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THEOREM 1. Let GQ be a doubly transitive permutation group in which the 
stabilizer of 2 points has 2-rank 1. Then either 

(1) G has a regular normal subgroup, or 

(2) G < Aut(L) and La is L,(q), Sx(q), U,(q), OY R(q), in its natu& 
doubly transitive representation, OY L,( 11) OY Ml, on 11 letters. 

B(p) denotes a group of Ree Type on q3 + 1 letters. 
For odd degree, Theorem 1 is a corollary to the classification of finite groups 

with a proper 2-generated core [2]. For even degree, Theorem 1 is a corollary 
to the following theorem: 

THEOREM 2. Let Gsa be a doubly transitive group of even degree in which a 
Sylow 2-subgroup of the stabilizer of 2 points is cyclic, quaternion, OY dihedral. 
Then either 

(1) Go has a regular normal subgroup, OY 

(2) G < Au@), and Lsl is L,(q), U,(q), R(q), A, , OY A, , in its natural 
doubly transitive representation, OY Ml, on 12 letters. 

The proof of Theorem 2 involves work of M. O’Nan [17] and of the author 
[37 on doubly transitive groups in which the stabilizer of a point is local. 

The author would like to thank Professor Michael O’Nan for a careful 
reading of this manuscript, leading to a number of improvements. 

1. NOTATION 

Let G be a permutation group on a set 9, XC G, and d _C 8. Then F(X) 
is the set of fixed points of X on 9. G(A) and Gd are the global and pointwise 
stabilizer of d in G, respectively. Set GA = G(0)/Ga with induced permutation 
representation. 
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eTsuaily Go is 2-transitive, 01, p E 9, H = GeB , t is an invoiution with 
cycle (a, p), D* = D(t>, U E Syl,(D), and U* = U(t> E Syl,(D*). 

““Regular normal subgroup” is abbreviated by RNS and “‘fixed point free” 
is abbreviated by FPF. 

Most of the group theoretic notation is standard and taken from [8]. 
Given groups A and B, AYB denotes the central product of A and 43 with 

identified centers. 
Fit(G) is the Fitting subgroup of G. E(G) is the product of all quasisimple 

subnormal subgroups of G. F*(G) = Fit(G) E(G). 
S(q) is the group of transformations x -+ ax@ + b on Go, where 0 f a 

and b are in GP(q) and 8 E Aut(GF(q)). 

2. PRELIMINARY RESULTS 

LEMMA 2.1. (Manning, [16]) Let GD be Q transitive ~ey~u~~~~o~ gro~#, 
a E 52: H = G, , and X 2 H. Let k be the number of orbits of H on XG n 
r=(XHj,s=jXGnNj,andm=jF(X)(.Theaz 

Cl? w4 F(x) has exactly k orbits, and 

(2) / aNfX) 1 = my/s. 

2.1 will be applied to situations where X is an ordered or an unordered set. 

LEMMA 2.2. Let ,Q be a subgroup of p rime order in G, R a IL-subgroup oj 6, 
and Z = C,(Q). Assume RQ a G, R = [R, Q], Z a 6, m(Z) < 2, and G 
is transitive on (R/Z)+. Then one of the folIowing ho&z? 

(2) WJ 22 SL,(3), 

(3) G is transitive on .P and R is a Suzuki 2-group- 

PYDOJ Assume (1) does not hold. Then by 2.3 in [3], L?,(R) < Z. Further 
if Z < Z(G) the proof shows RQ E &C,(3). We may take G = P(G), so as 
m(Z) < 2, we may assume G is transitive on .P and hence R is a Suzuki 
2-group. 

LEMMA 2.3. Let U be a dihedral 2-group of order 2r and assume U* is 
an exte&ola qf U by an involution t. Then U* is isomorphic to one of ihe 

follc4wing: 
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(1) I?, = (u, 24, s: vr = $42 = s2 = 1, vu = v-1, us = u, .7Js = g/2+1), 

(2) D+w 9 

(3) -wu, 

(4) 2, x 72. 

Proof. If j U / = 4 the result is trivial, so assume 1 U j > 4. Let V = (v> 
be the cyclic subgroup of index 2 in U and u E U - V. Then V a U*. 

Suppose V is self-centralizing. Then by 5.4.8 in [S], U* is either dihedral 
or W = C,(@( V)) is modular. In the latter case we may pick t E W. Then 
{t, a} = Q1( W) a U* with ta conjugate to a under V, so we may pick u 
to centralize t. That is U* z B, . 

Next assume x E U* - U centralizes V. If V < (x> then <x) is a cyclic 
subgroup of index 2 in U*, so U* is dihedral. Thus we may take x = t to 
be an involution. Let w be an element of order 4 in V. Then either [u, t] = 1 
and U* g Z, x U or [u, tw] = 1 and U* s Z,YU. 

LEMMA 2.4. Let Go be a transitive permutation group whose degree is a 
power of 2. Assume for each pair of distinct points a! and /3 in Q that there is a 
unique FPF involution with cycle (CL, /I). Then ;f G” is primitive OY O,(G,) = 1 
then G has a RNS. 

Proof. Let H = G, and A the set of FPF involutions. If s, t E A and st 
is a p-element acting FPF on 9, then as the degree of G is a power of 2, 
p = 2. On the other hand if st E H then s and t are both FPF involutions with 
cycle (01, a+), so s = t. It follows that st is always a 2-element, so by a result 
of Baer [4], T = (A} is a 2-group. So if G” is primitive then T is regular. 
Also T, < O,(G,) so if O,(G,) = 1 then again T is regular. 

LEMMA 2.5. Let X be a group acting on the group Y of odd order and assume 

(1) X has a normal &group T of order at least 4 and X acts transitively 
on T#. 

(2) If  t E T# then [Y, t] is cyclic. 

Then [T, Y] = 1. 

Proof. See 2.9 in [S]. 

LEMMA 2.6. Let X, Y, and Z be groups with X acting on Y and Y acting 
on Z, such that 

(1) Y has odd order. 

(2) X has a normal 2-group T OY order at least 4 and X acts transitively 
on Tg. 
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(3) If t E T and y  E Y is inverted by t, then y  acts s~~~eg~~ay~ on Z. 
Then [T, Yj = 1. 

E’rooJp, This follows from 2.5, and 2.4 in [5]. 

2.7. Let GD be a transitive permutation group, 0~ E 8, H = G, , a 
an 0% in Z*(N), m = / F(a)\, n = ( 52 / and A the set of FPF involutions 

in G. Assume 

(i) T is an elementary Zsubgyoup normal iz C(a) witk T/(a) regular 
onF(a) and TX = (C(a) n A) u (C(a) n ao), 

(ii) Every 2 points of Q isJixed by some conjugate of a. 

(iii) C(a)F(a) is 3/2-tmmkive of rank Y < 4. If?, = 4 thm (a> E Syl,(N). 

Then one of the following holds: 

(1) G has a RNS and n = m2. 

(2) G is an extension ofLa(8) orL,(32) and n = 28 OP 496, Tes$ectivelyy. 

(3) G z Z, x S, and ‘91 = 8, G s Z, x A, and n = 12, OY G g A, 
and n = 6. 

Proof. Let (y, ya) be a cycle in a. a E Z*(H) and by (i) and 2.1, 
aG r\ N = a”, so a centralizes some conjugate b of a fixing y  and 
a fixes a second such conjugate c. Then as a E Z*(H) and aG fl 
has odd order. But b, c E T, so bc is a &element. Thus b is the uni 
of a fixing y  and ya, and centralizing a. Let K = O(G,,,,). It follows that 
CK(a) < CK(b). Also a E O,(C(b)), so C,(b) < C,(a). Thus ab centrali 

Next, let n=IB[, m==\F(a)l, I’=aGnT slnci /I’/=& 
jTi =2mand(a-m)/m=IrI-1 ==fi-lI.§o~=mk. 

Suppose T* is fused in G. Then Shult’s fusion theorem [19] implies 
(aG) gg L,(lzm). As C(a)F(a) is 3/2-transitive of rank at most 4 we conclude G 
is an extension of L,(4), L,(S), or L,(32) on 6, 28, or 496 letters, respectively. 
Thus we may assume T+ is not fused. 

Suppose C(a)F(“) is a-transitive. Then C,(a) has 2 orbits on T - (a}, so 
as T# is not fused, k = m. Then the first paragraph implies there exists a 
unique element of A with cycle (ol, p) for each ci, p E Q, so by 2.4, Go has 
a RNS. 

Se, we may assume C(a)F(a) is of rank 4 and (a) is Sylow in H. 
k = r(m - I)/3 + 1, I < Y < 6. If  Y = 3 then K = m and as eve CP 
has a RNS. If K = 1 or 5 then k E -&(2/3) mod an, so as j G: = mk, 
[ N(r)r / = 2 mod 4 and in particular N(P)r is solvable. If  P is even then li is 
odd, T E Syl,(G), and clearly N(r)r is solvable. 

