 8.9, a ¢Z*(H).

For let L = (€@, As[t, Gpw] = 1, 8.4 implies L ~ L,(q). Let R be the
subgroup of order g in L N H. Then OR <] OCy{a) = H and R is regular
on F{a) — o, so QR is regular on £ — «. 'T'his contradicts [13].

9, Tae Case Frr(H) # 1

It follows from 8.9 that Z¥(H) has odd order. In particular m{H) > 1,
so U is dihedral. In this section we assume O(H) # 1 and derive a contra-
diction. Define 4 and O as in Section 8.

Levnva 9.1, Cy(w) 5= 1 for each involution u e U.

Proof. 1f u inverts 4 then Ou) <1 H and then u e Z*(H).

Levma 9.2, There exists a 4-group X = (@, ayy << U with X* fused
in H and Xpy = {a).

Proof. As a¢ Z%(H) and U is dihedral, there exists a 4-group
X = {a, ayy < Uwith X*fusedin H. If X < Gp(, then C la) = C la,) =
C ({aa,) = 4, contradicting 7.6.

Levma 9.3, If C(a)™® has a RNS then [ F(a)] # | F(X)

Proof. Assume | Fla)| = | F(X)|? = m?. Then by 7.13 and 5.7, m = 2
or 4, and Cya) is of order p = 3 or 5. Then Q = [y Cp{x) is elementary
or order $% By 7.6, O is self centralizing. Also N,(X) acts irreducibly on QJ,
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80 O = Co(O,(H)) and then O,(H) = Q. So H|Q = HICy(Q) acts as a
subgroup of GL4(p) with dihedral Sylow 2-groups with no normal 2~-compli-
ment, and with O, (H/Q) = 1. Therefore by 2.8, A, < H/Q < S,, or
p=35and 4, < HO<S;.

By [13] O is not regular on £ — «, so if H/Q < S, then D = U and
n—1=1H:D)=3® As n=0mod4, p =75 and »n = 376. So
»n = 8§ mod 16, impossible as | F(a)| = 16. Then H/Q < S;, p = 5, and
D =U. Son = 3.5 -+ 1= 4mod8, again impossible as | F(a)] = 16.

For the remainder of this section let Ly = {(Coy(a), Cofa)>. If LJZ(L,) =~
Lyg) then let ¥ = O(L, N D) and YV, = YO(C(XL,)). If { U| > 4, let B
be the cyclic subgroup of order 4 in U. Choose X as in 9.2, and if possible
choose X so that X* is not fused in D.

Levva 9.4. Assume Co(X) = 1 and | U > 4. Then either

(1) LZ(Ly) =2 Ly(q), 3 < gqg= —1mod4, or
(2 L < S(F@))), Coa) = Co(v), and | F(z)] > 4.

Proof. Let u = ayv and W = {u, a>. Set m = | Cy(a)], k = | Co(9),
w = | Co(W)|, and 7 = | Cy(u)]. Notice ua is conjugate to u.

If L,/Z(Ly) == Ly(3), then Q = Cq(a) Cy(a,) Colaa,) is elementary of
order 27. Now by 2.8, H/Q ~~ S, , and #n = 82 = 2 mod 4, a contradiction.
So if Ly/Z(L,) = Ly(q), then ¢ > 3.

Now m = kw, and | Q | = m?, since Cy(X) = 1 and X# is fused in H.
As au is conjugate to u, | Q | = r?m|w? = r2%k[w. Therefore r = ku? = mw.
So if # € a® then m = r and hence w = 1. Thus m = k, and we appeal to
7.14.

So we may assume # ¢ a® and w > 1. «F N U = 4Y, so by 2.1 and 7.12,
Cu)F™ is 2-transitive. W = Cy(u), so | UT® | =2, Also as w > 1,
| F(W)] > 2. Let L = {Co(u)¢™. Then minimality of G' and the remarks
above imply LF® has a RNS or LF®™ ~ R(q).

In the first case Co(W) contains a normal subgroup Z of prime order p,
and Z is normal in Cy(u) and Cy(ua). As a, inverts Co(a), Z is normal in
Co(a). Hence Z <1 Q. Let 4 be a minimal normal subgroup of # containing Z.
@A) =1, so Z = Cy(u) = C,(ua), since Cw)¥™ < S(|F(w)|). Hence
A = C () Cy(ua) Ca) = ZC (a) = C4(a), contradicting 7.6.

So LF® ~ R(q). Then w = gand r = ¢? or ¢% If & = 1 then L; < C(w),
and we are in (1), so we may take £ > 1. Hence r = kw?® = kg% > ¢&, so
r == gand k = q. | F(BW)| = 2, so by 7.14, C(v)¥® is an extension of L,(q).
Also a inverts Z(Cy(x)) and the second center Z,(Co(u)) of Colz) is
Co(W) Z(Co(w))-

As a¢ Z*(H), a does not invert Z(Q). But Cqy(a) = Co(W) Cy(v) and
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Co(W) N Z(Co(w)) = 1, and Ny(v) acts irreducibly on Co(v), so Z(Q) =
Z(Co(w))Z(C g(ua)) Co(v). Further Zy(Q) = Z(Q) Co{W). So « centralizes
Z{0)/Z(Q). Thus as X# is fused in H, X centralizes Zy(Q)/Z(0). Se
Co(X) # 1, a contradiction.

Turorem 9.5. Let L = (Cx(a)“'*). Then
(1) LZ(L)y = Lyg), 3 < g
@ |F(¥a)| = 2.
() Chala) = Co(a) Na(Y<{a)).
(4) ¥ <1 No(X).

The proof of Theorem 9.5 involves a series of lemmas.

Levma 9.6. If LfZ(L) == Ly(q), 3 < g= —1mod 4 and | F(X)| < 4,
then 9.5 holds.

Proof. Let W = Cy(L,). U/W centralizes ¥, so [U, Y] = 1. Further ¥
is inverted in Ly, so by 5.3, Co(Y) = 1. ¥; < D and Y, acts on F(X),
which has order 2 or 4 by hypothesis. Hence Y, fixes F{X) pointwise.

There exists a 5% af = y e F(X) such that a, is in the center of a Sylow
2-group of H, containing X. Let L, = (Cy(a,), Cp (@5}, and let P be 2
subgroup of prime order in Y. 2 acts on L, and semi;egulaﬂy on Cpa,), so
P L LyC(Ly) (e.g., Lemnma 2.7 in [3]). As this holds for each prime divisor
of | Y| and [V, , P] =1 it follows that Y, = Q(C{XL))L,),, . Therefore
Y, <0 Ng(X). Now Y = [Y;,1] is cyclic. Assume |F(X)| = 4. Then
N(X)F) o 4, or Sy, so by 2.5, [Yy, £] = 1, a contradiction.

So | F(X}| = 2. Thus X* is fused in D, so C(a)f@ is 2-transitive and then
Ly = <Cu(a)c®) = L. This yields {1)~(3) of 9.5. Also ¥V =[Y,,{] =
OLy DY, s0 Y <1 Ng(X).

Lavmma 9.7, If C(a)F'9 is 2-transitive then 9.5 holds.
Proof. This follows from 7.9, 9.3, and 9.6.

Given 9.7 we may assume C(X)F¥) is not 2-transitive.

Levmva 9.8, If| U| = 4 then 9.5 holds.