So N(Qr is solvable 3/2-transitive of rank at most 7. Thus Nr is regular, 
primitive, or a Frobenius group, and in any event has a RNS. 
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aG n H = a*. Also CE E Z*(H) and any two points of !J are fixed by some 
conjugate of a, so a fixes a point in each orbit of H. Thus a 4 Z(H). 

Suppose k is odd. Then T is an abelian Sylow 2-group of G and <&) is the 
direct product of a 2-group with simple groups isomorphic to &(2i), with 
a projecting on each factor. As a # Z(H), (ao) is not a 2-group. So if j T j = 8, 
then (a”} z L,(8) and T# is fused or (ao) g Z, x A, and n = 12. Thus 
we may take [ T 1 > 8, so that N(T/(a)) acts irreducibly on T/(a), and again 
we conclude <aG) is simple and T# is fused. 

So k is even. Then there exists a 2-element u in N(T) - T with ua E T. 
Suppose m = 4. Then k = 2,4 or 6. Also as T E Syl, C(b) for each b E I’, 
C,(u) is empty. Thus k # 6, and if k = 4 then as above Go has a RNS. So 
take k = 2, Then n = 8. If G possesses elements of order 5 or 7 then G* and 
then C(a)F(a) is 2-transitive, so no such elements exists, and G is a (2, 3}- 
group. As H contains a Sylow 3-group of G, O,(G) = 1. Then X = O,(G) 
is transitive on D and as a $2(H), a q! X, so X is regular. H contains an 
element y or order 3 acting nontrivially on X, so as G & SL,(3), X is elemen- 
tary. Thus G is as in (3). 

So assume m > 4, and let Qr be the RNS for Nr. If k is not a power of 2, 
then Nr is not primitive and therefore is Frobenius. k is even so Q is not a 
p-group. But then Nr has rank greater than 7, a contradiction. 

Thus k is a power of 2. As m > 4, N(T/(a)) acts irreducibly on T/(a) 
and thus if T < P E Syl,(Q) we find T = (Z(P) n T) x (a). SO as Cr(U) 
is empty, Z(P) n T# = rl n T. So as above, n = m2 and Go has a RNS X. 

LEMWA 2.8. Let p = 3 or 5, H < GL,( p) and assume O,(H) = 1, H has 
dihedral Sylow 2-groups, and H has no normal 2-compliment. Then either 
A, < H < S,, orp=5andA,<H<S,. 

Proof. p2 + p + 1 is a prime and if ps + p + 1 divides the order of a 
subgroup H of GL,(p) with dihedral Sylow 2-groups, then H has a normal 
2-complement. Thus if p = 3 then H is a (2,3}-group, so as O,(H) = 1, 
A, <H < S,. 

So we may take p = 5 and Ha {2,3,5)-group. GL,(5) has a Sylow 3-group 
of order 3, so as H has no normal 2-complement, O(H) is a 3’-group. Then as 
O,(H) = 1, O(H) = 1. So either A, < H < S, or A, < H < S, . 

LEMMA 2.9. Let G be a group, a an involution in G, S E Syl,(C(a)), and 
T a N(S). Then 

(1) If a E T then aG n Z(S) C T. 
(2) If a 4 T, each of aT# and T# is fused, and a is fused to an element of 

(a> T, then aT = aG n T<a) and S $ Syl,(G). 

Proof. In (1) if a!-’ E Z(S) then we may choose g E N(S). (1) implies (2). 
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In this section Go is a 2-transitive group, a, /3 E Sz, H = 6, , D = G,, s 
t is an invoIution with cycle (01, /3), D* = B(t)t U E Syl,QDj, and 
U” = cyt> E Syl,(B”). set n = 1 52 1. 

LEMMA 3.1. Assume n is even and G is sohable. Then G < S(TZ). 

Pmof. see [Is]. 

LEMMA 3.2. ,hUme G?2@5 u R&ki TOfc?Vf32 Or&r anda CydiC SubgKmp x 

which acts transitively on 8. Then Ga = S, . 

.&oQ$ Let 2” = j T / and X = (x). As To is transitive, x = td, where 
t E T, and d is a 2-element fixing 2 or more points of 8. Then x2 = E-t, d-r] d” 
and by induction on i, x2< = [t, d-l, d-2,..., dP@] dzi. 

Let u = d2+‘. As d fixes 2 or more points, 1 d / < / Q 1 = 2” and hence zd 
is an involution. Xa is regular, so xzn-l # 1 and thus [t, d-l,,.., cP”-~~ ZJ] f  1, 

Let T,-, = C,(u) and T,-,/T,-,+l = C’~iTn-l+l(~z*-Z). 
/ T: Tn-2 j < j T,-, i, so 1 T/Tne2 / < 2Ln/21. Similarly by induction on i, 
j TlT,-g 1 < 2n/2i-i . Now if n > 4 then n < Pz, so ( T/T1 j < 2~@-’ < 2, 
and if n = 3 then j T/T, j < 2t3/zl = 2. We may assume n > 3, so 
[T, d] < Tl . 

Now by induction on k = n - i we find 

[T, d-l,..., cl-““7 < Tk+.* = @r,Tk+z(d2”+1)~ 

En particular 

[t, a--1,-, d-2n-3] E T,-, = CT(u). 

Therefore [t, d-l,..., d-2m-3, U] = 1, a contradiction 

LEMMA 3.3. Assume n is odd and G has dihe&aE Sylow 2-subgroups. Then 
either 

(1) G has a RNS, OT 

(2) G < Aut(L) and L” is A,, A,, OT L3(2) in its ~at~~a~ ~-t~a~~t~v~ 
pep~esentatio~, L,(ll) on 11 letters, OY A, on 15 letters. 

Proo$ We may assume G has no RNS, so O(G) = I. Then by [II], 
G < Aut(L), L r L,(p), q odd, or A, . Hf L s IL&), then [7] yields the 
result. One can inspect the maximal subgroups of A, to determine its repre- 
sentations. 
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LEMMA 3.4. Assume G has wreathed, semidihedral, dihedral OY abelian 
Sylow 2-subgroups and n is even. Then either 

(1) G has a RNS 

(2) G < Aut(L) and La is L,(q), U,(q), R(q), OY A, in its natural doubly 
transitive representation, or MI, 01z 12 letters. 

Proof. Either G has a RNS or G is contained in the automorphism group 
of a simple group L, so we may assume the latter. L is a group of known type. 
Now apply [7], unless G = MI,. By inspection of the character table of 
MI1 , if G is MI, then n = 12. 

LEMMA 3.5. Let X be weakly closed in D with respect to G and assume 
n = / F(X)J2. Then G has a RNS. 

Proof. This follows from 2.1 and a result of Wagner [20]* 

LEMMA 3.6. Let a be an involution in D with C(a)F(a) transitive. Set 
e=IaGnD*-D/, r=]a*I, s=IaWnDI, and m=\F(a)\. Then 
n = m(m - 1) e/s + m. 

Proof. Let r be the set of pairs (as, c) with c a cycle in ag. Then 
/ aG j (n - m)/2 = / I’ / = n(n - 1) e/2. Also as C(a)F(5) is transitive, 
[ aG j = n [ aH l/m. Finally by 2.1, 

[ aH j = [ H: C,(a)1 = (n - l)[ D: Co(a)/// C,(a): C,(a)/ 

= (n- l)r/(m- l)r/s. 

4. PRELIMINARIES TO THEOREM 2 

In this section we continue the hypothesis and notation of Section 3. In 
addition assume n is even and U is cyclic, quaternion or dihedral. 

LEMMA 4.1. Assume G has a RNS T, U is cyclic or dihedral, and t is a 
FPF involution. Then either t E TOY n = 8 and HE L,(2). 

Proof. Assume t 4 T. As TQ is transitive, T<t) = T<u) where 
(zl> = T(t) n H has order 2. So t = us, s E T. Now 1 F(u)/ = / C,(u)1 = m 
and n 6 m2. I f  n = m2 then C,(u) = [T, u so that t = us E UT, impossible as ] 
t is FPF. 

So n < m2. Then by 3.1, H is not solvable. Let L/O(H) = E(H/O(H)). 
Then E = L/O(H) has dihedral Sylow 2-groups. So either D < L c L,(q) 
or A, , or m E PGL,(q). 



2-TRANSITIVE GROUPS 105 

Suppose u inverts an element x E H acting FPF on Ts~ Then CT(u) r! 
C,(ux) < C,(x) = 1, so as \ T j < / CT(a)J2 for each involution a E 
get n = m2. So no such x exists. 