Proof. Assume | U| = 4. Then U = X. C(X)FD is not 2-transitive,
so by 7.8, 7.10, and 7.13, L7 satisfies Hypothesis 5.4. Then 5.5, either
LF@ has a RNS or LF@ o~ L,(8) or 5L,(32). By 9.3, it must be the latter.
Then Cyla) is cyclic of order 3, 9, 11, or 33. Take 4 to be minimal normal
inH Then | 4| =p% p =3 or1l.
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Suppose p = 11. Cy(X) contains an element w inducing an outer auto-
morphism of order 5 on L with Cp(w)"<®*) ~ S;. Now Q is abelian of
order 113 or 333, and in the latter case as w centralizes an element of order 3
inL* N H for each a* € X, w centralizes Og(Q), contradicting 7.6. So Q = A.
Now C;({a, w)) acts irreducibly on [a, 4] of order 121, so @ has scalar action
on [a, A). Indeed this holds for each member a of X%, so @ has scalar action
on 4. Hence H = ACy(w). Cyx(w) is a subgroup of GLy(11) whose Sylow
2-group U is a 4-group fused in Cy(w) and containing an element of order 6. It
follows that Cp(w) =~ Z; X Ly(11)and D = U. Thenn = (11*-52-3) + 1 =
12 mod 16. But | F(a)] = 496 = 0 mod 16, a contradiction.

So p =3. Then by 2.8, 4, < H/Q < S, and D = U. So Cy(a) has
order 9 and Q has order 9% Thenn =374 1 =4mod 7,50 |G| =n| H |
is not divisible by 7. But the order of L is divisible by 7.

Given 9.8 we may assume | U | > 4. Recall B is the cyclic subgroup of
order 4 in U.

Levmma 9.9. If N(B)'® has a RNS then 9.5 holds.

Proof. Let W = Uppy . Asin7.4,| U: W| < 2. Suppose | F(BX)| = 2.
Then as | F(X)] = | F(BX)|? and C(X)FX) is not 2-transitive, Co(X) = 1.
Now appeal to 9.4 and 9.6.

So we may assume |F(BX)| > 2. As C(e)f® is not 2-transitive,
F(a) # F(B). Hence BXT® is a 4-group in C(a)F'@, and by 7.13, C(a)"@
satisfies the hypothesis of Lemma 5.7. Thus choosing P as in 5.7,
[Ca), P] = 1. By symmetry, [C,(x),P]=1 for each xeX? so
P < C(4) < 0. Now arguing as in the last paragraph of 5.7, P is the unique
subgroup of order p in Cy(x), each x € X7, so P is even unique in Q. This
contradicts 7.6.

Lemma 9.10.  If N(B)F® is the extension of Ly(q), then 9.5 holds.

Proof. |F(BX)| =2, so |F(X)| =4 and Cy(X) = 1. Now appeal to
9.4 and 9.6.
Notice 9.8-9.10 and 7.14 imply Theorem 9.5. We can now complete this

section proving:

TreoreM 9.11. O(H) = 1.

Let K = I, x(H). By 9.5, K = Q(K n D). Now if QD = H then Q is
regular on @ — {a}, contradicting [13]. So K < QD = H. But by 9.5,
C(a)f@ is 2-transitive, so @ N D = aP. So a? N QD = a®?, and QD has
one class of involutions. Thus QD is strongly embedded in H. Therefore
H|O(H) >~ Asand D = D/O(D) =~ 4. Alson — 1 = |Q | |H: K| = 5¢°.
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Now £ acts on D and centralizes U, so we may choose ¢ to centralize D.
So tU# is fused in D. Let U* < SeSyly(C@). Then S =<a) X T,
where S "L < T is nonabelian dihedral. Let 2 be the involution in Z(T').
By 2.9, z ¢ a. Further wuzecu” for each @ 4 xe U, so [ NzU| > 1.
Thus » = ¢ is FPF. Further [t, Cp(#)] = 1 for each ue U#, so [t, D} = 1.

Define s and ¢ as in 3.6. Then s = [ g |, and e = | atP? | = s, so by 3.6,
n == | F(a)|? = (g + 1)% But (g + 1) # 5¢° - 1.

10. Tue Case E(H) 1

By 9.11, O(H)=1,s0 by 777, L = E(H) # 1, and H < Aut(L). As H
has dihedral Sylow 2-subgroups it follows from [11] that L o~ 4, or Ly(g),
g > 3 odd, and that L is of index at most 2 in UL with UL o~ PGL,(q) if
UL # L.

Lemma 10.1. Hoe 4,.

Proof. Assume H =2 A,. We consider the various possibilities for D.

Assume first D is solvable. If X is a nilpotent subgroup of odd order in H
with | A: Ny(X)| odd, then X is of order 1 or 3. Thus we may choose
X = O(D) < C(a). Suppose X has order 3. Then UX < D <L Ng(X) of
order 72, so D has order 24 or 72. Thenn — 1 = 105 or 35. As z = 0 mod 4,
n = 36. Let N be the number of pairs (a”, y), « 5% y c F(a"). Let m = | F(a)|.
Then 3521 = — 1) |a? "D =N=|a®|(m— 1) = 105(m — 1). So
m = 8. But C{@)™'@ is transitive, so if S € Syl,(Cla)) then § = | S: U |. But
| G: H| =n = 36 3£ 0 mod 8, a contradiction.

SoX = l,and either D < C(@)or D~ S, . If D =~ S, thenn — 1 = 105
and 7 = 2mod 4. So D <{ C(a) and then D = U and » — 1 = 315. Cal-
culating as above we find m = 16, whereas n == 0 mod 8, a contradiction.

So [} is not solvable. As U <{ D, D o A4, S5, or Ly(7). In the first case
G =~ Ay . In the second 7 =22 == Omod 4. So D o Ly(7) and n = 16.
Calculating we find m = 4. As D is transitive on its involutions, 2.1 implies
Cla)™'® ig 2-transitive. Cp(a) is maximal in D, so (&) = Gp(, . Then mini-
mality of G implies C{a)™® o~ S, . As m = 4 and # = 16, we may choose #
to be FPF. As Gy = {a), t centralizes U and ¢ is the unique FPF involution
in U*. ¢ acts on D o2 Ly{7) and centralizes U, so £ or ta centralizes D. 2q € a®
and C(a) is solvable, so [t, D] = 1 and ¢ is the unique FPF involution in D*.
Now 2.4 implies G has 2 RNS.

Levva 10.2.  One of the following holds:
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(1) LoD < C(a) and C(a)" has rank 3 or 4 for U L L or U < L,
respectively.

(2) LN Dz PGLy(g,), some odd qy >3, U <L, and C(a)F'® has
rank 3.

(3) LN D= Lygy), some odd qy > 3, and C(a)F'? is 2-transitive.

Proof. By the opening remarks in this section and 10.1, H < Aut(L),
with L o~ Ly(g). As D has dihedral Sylow 2-group U, L N D has one of the
forms claimed. By 2.1 and 7.12, C{a)¥'® is transitive of the stated rank.

Lemma 10.3. L gz Ly(5) or Ly(7) and if L = Ly(27) then D < LU. If
H ~ L,(9) then D £ S, .

Proof. 'The arguments in 7.8 show L o Ly(5). If L ~ Ly(7), then D = U
or D = 8, . In the first case # = 22 = 2 mod 4. In the second case » = 8§,
and it is easy to show, using 2.4, that  has a RNS. Similarly if H =~ L,(9)
then D == .S, .

So assume L o< L,(27) but D §{ LU. Then D contains an element w of
order 3 inducing a field automorphism on L. Let {w) = W < P e Syly(D).
If P# W then D =Ng(UNL) and # = 7.9.13 + 1 = 4mod 8. But
[F(a)| = 8, a contradiction. So P = W and then by 2.1, w%N H = »#.
Further n = 1 mod 3, so H contains a Sylow p subgroup of G. Then as
w% N H = w? and W has a normal complement in H, W has a normal
compliment in G, contradicting 7.2.

Levma 10.4. Let Y be the cyclic subgroup of index 2 in Cy (@) containing a.
Assume C(a)F'® is not 2-transitive and let X be a 4-group in U used in H but
not in D. Then

(1) {a) = GF(a) .
(2) Either YD = {a) or F(Y N\ D) = o U BCHD §5 q set of imprimi-
tivity for C(a)F'® and | F(X)| = 4.