Now if a~ E E G L,(q) then u inverts cyclic groups xc of order (q - c)/;?? 
E = &I, so there are conjugates Y, of X, in I>. Further if q zz 1 mod 4, 
u inverts a group p of order p, so some conjugate $I1 of Q is in D. Then 
IT = (U zq L, k; , Ys , Q& < D. It follows that either all involutions in -- 
UnEarefusedinY<Dorq=7andEnD~L5’S,.Similarlyif~~AA, -- 
we conclude k n D g A, and all involutions of L’ are fused in D. Finallly 
if u E U - k and %% G PGL,(q), then UN n U = au, so tiG n 

Thus either uH n D = uD and by 2.1, C(U)~(~) is Stransitive, o -I 

In the fozer case C*(U) is transitive on C&u)* and then on tiCT(ti)“, 
ut for Y E [T, U] < CT(u), UY E z.F, so 1: = us E (w)~ < uGG, a contradiction. 
In the latter case let G1 be a subgroup of order 7 in 2. Then Ii,T is solvable 

and Ztransitive, so by 3.1, F%(H,) and then also Fit(H) is cyclic. So 
La, c L,(7). Now let A be the set of pairs (un, y), where 01 # y EF(&) and 
h E: N. Then (1% - I) 1 zP j = [ d / = / uG n La ( (~2 - f). / ZP / = 21 and 
/ aP in h) i = 9, so n = 7(m - I)/3 + 1. But n = 2 and m = 2j witE?, 
i > j. SO 8 = 2i = n = 7(m - 1)/3 + 1 = -413 mod 2, and then m = 4 
and n = 8. 

~Eiwnila 4.2. Assume n = 2 mod 4. Then G is cont~~~e~ in the ~~tomo~phism 

PJUP ~ffL,(d> u,(q) QY A, 9 acting in its natural 2-t7ansitizde ~e~~ese~t~ti~~~ 

Proof. y [I], G contains a simple normal subgroup M with lP 2-transi- 
tive and G < Aut(M). Now M n U is cyclic, qaternion or dihedral. In 
the first two cases [l] implies the desired result. So we may take M = G and 
assume U is dihedral. Then U* E Syl,(G) an as G contains no subgroup of d 
in 2, \ F(a)] = n = 2 mod 4, for each involution ok E U*. 

2.3, U* has one of 4 forms. In the last two cases U* is not Sylow in 
a simple group unless U* r Es . In that case we appeal to 3.4. 

Suppose U* g B, . Then (9, u) = C,(s) is dihedral and as 1 F(s)! = 
2 mod 4, et,(s) contains a subgroup W of index 2 with <W, s} conjugate to 
a subgroup of U- But (W, s) is neither cyclic or dihedral. 

It follows that U” is dihedral. Now appeal to 3.4. 

LEMMA 4.3. Let a and b be commutilzg, con$gate ~~~0~~~~0~s. Assum.e 
C(a)F(a) is 2-transitive with RNS Tica) and b acts FPF on F(a). Then b E TO a 

.P~oof~ Assume b $ TO . By 4.1, CH(a)F(a) r L,(2) and /F(a)\ = 8. Let 
TE Syl,(T,) and S = TU E Syl,(C(a)). Set C(a) = @(a)/ 

4f U is cyclic or dihedral then CH(a) has a normal 2-compliment. So U is 
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quaternion and even lJFta) = (a}. As [ T/(a>l > 4 and C,(a) is transitive 
on (T/(Z)+), T is elmentary. As b $ T, (a> = Z(S). 

The initial arguments in Janko’s characterization of Mg, [22] now show G 
has one class of involutions. Therefore as C(a) is a-constrained, signalizer 
functor arguments show O(C(a)) = 1. [21] Hence [22] implies G = MS, . 
But a subgroup of Mz3 isomorphic to S&(7) does not act nontrivially on a 
subgroup of odd order, so Mz, does not have a representation of the required 
sort. 

5. SEMIREGULAR GROUPS 

In this section assume the following hypothesis: 

HYPOTHESIS 5.1. Q # 1 is a subgroup of odd order of thegroup G, JJ = QG, 
and H = No(Q). Represent G by conjugation on l2 and assume H # G and Q 
acts semiregularly on $2 - Q. 

THEOREM 5.2. Let K < G, p a prime, and P E Syl,(Q). Then 

(1) P is strongly closed in S with respect to G fog any P ,< S E SyI,(G). 

(2) K acts transitively on the set 

(3) If K n Q # 1 and K $ H then the pair (K, K n Q) has hypo- 
thesis 5.1. 

(4) _TfK d G either G = HKor K n Q = 1 and thepair (G/K, QK/K) 
has 5.1. 

(5) Assume G = (52) and P is not cyclic. Then G = G’Q, G’ is quasi- 
simple, and Q n G’ # 1. 

(6) IfKgGandK<HthenK<Z(G). 

Proof. See Section 3 of [3]. 

LEMMA 5.3. Let h E H be centralized by a Sylow 2-subgroup of H and 
assume h2 fi 1 but h is inverted in G. Then C,(h) = 1. 

Proof. Assume C,(h) # 1 and choose p to be a prime divisor of the 
order of Co(a) and PE Syl,(C,(h)). Choose t with ht = h-l and let 
L = <PC(h)>. By 5.2.2, t normalizes L, and then by 52.1, L(t) < LN(P) < 
LH < C(h) H. So we may choose t to be a 2-element in H. But this is 
impossible as a Sylow 2-subgroup of H centralizes h. 
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~~YPOTHESIS 5.4. (G, Q) has hypothesis 5.1. a is an ~~vol~tio~ with (a} 
SyEow in N. The stabilizer of any two points of 9 is of even order. G acts 

fa~thf~~~y ok 9;). C(a)F(a) has a RNS T:(“), T E Syl,(T,) is ~~~~~~~~~y of o&ev 
at least 8, and C(a) is normal of index at most 3 in a subgroup X (possibly not 
contained in 6) doubly tramitive on F(a) and actkg on I’ = O(C(a)F~a))~ 

LEMMA 5.5. Assume Hypothesis 5.4. Then G satis$es (1) or (2) of 
Lemma 2.7. 

J&x$ Suppose y  E Y+ is inverted by t E T, Then by 5.3, y  acts semi- 
regularly on PO We conclude from 2.6 that T centralizes ‘TJ. Then 

z(C(u)) g C(a). Now 2.7, yields the result. 

HYPOTHESIS 5.6. Hypothesis 5.1 is satis$ed. H contains no nolztrivial cyck 
normal s~bg~o~p~. Pf E # A is a normal abelian s~bgyo~p of then C(A) is 
semi~egu~a~ on Q - {Q}, and is of odd order, 

LEMMA 5.7. Assume hypothesis 5.1. Let X be a cl-group & with 
] F(X)] = 2” > 2 and let B be an elementary abelian subgroup of Q which is 
normal in N. Assume 

(I) C(X)F(X) has an elementary RNS Y. 

(2) B is a subgroup of C,(X) of odd order such that PFcX) is of prime 
order p and FPF oazF(X) - (Q}. 

(3) If  x E X# with F(x) # F(X), then C(x)F@) has a WNS of order Pm, 
Then [F, B] = 1 and Hypothesis 5.6 is not satis$ed. 

b>roo$ Let x E X#. By hypothesis C’(X)~(“~ has a RWS 55’” I f  F(x) # F(X) 
then ( w 1 = [ Y 12, Y = C,(X), and the representation of P on Y is 
equivalent to its representation on W/Y under the map Yw -+ [zu, X]. In 
particular I?@) is semiregular on W*. Now C,(x) is also semireguiar OI? IV+ 
and normalized by P with @(B) = 1, so [P, 

= nxr C,(x) < C(F). Assum 
), so that P < Q. Now P is 

in C,(x), so G,(x) = Q. Hence we may t and then 
F = CB(x), each x E X#. So P = B g M, contrary to 

6. ~-TRANSITIVE SEMIXEGULAR GROUPS 

In this section we operate under the following hypothesis: 

HYPOTMESIS 6.1. Hypothesis 5.1 holds with GD doubly t~a~s~t~ve. 
& = C,(Q) and a is up2 involution inverting Q with / F(a)1 > 2. 
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LEMMA 6.2. H = SC&a) and aH n D = (a> for all Qt EF(a) and all 
D ==HnHt. 

Proof. As Q = C,(Q) d an a inverts Q, Q<a) 4 H. As Q has odd order, 
H = QC,(a). If Q” EF(a), then Q(a) n D = <a} as Q is semiregular 
on Q - Q. 

LEMMA 6.3. C(a)*(“) is 2-transitive and a fixes a unique point in each Q 
orbit. 

Proof. As aH n D = {a}, C,( a is transitive on F(a) - Q by 2.1. Let ) 
Q # Q” EF(a). If Cog(a) # 1 then C,,(a) moves Q to a point p EF(a) 
inverted by a. So we may choose Qg inverted by a. So CH8(a) is transitive on 
F(a) - QQ. Thus as IF(a)] > 2, C(a)*@) is 2-transitive. 

aH = aQ and H is transitive on the nontrivial Q-orbits, so a fixes a point in 
each such orbit. As Co(a) = 1, a fixes a unique point in each orbit. 