Proof. Let X = {a, xy and k& Ny(X) with &* = x. Then as x is not fused
to @ in D, Ygg, = {a). Thus Yy = <a). Indeed if YN D = Y; # {a)
then Y, is weakly closed in D with respect to H, so Ny(Y;) < Cy(a) is
transitive on F(Y,) — . Further ¥; <1 Cyla).

Then [Gry , Y] < Yrw = {&>. So Gy centralizes Y unless possibly
| Y| =4 and Gy, = {a, #) is a 4-group. In the latter case Gp(,) <1 C(a),
so ¢ = 5,7 or 9, since Y is self-centralizing for ¢ > 5. By 10.3, ¢ = 9. Then
n = 46 = 2 mod 4, a contradiction. This yields (1).

Assume Y N D # {a). Then as Y N D <1 Cy(a) and Cy(a) is transitive
on F(Y N D) — a, BCu® = F(Y N D) — « is an orbit of Cy(a) on F(a) — «.
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Y N D is weakly closed in Cy(a) with respect to Cg(a), so F(Y n D) is a set
of imprimitivity for C(a)F@. Then F(Y N D) N F(X) is a set of imprimitivity
for C(X)FX), so by 7.13, | F(X)| = 4.

Levma 10.5. Define Y as in 10.4. Assume C(a)F'® is not 2-transitive and
Y D + {ay. Then either

(1) D = Cyla) and | F(Y)| =2, or
(2) DY = Cula), |\ Y: YD | =3, and |F(Y 0)| = 4.

Proof. By 104, F(Y N D) = o U B is a set of imprimitivity for
Cla)"® and |F(X)] = 4. Then N(Y n D)F¥ND) §s 2-transitive with
| UFYoDb ) = 2. As |F(X)| = 4, |F(X(Y N D))] = 2. Finally UFFOD
C(Y O\ D)yFrnD),

With these facts in mind, minimality of G implies either | F{(Y N DY = 2
or N(¥ n DYXND) ig an extension of Ly(g;) with ¢, = —1 mod 4.

Now if |F(¥Y 0 D) = 2 then as Y N D <] Cyla), Cula) << D. By 10.3,
g > T and if H =~ L,(9) then Dz S, so Cyla) is maximal in H, and
D = Cyla).

On the other hand if ¥ <C D then as YU <7 Cy(a), F(Y) C F{X) and then
| F(Y)] = 2. So we may assume Y { D. Then YF*¥OD) is g normal cyclic
subgroup of HFYND) g0 g, = | YFIND) | = | V: ¥ N D] is prime. Further
C(Y n DYFYOD) covers the socle of N(Y N DYFYND) g0 CL(YV N DYFYnD)
contains a cyclic subgroup WFYND) of order (g, — 1)/2 acting semiregularly
on VF¥NAD)

Assume g, > 3. Thenas W < C(¥ N D) acts semiregularly on Y/(¥ N D),
we conclude Wis of prime order p. Then g = ¢,F and g; = {g,° — €)/{gs — )
where 4-1 = ¢ = gmod 4. But (¢; — 1)/2 = p, so we must have ¢ = 27
and p = 3, contradicting 10.3.

Thus ¢, = 3, and it remains to show D < C{a). So assume not. Then by
10.2, L N D o2 PGLyg,). Now either ¢ = g,° or g, =3 or 5. As
3#(gf—e)f(gp— € gy =30r5. Thus | YND| =4andg=4¢, + 1 =
12 =1 = 11 or 13. But then | UNL | = 4, a contradiction.

Levmva 10.6.  Define Y as in 10.3 and assume C(@)F is not 2-transitive.
Then ¥ N D = <{a).

Proof. Assume YN D %= {(a>. Then by 10.4 and 105, F(Y N D) is =
set of imprimitivity for C(a)™®), and is of order 2 or 4. Let 8§ be the set of
conjugates of F(Y N D) under C(a). Let m = | F(a)|, and s = |a¥! N D |.
By 105, |F(YND), =2 or 4 and s =1+ (g — )2 or 1+ (g— €)/[6,
respectively, for ¢ = 1 = g mod 4.