LEMMA 6.4. Let Y < GFta) with C,(Y) # 1 and let L = <accr)). Then 

(1) LF’Y’ is transitive 

(2) CL(a)*ta) is transitive. 

Proof. By 6.2 and 6.3, ac n H = aQ. So aG n C,(Y) = acQcy). Given 
points y, 6 EF( Y), Y centralizes the conjugate 6 of a fixing y and 6. Now there 
exists a conjugate c of a fixing a unique point of F(a) and F(b). Then 
a, b E cccy) so C(Y) is transitive on the conjugates d of a fixing 2 or more 
points of F( Y). Then d = acty) and L = (d). 

Let k + 1 = JF(Y)[ and m + 1 = IF(a)/. By 6.3, Fi = m j Co(Y)/. As 
C(Y)n is transitive and C(a)F(u) is 2-transitive, K = m 1 C,,(Y)/ for each 
Qg EF(Y). Thus ] Co(Y)] = 1 C,g(Y)] and by 5.2.2, LFcY) is transitive. 
As aC(Y) n H = acHcy), 2.1 implies CL(a)F(a) is transitive. 

LEMMA 6.5. Letp be an odd prime and K = OJGF(,)). Assume either: 

(1) C(a)F(a) contains no transitive subgroups with cyclic Sylow 2-groups, 

OY 

(2) C(a)F(@ is an extension ofL,(q), q E -1 mod 4, on q + 1 letters, and 
$ U*(a) # 1 then lJFca) < C(K). 

Then C(K(a))F(a) is transitive. 

Proof. Let X be an abelian subgroup of K. Then there exists Y < X 
with Co(Y) # 1 and X/Y cyclic. By 6.4, C((a) Y)r(a) is transitive. Assume 
X 4 NG( Y) n C(a) and if UFfa) # 1 then u E N(X), for some zc E u - U*(a) . 
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Suppose there exists no &element t E @((a) X) acting nontrivially on 
P(u). We may take X = 52,(X), so j X/Y j = 9. Let S E Syl,(C(<a) Y)). Then 
S acts on X/Y, so S/C,(X) . 1s c c ic. y 1 By assumption C,(X) < G,(a) ) so 
SF(a) is cychc. Therefore Hypothesis (1) cannot hold and then C(a)F(“) is an 
extension of L,(g). As SFta) is cyclic we get UF@) i; 1. We may assume 
T = (M, S> is a 2-group. Then TF@) is Sylow in C(Q)~@) and is dihedral 
with ! T: S j = 2. But then T normalizes [S, X] which is of order p, so 
T/CT(X) is cyclic and then as TFfa) is dihedral, Cr(X)r^(K) + 1, contrary to 
assumption 

So there exists a 2-element t E C((a> X) acting nontrivally OR F(a). 
Let XI be a critical subgroup of K. (That is XI is characteristic in K of 

exponent p and class at most 2, such that all nontrivial p’-automorphisms of 
M act nontrivally on XI.) Let X, = Z(X,), and let Yz be a subgroup of index 
at most p in Xa with C&Y,) # I. 

If Xa = Ya we may choose Ya < Yr of index at most p in XI with 
Co( YI) # I. Now arguing as above there exists a 2-element t E C((a) X,) 
acting nontrivial on F(a). If Xa # Y, let X3 E SCN(Xr). Then K, = YaX, 
for some Y7z < Ya of indexp in X3 with Co( Y,) f 1, so Xs (! ,!o(Ys) A C(a). 

As 7,~ induces an automorphism of order at most 2 on X we may choose 
g E IV(X-,). We conclude there exists a Z&element t E C(X&a)) acting non- 
trivially on F(a). As X3 E SC?J(Xr), the Thompson A x B lemma implies 
[t> X,] = 1. 

So in any event we may choose [t, XI] = 1. Then as XI is critical, 
ft, K] = 1. so C((a) K) FW # 1. But K 4 C(a), so C((a) QF(“) g C(a)F(u). 
Then as C(a)F’a’ is 2-transitive, it follows that C((@) K))F@) is transitive. 

7. PROOF 0F THEOREM 2 

For the remainder of this paper G is counterexample of minimal order, 
to Theorem 2, ~,/~ELI, H= Ga, D = Gas, t is an involution -with cycle 
ia, P), D* = WO, U E W,(D), and U* = U(t) E Syl@*), and n = j ~9 I1 
Let V = (v) be a cyclic subgroup of index 2 in U, and let a be the involution 
in Y. 

~EMMX 7.1. O,(G) = 1. 

Pmof. G has no RNS. 

LEMMA 7.2. G possesses no proper nowd 2-transiti-de suligroup. 

PYCK$ If GO Q G with G,o 2-transitive, then G, satisfies the hypothesis 
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of Theorem 2, and then, by minimality of G, satisfies the conclusion of 
Theorem 2. This forces G to also satisfy the conclusion of Theorem 2. 

LEMMA 7.3. n = 0 mod 4. 

Proof. See 4.2. 

LEMMA 7.4. Let u be an involution in G. Then j F(u)1 E 0 mod 4. 

Proof. We may assume u E U. Then by 7.3, u induces an even permutation 
on&?. So IF(u)1 = n = Omod4. 

LEMMA 7.5. Assume U is dihedral and let x E U with xa # 1. Then either 

(1) {x, x-l) = xG n U and C(X)~(“) is %-transitive, or 

(2) (x, x-l} C xG n U and / F(x)1 = 2. 

Proof. {x, x-r> = xD n U and by 2.1, C(X)~(~) is 2-transitive if and only 
if ~8 n U = xG n U. But as U is dihedral and x2 f 1, X = (x) is weakly 
closed in U with respect to G, so by 2.1, N(X)F(X) is 2-transitive. AS 1 F(X)1 
is even, 02(N(X))F(X) is also 2-transitive unless IF(x)\ = 2. But as X is 
cyclic, 02(N(X)) < C(X). 

LEMMA 7.6. If 1 # A is an abelian normal subgroup of H then C,(A) is 
of odd order and acts semiregularly on 9 - M. Further G = (A, As) = G’A 
with G’ simple and A n G’ # 1. A is not cyclic. 

Proof. Assume A is not semiregular on Q - a. Then by [17], G is an 
extension of L,(q) acting on m - 1 dimensional projective space. As n is 
even, m > 4, so U is not cyclic, quaternion or dihedral. 

So A acts semiregularly on Q - IZ. Then by 3.3, Theorem 3 in [2] and 
Theorem 4 in 131, G = (A, Ag> and C,(R) acts semiregularly on Q - 01. 
Next, by [12], C,(A) h as odd order. Finally, by Theorem 3 in [3], A is not 
cyclic. 

Now the pair (G, A) satisfies hypothesis 5.1, so everything else follows 
from 5.2. 

LEMMA 7.7. Fit(H) # 1 ; f  and only if E(H) = 1. In any event Fit(H) has 
odd order. 

Proof. By 7.6, Fit(H) is of odd order and if Fit(H) # 1, then 
E(H) < C,(Fit(H)) is of odd order. 

LEMMA 7.8. If  U is dihedral then U does not act se&regularly on .Q - P(U). 
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Boof. Assume U is dihedral and acts semiregularly on Q - F(U). 
H@?(U)) = X is strongly embedded in H, so by [6J, ~/~(~) G 
and X = O(H) IV*(U). As O(H) < H(F(U)) and AT(lIfFo-” is 2-transitive, 
7.6 implies O(H) = 3. So H s L2(4)* Then II = U iVH(U) and 

n--I=15 or5.AsnrQmod4,D=Uandn=P6. t $7 is weakly 

closed in D and j F(U)1 = 4, so 3.5 yields a contradiction. 

Lmmm 7.9. Assume C(U)~@) is 24ransitive and let W = UFcaj and 
S f  Syl,(C(a)). Then 

(1) If  U is dihedral j U: W / < 2. 

(2) Ether C(U)~(~) has a RNS Tc@) OT a c~~~ac~e~~s~~~ subgroup Lcia’ 
isomorphic toL,(q), q = -1 mod 4, on q + I letters. 

(3) -b = GF(&L~(@‘) and C,O(W)jO(C,p(W)) is ~~orno~~~~c to 
Z(W) X L,(q) or Z(W) Y;SL,(q) with S E Syl,(G) zn the latter case. 

(4) To = C’(a)F(a) CTJW) and letting W < T E SyI,(T,J either 

(i) T = WYE, where E = [T, am n C(W)] is elementary 0~ 
quaternion of order 8, or 

(ii) /F(a)\ = 4, W s Qs , and CT(W) is elem”ent~~~ or quaternion, or 

(iG> hi is quaternion, B(T) = 1, and W = (a). 

Proof. Minimality of G and 7.4 imply either Cja)“(aJ has a RNS Tica1 
or a characteristic subgroup Ltta’ isomorphic to L2(q), U,(q), R(q), 
q E -1 mod 4, MI1 or A, . By a Frattini argument, C(a) = G&)X, where 
X = N(W) n C(a). As W is cyclic, dihedral or quaternion and X centralizes 
a, either W(X) < C(W), or W g Q8 and 02(X)jC(W) n P(X) E Z3 ~ 
So C(W) covers L, or T, as the case may be. 

Assume L, exists and let A = CLo(W) and A = A/Cl(A). Then 
A = Z(W) B, where B = 02(A). I f  IL:‘“! s R(q) MI, or U,(g), then the 
multiplier of I$‘“’ is of odd order, so 2 = Z(w) x B and $? s I$‘“‘. 
HE 2 = I?(p) then the outer automorphism group of B is of odd order an 
j B n U j = 2. So U = W x (B n U) and U is dihedral of order 4. i%o 
by the Z*-theorem, a is conjugate to an element b # a of C(a), and as 
has one class of involutions we may pick b E U. As C(a)F(8) is 2-transitive, 
2.3 implies b is fused to a in D. So U# is fused in D. Then all involutions in 
C(a) are conjugate to a, so S E Syl,(G). N ow 3-4 implies a contradicti.on. 

Suppose B c U,(q). Then B n U is cyclic of order greater than 2, so 
U is not cyclic, quaternion or dihedral. Similarly B $ MI, ~ 

suppose I,;‘“” g A,. Then V(a) is dihedral and HFta) is not solvable, 
so U is quaternion and B s Aa . Then a is the unique involution in the center 

481334/*-8 
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of S, SO SE SyI,(G). Now by Theorem A in [9], G is McLaughlin’s group. 
But then G does not have a 2-transitive representation. 

This yields (2). T o complete (3) we remark that if 2~ Z(W) YS,?&) 
then a is the unique involution in the center of S, so S E Syl,(G), 

Assume U is dihedral. Then C,(a) has a normal 2-compliment, so HF(a) is 
solvable, and then with 3.1, V(a) is cyclic. This yields (1). 

Assume T,, exists and let W< T~syl,(T,). I f  W=(a> then as C(a)nN(T) 
is transitive on (T/(a))#, (P(T) = 1. Hence if U is quaternion we may 
assume W f  (a), so that C,(a) and then C(a)F(a) is solvable. 

Assume IF(a)1 > 4. Then with 3.1, there existsQF(@) 13 (C,(W) n iV(T))F(“) 
of prime order and T = WE where E = [C,(W), Q]. Oz(C(a)) is transitive 
on (E/( W n E))# and as W n E < Z(W) is not quaternion, Oz(C(a)) centralizes 
WA E. Hence @(E) = 1 by 2.2. 

So take j F(a)/ = 4. If  C( W)F(a) is 2-transitive we argue as above. Hence W 
is quaternion of order 8 and there is a 3-element x g C,(a) inducing an 
automorphism of order 3 on W. Let E/(a) b e an x-invariant compliment for 
W/(a> in C,(W). Then E is elementary or quaternion of order 8. 

LEMMA 7.10. Assume U is dihedral. Then one of the following holds: 

(1) C(U)F(U) is 2-transitive. 

(2) [F(U)[ = 2 and I UI > 4. 

(3) I u I = 4, w-4 F(U) has a RNS, U* g E, , and lJ# is fused in H 
but not in D. 

Proof. By 2.1, N(U)F’U’ is 2-transitive of even degree. Further 
02(N( U)) < C(U) unless 1 U 1 = 4 and 02(N( U)/(02(N(U)) n C(U) c 2, . 
Finally 02(N( U))F(U) is 2-transitive unless / F( U)l = 2. Thus we may assume 
1 U 1 = 4. If  1 F( U)j > 2 [5] implies either N( U)F’U) has a RNS or a charac- 
teristic subgroup isomorphic to&(q). In the latter case C( U)F(U) is 2-transitive 
and in the former C(U) covers the RNS. Thus we may take 1 F(U)\ = 2, and 
U* dihedral. Then C(a)F(a) is 2-transitive by Lemma 4 in [I], so as U* is 
dihedral, 7.9 implies a Sylow 2-group of C(a) is semidihedral and Sylow in G. 
Now appeal to 3.4. 

LEMMA 7.11. If  U is dihedral then U* is not dihedral. 

Proof. Assume U and U* are dihedral. Then by 7.10, j U 1 > 4. NOW 
there exists x E LJ* with x2 = v, so j F(v)1 = n = 0 mod 4. Then by 7.5, 
C(V)F’“’ is 2-transitive and as / F(v)/ = 0 mod 4, there exists an involution 6, 
distinct from a, centralizing v. But we may choose b E U*. 

LEMMA 7.12. Let U be dihedral and X < U. Then C(X)F(X) is transitive 
except possibly <f V < X and U* G BIYl . 
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Pmof. If V $ X or U* p BIVi, then by 2.3 and 7.11, C,,(Y) $ U for 
each subgroup Y of U isomorphic to X. 

(1) N(X)F(X) is 2-transitive. 

(2) c(X)F(X) has either a RNS Tltx) or a ~~a~acte~isti~ s~b~~o~~ 
LPCX’ 

cl z L,(q), 4 s -1 mod 4, on q + 1 letters. 

(3) Aswne C(X)F(X) is not 2-transitive and let TE Syl,(TO). Thez 
W = X, T = W x E, E is elementary, and E = IT, NH(T) n C(W)] mbss 

j.E! =4.I~~aanyeuentjE\ =22iand$U#Xthe~iisodd. 

PYOOf. By 7.12, C(X)“(X) is transitive. So as XH 0 U = X”, N(X)F(,r) 
is 2-transitive by 2.1. j N,(X): X j < 2, so minimaiity of implies either 
N(X)F(X) (and then even C(X)F(X)) has a RNS TiCx) or a characteristic sub- 
group L:(r) z L,(q) or R(q). As X is self-centralizing in U, in the latter 
case we havek:(x) z L,(p) and q = -1 mod 4. 

Assume C(X) .c(x) is not 2-transitive. By 2.1, X is fused in M but not in D. 
y (2), C(XjF(X) has a RNS T, nX) If 1 F(X)] > 4, then by 2.2, either T has . 

the factorization claimed or / F(X)] = 16 and T is a Suzuki %-group. Assume 

the latter. If X # U then j P(Y)] = 4, where Y = ATU(X). YH n U = Y” 
so N(Y)“‘Y’ is Ztransitive and then C(Y)F(Y” = A,. But now C(X)F(xb 
is 2-transitive. So U = X and T E Syl,(G), so by [23], G z hi,(4), a contra- 
dicticn. 

Assume j F(X)\ = 4 and let h E H induces an automorphism of order 3 
on X. We may assume T is not abelian so X = Z(T) = &(a). Now by [14] 
T is hornacyclic. By 7.10, X # U, so N,(X) T = S E Syl,(N(X)) and S is 
wreathed of order 32. Further X is characteristic in S, so SE Syl,(G). Now 

3.4 yields a contradiction. 
Finally as X is fused in H but not in D, ( N,(X): N&X)i = 3, so 

/ F(X)\ 3 1 mod 3 and then j E 1 = 1 F(X)\ = Pi. If U f X then 
j fJF(X’ j = 2. c(N&I(x)F(~u(x)’ is 2-transitive of degree 2i, so as C’(X)“(X) is 
not %-transitive, 2* + 1 = 0 mod 3 and then Z is odd. 

LEMMA 7.14. Assume j U j > 4, U is dihedral, alzd let be the cydic 
subgroup of deer 4 in U. Then N(B) F(B) has RNS or is an extension of L.,(q), 
qs -1mod4. 

Prooj. By 2.1, N(B)F’B’ is 2-transitive. sotice FIFcB) is dihedral, or 
cyclic of order at most 2, and if iCJFtB’ # 1 then C(B)F(B) is a normal subgroup 
index 2. 

Suppose j F(B)\ = 2 mod 4. If / U / > 8 then a generator of B is rooted 
in U, so 2 E j F(B)\ = n = 0 mod 4, a contradiction. So 1 U / = 8 and 
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1 UFtB) 1 d 2. So minimality of G and remarks in the last paragraph imply 
IF( = 2. 

So we may take j F(B)/ = 0 mod 4. Then again minimality of G and the 
first paragraph give the desired result. 

8. THE CASE a E Z*(H) 

In this section we assume a E Z”(H) and produce a contradiction. 

LEMMA 8.1. C(U)~(~) is 2-transitive for each involution u E U. 

Proof. If m(U) = 1 then (u) is weakly closed in U and 2.1 applies. If 
U is dihedral then as a E Z*(H), U has a normal 2-complement in H. Then 
ZP n U = u”, so C,(u) is transitive onF(zl) - 01 by 2.1. But by 7.12, C(‘U)~(“) 
is transitive. 

As a E Z*(H), O(H) f 1, so there exists an abelian normal subgroup 
A f 1 of H. By 7.6, C,(A) is semiregular on 8 - 01. Let Q be maximal with 
respect to containing C,(A), being normal in H, and acting semiregularly 
on Sz - 01. By 7.6, Q is of odd order. 