Now by 104, F(Y N D) — o = BC#@ and age Z(D). So by 2.1,
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|[F(Y N\ D) =1+ (m—1)s. Then m =2+ (g — ¢)/2 or 4+ (g — &)/2
for | F(Y N D)| = 2, or 4, respectively.

Next, each 4 in 6 distinct from F(Y N D) corresponds to a unique 4-group,
X in Ci{a) fixing 2 points of 4. Suppose B == (b> is a cyclic subgroup of
order 4 in U. Then B normalizes each 4-group X in Ci(a) and then also
F(X)—F(Y N D) =F(X)n 4. So B is in the kernal of the action of C(a)
on 6. As B{#> is the weak closure of B in the stabilizer of F(Y N D) we
conclude B{t) <] C(a). B and <{dt) are the conjugates of B in B{z), so C(a)
acts on F(B) UF(bt). Then F(a) = F(B) UF(bt) is of order 2 |F(Y N D))
so (g — €)2 =|F(Y N D) and either ¢ =3, or ¢g=7 or 9 and
| Y:YND|=3Byl09,¢g=9,s0Yisa2groupand | Y: Y ND| 5 3.

S0 | U| =4. Nowm = 0mod 4,s0if | F(Y N D)| = 4 then g = emod 8
and | U| > 4, while if | F(Y N D)| = 2 then ¢ =4 emod §. So | F(Y)| =2
and ¢ 5= emod 8. Then Y/<a) acts regularly on the (¢ — €)/4 4-groups in
C;(a) and then also on 6 — F(Y). So C(@)® is 2-transitive and the stabilizer
of F(Y') has a normal cyclic subgroup Y/{a} regular on § — F(Y). It follows
that C(a) either has a RNS or is an extension of Ly(¢;), ¢; = (¢ — €)/4. In
either case C(X) is 2-transitive on the fixed points of X on 6, so as X fixes
F(Y) pointwise, any member of § fixed by X is fixed pointwise, so as
| F(X)| = 4, X fixes exactly 2 points of §. Thus C(a)° is an extension of Ly(g,).

Then Cp(a) contains a subgroup W of order (¢ — 1)/26, 6 =1 or 2,
acting semiregularly on Y<{a>. W must induce field automorphisms
on L.

IfW =1theng =3or5andg = 11,13, 0r 19 andn =1+ [H: D | =
56, 92, or 172. If ¢, = 35, then m = 12 = n mod 8§, so a Sylow 2-group S of
C(a) is an abelian Sylow group for G, contradicting 3.4. Similarly ¢; 5= 3.

So W s 1. Then as W acts semiregularly on Y/{a>, W is of prime order p,
and g = 3%or 50 If ¢ = 5% thenp = (¢, — 1)/28 = ((5? — 1)/4 — 1)/28 =
5(57~1 — 1)/88. So p = 5. But 5 — 1 54 8 or 16. So ¢ = 3? and as above
p = 3, contradicting 10.3. ‘

Levma 10.7. C(a)F'® is 2-transitive.

Proof.  Assume C(a)F™ is not 2-transitive. Then by 10.6, LUND = U
is of order 4. By 7.13, C(U)F¥ has a RNS 75V and if T € Syly(7,), then T
is elementary.

Next D = UK, where K is a cyclic group inducing field automorphisms
onL. By 2.5, [Kp) , T] = 1, so we may choose ¢ € T with [D, ] = 1.

By 7.8, ¢ %5, so 1 5£0(Cr(a)) = Q <0 Cx{a) acts semiregularly on
F(a) — a. Thus Q@ )F@ satisfies Hypothesis 5.4, so by 5.5, either C(a)F@
has a RNS or C(@)'® o= L,(8) or 5L,(32).

Now L,(27) has no FPF involutions so if C(a)f@ o Ly(2%) then all
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involutions in G fix points of Q and hence are conjugate to a. Let
S € 8y1,(C(e)). Then S € Syly(G). We find S abelian contradicting 3.4.