LEMMA 8.2. Assume U is dihedral and let u be in involution in U. Then 
jUF(u)j ,<2andifu$Z(U)then 

(1) L = (C,(u)C(~~) # 1 # C,(U). 

(2) UF(u) = (4. 

(3) Either L has a RNS OY L z L,(p), q = - 1 mod 4 

(4) If Y is RNS forL then uY = uG n Y(u>. 

Pmof. By 7.9, / UFtn) j G 2. Thus we may take u 4 Z(U). Then u is 
conjugate to zla in U. As A = C,(U) C,(a) C,(zla) and [A, a] f 1 by 7.6, we 
get 1 # C,(u) G L. If U F(u~ # <u) thenF(zc) = F(ua) CF(a) and A < C(a). 
This yields (2). Now as / C’,(U)] = 4, 1 UFtu) j < 2. 

By 7.4 and minimality of G, either L/Z(L) = LFcu) has a RNS or is iso- 
morphic to L,(q), U,(q), R(q) = -1 mod 4, or L,(8). As ( UF@) [ < 2, 
,5r(u) # U,(p). If LF(u) g L,(p) then L g SL,(q) or L,(p). But in the former 
case a Sylow 2-subgroup of C(U) is semidihedral, while by 7.2, C((U, a))F(<u,a)) 
is transitive. 

If P(u) has a RNS YFcU), th en by 2.2 either Y is regular on F(U) or 
L z S&,(3). The latter is impossible as above. 

Let SE Syl,(C(u)), and x E U with us = ua. Then UC,,(U) C uyx and 
(~1, a) C,,(U) = <u, a} C,(u). Also C,(U) is transitive on Y#. As 
5” = Z(S) n Y, 2.9 implies (4). 
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Et remains to show LFtu) * R(q) or L,(8), so assume otherwise. Then 
s = (2.6) x (L n S) with L A 5”s fused in L. So all involutions in S are 
conjugate to u or a and then we may take (U, S) < E syl~(c(a)) c Syl,(G). 
Further letting X = (u, a), C(X)F(X) G L,(q), so by 7.9, q = 3 and 
has a RNS Tica’. Then L g L,(8). Let T E Syl,(lk,). By 7.9, T = 
where W = UFcaj and E is elementary. 

Suppose a # w is an involution in W. If F(a) = s;‘(w) then 

contradicting 7.6. So F(a) C F(w). Then (C~(W)~(~~)) has a 
So m(C(w)> > 9, while m(R) = 6, a contradiction. So W is cyclic. Similarly 
uG n T is empty, so as S# C aG u uG, and C&a) is transitive on E#, all 
involutions in T are in ao. But now considering the transfer of G to S/T> G 
has a 2-transitive subgroup of index 2 contradicting 1.2. 

LEMMA 8.3. Assume C(a)F(u) has a RNS Ttca! and Ze-t W = UFca) < 
T e Syl,( To). Then 

(1) W = <a> and G(T) = 1. 

(2) aG n C(a) C TO and each involution in T is either RF QY conjugate 
to a. 

LEMMA 8.4. Assume C(a)F@) has a charactektic subgyo~~ L:‘“’ ~sorno~~~~c 
to L,(q), q > 3. Then 

(I) UF(aj = (a) and uG n C(a) CL, . 

(2) -bJ/w%) = 43 x Ud- 

(3) G Aas a class of FPF involutions. 

We prove 8.3 and 8.4 together. Set W = UFca) , and let W & S E Syl,(C(a)). 
As a c Z*(H), each a # b = US E S acts FPF onF(a) by 8.1. Thus in $.3, 

b E T by 4.3, while in 8.4, b EL, . 
Assume C(U)~(~) has a characteristic subgroup .Lica) isomorphic to L,(q), 

q = -I mod 4. By 7.9, &, = C,u(W)/O(Clc( W)) G Z(W) x L,(q) or 
Z(W) YSL,(q) with S E Syl,(G) in the latter case. 

Suppose W is dihedral. As usual F(a) CF(u) for some involution w E 
Now by 8.2.3, p = 3 and &, G Z(W) x L,(3). So in 8.4, m(W) = 1. 

Suppose U is quaternion and W # U. Then there exist elements u E U - W 
and w E W of order 4. u and w induce odd and even permutations on F(a), 
and then even and odd permutations on J? - F(a), respectively. Se 
n - 4 - 1 = Q mod 2 j w 1, a contradiction. 

Suppose -Z, z Z(W) YSL,(q). Then S n L, = WYX where X = (3~; y) 
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is quaternion. Choose 1 y j > j x I. Recall in this case SE Syl,(G). Suppose 
U = W and let e + 1 be the exponent of S. We may choose t E aG with 
Cs(t) E Syl,(C(a) n C(t)). B u a is a root of degree 2” in Cs(t) while t is not, t 
a contradiction. So W < U, W = (v} is cyclic, and U is dihedral or 
cyclic. If U = (u) then Cs(t) = (ux, y) is abelian of index 2 in S. Then 
as CJt) is Sylow in C(a) n C(t), Cs(t) must be homocyclic. As xt is an 
involution in S - Cs(t), S is wreathed, contradicting 3.4. So U = <u, v> 
is dihedral. Then CJt) = ( v, UX) and Cs(t)’ = (v2), impossible as a E {va) 
and CJt) is Sylow in C(t) n C(a). 

With 7.9, the above yields (2) of 8.4 and in 8.3 implies T = W x E, 
where @(E) = 1. 

Suppose W is dihedral. Then we have shown we are in 8.3. We may choose 
u E W+ with F(a) C F( W). Then apply 5.7 to X = {a, w), using 7.9 and 8.2, 
to obtain a contradiction. 

So we may assume m(W) = 1. Then <a) E = (aG n S} 4 NG(S), so 
WZ(E) = C,((a> E) a N(S). Then by 2.9, W = (a). 

Assume we are in 8.4. If S is abelian, 3.4 implies S $ Syl,(G), so S contains 
FPF involutions. Thus 1 # S’ n Z(S) < Li, so by 2.9 S $ Syl,(G) and 
the involution t in S’ n Z(S) is not fused to a. t is 2-central and we may 
assume t is not FPF, so t is fused to u E U. Then replacing a by u we get a 
contradiction by symmetry, since u is 2-central. 

So we are in 8.3. aG n S _C T, hence if 8.3 is false, U is a 4-group and some 
u E U - (a> is fused into T. Further by 7.9 we may take E = [T, C&a)] 
and 5” n Z(S) G E. Now we argue as in the last paragraph. 

LEMMA 8.5, C(a)F(a) has a charactevistic subgroup Lcca’ isomorphic to 
L,(q), 3 < q = -1 mod 4. 

Proof. Assume not. Then by 7.9, C(a)F(u) has a RNS T:(a’. Let 
T E Syl,(T,,). By 8.3, 4.3, and 2.7 it suffices to show T centralizes C(a)rca) . 

Assume first L = (Co(a)c(a)> # 1. Then [L, C(a),(,)] = 1 and 
T = (a) E G (a>L. 

So L = 1 and a inverts Q. Then G satisfies Hypothesis 6.1. NOW by 3.2 
and 6.5, C(O,(G,(,J(a))F(uJ is transitive for each odd prime p and thus covers 
T. It follows that T centralizes Fit(O(G,(,))) and then O(G,(,)). By 8.3, 
GFca) = (a> O(G,c,,), and the proof is complete. 

LEMMA 8.6. Let t E aG and W = {a, t). Then 

n - 1 = (4 + 1) 4 I CD(a): CD(Wl/l CD@>: CD(W)l + 4. 

Proof. Lets=IaD[,e=[tDI.By3.6and8.4,n-l=&+l)e/s+p. 

LEMMA 8.7. a inverts Q and a E Z(D). 
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Proof. Assume L = (Co(a)c(a)) # 1. By 8.4, L g ~~(~~ and L, = k X 

C{u),(,) . Let X = L n D. Then X = [CD(a), t] is of order (q - 1)/Y? and 
is centralized by U. So by 5.3, X acts semiregularly on Q#, and then Q is 
nilpotent. Let Y = [C,(t), a], where t = agm a and t are in the center of 

some Se Sy&(C(a)), so SE Syl,(C(t)). Also Y < [C(r), a] <kg and is 
normalized by S. It follows that Y = 1. Then by 8.6, n - 1 = q(qa + l)j2. 
So Co(a) is Sylow in Q. Then as Q is nilpotent, 7.6 yields a contradiction. 

LE~~IA 8.8. [t, G,(,,] = 1. 

Proof. Let p be an odd prime and X = O,(G,(,)). By 6.5, C(K(a))“‘a’ 
is transitive and then covers L z(‘). It follows that t centralizes Fit(G,(,,)) 
and then GFta) . 

We now derive a contradiction proving: 

THEOREM 8.9. a&Z*(H). 

For 1etL = (tC@))‘. As [t, G,(,,] = 1, 8.4 impliesL r L,(q). Let 
subgroup of order q in L I? H. Then Q’R 9 QCH(a) = H and R is regular 
on F(a) - 01, so QR is regular on J2 - 01. This contradicts [13]. 

9. THE CASE FIT(M) f  I 

It follows from 8.9 that Z*(H) has odd order. In particular m(H) > I, 
so U is dihedral. In this section we assume Q(H) # 1 and derive a contra- 
diction. Define A and Q as in Section 8. 

h3NlMA 9.1. CA(u) # 1 for each involution u E U. 

Pjfoof. I f  u inverts A then Q(u) d N and then ZR E Z*( 

LEMMA 9.2. There exists a d-group X = (a, a& < U with X# jked 
ilz El and XFca) = (a). 

Proof. As a $L Z”(H) and U is dihedral, there exists a 4-group 
X = (a, a,) < U with X# fused in H. If  X < GF(~) then CA(a) = CA(a2) = 
C,(q) = A, contradicting 7.6. 

LEMMA 9.3. If C(U)~(~) has a RNS then IF(a)\ f [F(X)j2. 

Proc$. Assume IF( = / F(X)j2 = vPO Then by 7.13 and 5.7, nz = 2 
or 4, and Co(a) is of order p = 3 or 5. Then Q = ,lJz+ Co(x) is elementary 
or order $8. By 7.6, Q is self centralizing. Also NH(X) acts irreducibly on Q; 
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so Q = Co(O,(EJ)) and then O,(H) = Q. So H/Q = H/C,(Q) acts as a 
subgroup of G&(p) with dihedral Sylow 2-groups with no normal 2-compli- 
ment, and with O,(H/Q) = 1. Therefore by 2.8, A, < H/Q ,( S, , or 
p = 5 and A, < H/Q < S, . 

By [13] Q is not regular on D - 01, so if H/Q < S, then D = U and 
n - 1 = j H: D ) = 3p3. As n = 0 mod 4, p = 5 and n = 376. So 
n = 8 mod 16, impossible as 1 F(a)/ = 16. Then H/Q < S, , p = 5, and 
D = U. So n = 3.54 + 1 = 4 mod 8, again impossible as 1 F(a)1 = 16. 

For the remainder of this section let Ll = (Co(a), C,(a)t>. If L,/Z(L,) g 
L,(p) then let Y = O(L, n D) and Yr = YO(C(XL,)). If j U j > 4, let B 
be the cyclic subgroup of order 4 in U. Choose X as in 9.2, and if possible 
choose X so that X+ is not fused in D. 

LEMMA 9.4. Assume C,(X) = 1 and 1 U ) > 4. Then either 

(1) L,/Z(L,) r L,(q), 3 < q = -1 mod 4, or 

(2) 4 < S(l F(u)l), CO(~) = CO(~), and I F(@l > 4. 

Proof. Let u = aaz~ and W = (u, a). Set m = 1 Co(a)l, k = 1 Co(o)\, 
w = ] Co(W)], and Y = 1 Cog. Notice zla is conjugate to u. 

If L,/Z&) g L,(3), then Q = C,(a) C&a,) C,(aa,) is elementary of 
order 27. Now by 2.8, H/Q g S, , and 7r = 82 = 2 mod 4, a contradiction. 
So if L,/Z(L,) g L,(q), then q > 3. 

Nowm=kw, and IQ/ =,a, since Co(X) = 1 and X# is fused in H. 
As au is conjugate to u, j Q [ = r%n/wa = rzk[w. Therefore Y = kw2 = mw. 
So if u E aG then m = Y and hence w = 1. Thus m = k, and we appeal to 
7.14. 

So we may assume u $ uG and w > 1. uH n U = u”, so by 2.1 and 7.12, 
C(U)F’U’ is 2-transitive. W = l&(u), so j F(U) 1 = 2. Also as w > 1, 
1 F(W)1 > 2. Let L = (Co(u)C(u)). Th en minimality of G and the remarks 
above imply LF(u) has a RNS or LFcu) g R(q). 

In the first case Co(W) contains a normal subgroup 2 of prime order p, 
and 2 is normal in Co(u) and C&ua). As a, inverts C&a), 2 is normal in 
Co(a). Hence 2 a Q. Let A be a minimal normal subgroup of H containing 2. 
@(A) = 1, so 2 = C,(u) = CA(ua), since C(U)~(“) < S(lF(zl)l). Hence 
A = C,(U) C,(ua) C,(a) = ZC,(a) = CA(a), contradicting 7.6. 

So P(G) g R(q). Then w = q and r = q2 or q3. If k = 1 then L, < C(u), 
and we are in (I), so we may take k > 1. Hence Y = kw2 = kq2 > q2, so 
Y = q3 and k = q. 1 F(SW)[ = 2, so by 7.14, C(V)~(~) is an extension ofL,(q). 
Also a inverts Z(Co(u)) and the second center Z2(Co(zc)) of C,(U) is 

COW) ~(COW 
As a 6 Z*(H), a does not invert Z(Q). But C,(a) = C,(W) C,(V) and 
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G2(W> f-l -wGw = 1, and NH(v) acts irreducibly on Co(v), so Z( 

Z(~o(~))Z~~o(~~)) C,(v). Further Z,(Q) = Z(Q) C,(W). So a centralizes 

Z4QMQ)- Th- ID as X# is fused in H, X centralizes Z~~Q)/Z~Q). So 
Co(X) i; 4, a contradiction. 

The proof of ‘Theorem 9.5 involves a series of lemmas. 

LEMMA 9.6. If L,/Z(L,) gg L,(q), 3 < q = - 1 mod 4 and j F(X)[ < 
then 9.5 holds. 

Proof. Let W = C,(L,). U/W centralizes Y, so [U, Y] = 1. Further Y 
is inverted in L, , so by 5.3, C,(Y) = 1. YI f  D and YI acts on F(X), 
which has order 2 or 4 by hypothesis. Hence YI fixes F(X) pointwise. 

There exists a # o1g = y  EF(X) such that a2 is in the center of a Sylow 
2-group of I&, containing X. Let I,, = (C,(a,), Co (a,)), and let P be a 
subgroup of prime order in Y. P acts on L, and semikgularly on CJa,), 50 

P < I&(&) (e.g., Lemma 2.7 in [3]). As this holds for each prime divisor 
of j Y j and [YI , P] = 1 it follows that YI = ~~~~X~~j)~~~)~~ ~ Therefore 
Yl 4 N&X). Now Y = [Yl , f ]  is cyclic. Assume 1 F(Xjj = 4. Tben 
NjX)F(X) g A, or S, , so by 2.5, [YI , t] = 1, a contradiction. 

So j F(X)/ = 2. Thus X# is fused in D, so C(a)F(@ is 2-transitive and then 
L, = (C,(LI)~(~)> = L. This yields (l)-(3) of 9.5. Also Y = [YI , t] = 

(L2 n D), so Y a N&X). 

LEMMA 9.7. If C(a)F’a’ is 2-transitive then 9.5 holds. 

PPOO$ This follows from 7.9, 9.3, and 9.6. 
Given 9.7 we may assume C(X)F(X) is not 2-transitive. 

LEMMA 9.8. If / U j = 4 then 9.5 holds. 

Proof. Assume 1 U 1 = 4. Then U = X. C(X)F’X) is not 2-transitive, 
so by 7.8, 7.10, and 7.13, LFta) satisfies Hypothesis 5.4. Then 5.5, either 
Wa) has a RNS or LFta) gL,(8) or 5L,(32). By 9.3, it must be the latter. 
Then C,(a) is cyclic of order 3, 9, 11, or 33. Take A to be minimal normal 

ThenjA/ =p3,p=30r11. 
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Suppose p = 11. C,(X) contains an element w inducing an outer auto- 
morphism of order 5 on L with CL(~)F(<agW>) e S, . Now Q is abelian of 
order 1 l3 or 333, and in the latter case as w centralizes an element of order 3 
in Lh n H for each ah E X, w centralizes O,(Q), contradicting 7.6. So Q = A. 
Now C,((a, w>) acts irreducibly on [a, A] of order 121, so w has scalar action 
on [a, A]. Indeed this holds for each member a of X#, so w has scalar action 
on A. Hence H = ACH(w). C,(w) is a subgroup of GL,(I 1) whose Sylow 
2-group U is a 4-group fused in C,(w) and containing an element of order 6. It 
follows that C,(w) g 2, x L,( 11) and D = U. Then n = (1 l4 . 52 * 3) + 1 = 
12 mod 16. But j F(a)[ = 496 = 0 mod 16, a contradiction. 

So p = 3. Then by 2.8, A, < H/Q < S, and D = U. So C,(a) has 
order9andQhasorder93.Thenn=37+1 r4mod7,soIGj =njH( 
is not divisible by 7. But the order of L is divisible by 7. 

Given 9.8 we may assume / U / > 4. Recall B is the cyclic subgroup of 
order 4 in U. 