So C(a)f@ has a RNS E[®. Let EeSyly(E,) and S = EU e Syi(C(a)).
As T is elementary E is elementary. S’ << Z(S) so by 2.9, 8’ N 4 is empty.
So we may choose f to be FPF. Let U = (u, ¢). Then ut € »f and u and ua
are conjugate to @, so @ N\ D* — D = {at, ut, aut}, We conclude from 3.6
that n = | #{(a)|2. Then by 2.4, G has a RNS.

‘We are now almost in position to derive a contradiction and establish the
theorem.

Let Y be the cyclic subgroup of index 2 in Cryle). Then ¥ N D <7 Cyla)
so as C(a)7? is 2-transitive, Y N D < Gy, . YN D is weakly closed in
Cyla) with respect to Cg(a), so Y N D <3 Cla).

By 7.9, C{a)"® has a RNS or is an extension of Ly(r), » = 1 mod 4. As
Y N D is a cyclic normal subgroup of C(e) contained in Gpy, it follows
from 2.5, that we may choose ¢ to centralize ¥ N D,

Next by 102, L 0 D == Ly(g,) for some odd g, > 3. Then as ¢ centralizes
Y N Dand Uand acts onL N D, ¢ induces an inner automorphism onL N D
and we may choose 7 to centralize L. N D. Indeed we may take [D, 1] << O(D).

Now D = K(UL 0 D) where K is a cyclic group of odd order inducing
field automorphisms in L. Further O(D) << K. As above, ¢ centralizes
OD)sw -

Let {d) e Syl (O(D)). Then ¢t either inverts or centralizes 4. Assume the
former. If | F{d‘a)| > 2 then by 7.9, t centralizes dia. So if 4% = 1 then
Cylad®y <. D. As d induces a field automorphism on I, it follows that
g = g*, 4 has order p, and H = LU{d). By 7.9, C(a)f@ is an extension
of Ly{r), r = —Imod 4, so p = [[DF ¢]| = (r — 1)/2. Then 2p + 1 =
r = Fla) — 1 = | Cula): Co{@)} = (g — (g — &) > g¥Hgo — 1). So
¢ = 27, contradicting 10.3.

Thus we have shown that:

Lemma 10.8. [D,#] = 1.

It follows from 7.9 that:

Lemva 10.9. C(a)f@ has a RNS T5@,

As g > 7, Cia) is maximal in L. Thus as LN D & Cya) and L L D,
Y L D.

SBuppose |F(a)) =4. Then |Y: YN D|=23. Recall L N D oz Lq,)}.
Suppose ¢ = g,”. Then 3 < (g —¢€)flgg—¢)=|Y: ¥ D|, a contra-
diction. So ¢y = 3 or 5, and U = Cppla). Thus g —e¢ =6, so ¢ <7
contradicting 10.3.
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So [F(a) > 4. Let TeSyl(T,) and S = UT eSyl(C(a)). By 7.9,
T =V X E, where E = [T, Ng(T) C(V)]. Let a # u = a*e U. Then
uCr(u) C uF and Cxlu) = [Cglu), Ny(T) N C(U)] < E* So uE"C 4% and
then aF C a°.

Next T'is the unique abelian subgroup of index 2 in S, so T'is characteristic
in S. Further if V 3£ {a) then <{a) = (OYT)) is characteristic in S,
contradicting 2.9. Thus V = (@) and 8’ = Cgw). Also U < L so H has
one class of involutions. By 2.9, a® N S’ is empty. So E* consists of FPF
involutions.

Suppose t == a®. Then U = [U, D} < [S9, D] < E¢, impossible as E#
consists of FPF involutions. So ¢ is the unique FPF involution with cycle
(=, B). Further defining ¢ and s as in 3.6, s = | aP | = |(af)? | = e. So by
3.6, n = | F(a){%. Now by 2.4, G has a RNS.

This completes the proof of Theorem 2.
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