LEMMA 9.9. Ijlf(B)F(B) has a RNS then 9.5 hoZds. 

Proof. Let W = UF(B) . As in 7.4, 1 U: W ] < 2. Suppose / F(BX)J = 2. 
Then as 1 F(X)/ = 1 F(BX)j2 and C(X)F(XJ is not 2-transitive, Co(X) = 1. 
Now appeal to 9.4 and 9.6. 

So we may assume 1 F(BX)j > 2. As C(a)r(“) is not 2-transitive, 
F(a) #F(B). Hence BXF@) is a 4-group in C(a)F(a), and by 7.13, C(a)F(a) 
satisfies the hypothesis of Lemma 5.7. Thus choosing P as in 5.7, 
[CA(a), P] = 1. By symmetry, [CA(x), P] = 1 for each x EX@, so 
P < C(A) < Q. N ow arguing as in the last paragraph of 5.7, P is the unique 
subgroup of order p in C,(x), each x E X#, so P is even unique in Q. This 
contradicts 7.6. 

LEMMA 9.10. If lV(B)F(B) is the extension of L,(q), then 9.5 holds. 

Proof. j F(BX)[ = 2, so /F(X)\ = 4 and Co(X) = 1. Now appeal to 
9.4 and 9.6. 

Notice 9.8-9.10 and 7.14 imply Theorem 9.5. We can now complete this 
section proving: 

THEOREM 9.11. O(H) = 1. 

Let K = r,,,(H). By 9.5, K = Q(K 17 0). Now if QD = H then Q is 
regular on Q - {a}, contradicting [13]. So K < QD # H. But by 9.5, 
C(a)“ca) is 2-transitive, so aH n D = aD. So aH n QD = aQn, and QD has 
one class of involutions. Thus QD is strongly embedded in H. Therefore 
H/O(H)gA,and4=D/O(D)rA,.Alson-1 =IQlIH:Kl =5q3. 
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Now t acts on D and centralizes U, so we may choose t to centralize D-. 
So tU+ is fused in D. Let U* ,< SE Syl,(C(a)). Then S = (a) x T> 
where S n L < T is nonabe!ian dihedral. Let z be the involution in Z(T). 

y  2.9, z$aG. Further UZEG for each a # uE U, SO 18nzUl > 1. 
Thus z = t is FPF. Further [t, C,(U)] = I for each u E li”, so [t, D] = 1. 

Define s and e as in 3.6. Then s = ( aD 1, and e = j atD j = s, so by 3.6> 
n = jF(a)/2 = (q + 1)“. But (q + l>” # 5q3 + 1. 

10. THE CASE E(W) f B 

By 9.11 i Q(H) = 1, so by 7.7, L = E(H) # 1, and. H < Aut(L). As ki 
has dihedral Sylow 2-subgroups it follows from [ll] that % g A, or L,(q), 
q > 3 odd, and that L is of index at most 2 in i!JL with UL g PC&(p) if 
UL #L. 

LEMMA 10.1. If* A,. 

Pwo$. Assume H g A, . We consider the various possibilities for D, 
Assume first D is solvable. If  X is a nilpotent subgroup of odd order in H 

with / H: NH(X)] odd, then X is of order 1 or 3. a’hus we may choose 
X = O(D) < C(a). Suppose X has order 3. Then UX < D < NH(X) of 
order 72, so D has order 24 or 72. Then n - 1 = 105 or 35. As n = 0 mod 4, 
E = 36. Let N be the number of pairs (an, y), 01 f  y  EF(~~). Let m = 1 F(a)]. 
Then 35.21 = (Tz - 1) 1 aK n D / = fV = 1 aH / (M - 1) = lM(rpz - I). So 
‘~2 = 8. But C(a)F(“) is transitive, so if SE Syl,(C(a)) tbec 8 = j S: U /. But 
j G: H j = n = 36 f  0 mod 8, a contradiction. 

SoX = 1,andeitherD < C(a)orDg S,.IfDg Sathenr,- 1 = 105 
and n E 2 mod 4. So D < C(a) and then D = U and ti - I = 315. Cal- 
culating as above we find m = 16, whereas n -+ 0 mod 8, a contradiction. 

So D is not solvable. As hi < D, D z A, ) S, , or L,(7). In the first case 
G g A,. In the second n = 22 + 0 mod 4. So D g L,(7) and n = 16. 
Calculating we find m = 4. As D is transitive on its involutions, 2.1 implies 

W4 ‘W is Z-transitive. C,(a) is maximal in D, so (a) = Gp(Uj . Then mini- 
tiaIity of G implies C(a)F(U) g S, . As m = 0 and n = 16, we may choose t 
to be FPF. As GFca> = <a), t centralizes U and t is the unique FPF involution 
in U”. $ acts on D g L,(7) and centralizes U, so t or ta centralizes D. ta E a6 
and @(a) is solvable, so [t, D] = 1 and t is the unique FPF involution in D”. 
Now 2.4 implies 4: has a RNS. 

LEMMA 10.2. One of the following holds: 
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(1) L n D < C(a) and C(a) F~a~hasrank30r4for UgLoor lJ<L, 
respectively. 

(2) L n D GS PG.,(q& some odd qO > 3, U <L, and C(U)~(“) has 
rank 3. 

(3) L n D s L&o), some odd q,, > 3, and C(U)~@) is 2-transitive. 

Proof. By the opening remarks in this section and 10.1, H < Aut(L), 
with L g L,(q). As D has dihedral Sylow 2-group U, L n D has one of the 
forms claimed. By 2.1 and 7.12, C’(Q)~(~) is transitive of the stated rank. 

LEMMA 10.3. L &L,(5) or L,(7) and a7 L c L,(27) then D < LU. If  
H G L,(9) then D $ S, . 

Proof. The arguments in 7.8 show L g L,(5). If L s L,(7), then D = U 
or D z S, . In the first case n = 22 E 2 mod 4. In the second case R = 8, 
and it is easy to show, using 2.4, that G has a RNS. Similarly if H s L,(9) 
then D & S, . 

So assume L g L,(27) but D $ LU. Then D contains an element w of 
order 3 inducing a field automorphism on L. Let (w} = W < P E Syl,(D). 
If P # W then D =iVH(UnL) and n = 7.9.13 + 1 = 4mod8. But 
j F(a)[ = 8, a contradiction. So P = W and then by 2.1, wG n H = wH. 
Further n 5 1 mod 3, so H contains a Sylow p subgroup of G. Then as 
wo n H = wH and W has a normal complement in H, W has a normal 
compliment in G, contradicting 7.2. 

LEMMA 10.4. Let Y be the cyclic subgroup of index 2 in C,,(a) containing a. 
Assume C(a)F(a) is not 2-transitive and let X be a 4-group in U used in H but 
not in D. Then 

(1) (a> = GF(~) - 

(2) Either Y n D = (a) OY F( Y n D) = 01 u PC~(a) is a set of imprimi- 
tivity for C(a)F(“) and 1 F(X)1 = 4. 

Proof. Let X = (a, x) and h E NH(X) with ah = x. Then as x is not fused 
to a in D, Yean = (a). Thus YF(,) = (a). Indeed if Y n D > Yl # (a) 
then Yr is weakly closed in D with respect to H, so N&Y,) < C,(a) is 
transitive on F(Y,) - 01. Further Yr a C,(a). 

Then [GFca) , YJ < YFta) = (a). So GFca) centralizes Y unless possibly 
/ Y 1 = 4 and GFca) = (a, U> is a 4-group. In the latter case GFca) g C(a), 
so q = 5, 7 or 9, since Y is self-centralizing for q > 5. By 10.3, q = 9. Then 
n = 46 = 2 mod 4, a contradiction. This yields (1). 

Assume Y n D + (a). Then as Y n D a C,(a) and C,(a) is transitive 
on F(Y n D) - 01, ,KH@) = F(Y n D) - a! is an orbit of C,(a) on F(a) - 01. 
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Y n D is weakly closed in C,(a) with respect to C,(a), SO P(Y n 
of imprimitivity for C(u) F(a). Then F(Y n 0) n F(X) is a set of im~rimitivity 
for C(X)F(X), so by 7.13, IF(X)\ = 4. 

LEMMA 10.5. Dejine Y as in 10.4. Assume C(a)F(a) is not 2-transitive and 
Y n D # (a>. Then either 

(1) = &TN(a) and \ F(Y)\ = 2, or 

(2) Z)Y=C,(a),/Y:YnD/ =3,and\F(Yn)! =4. 

PYOOf y  10.4, F(Y n 0) = 01 u p @ta) is a set of imprimitivity for 
C(tp’ and j F(X)\ = 4. Then N(Y n D)p(ynD) is 2-transitive with 
j $-JF(Y"" / = 2. AS /F(X)/ = 4, 1 F(X(Y n II))/ = 2. Finally UF(ynD) $ 
C(Y n D)F(YnD). 

With these facts in mind, minimality of G implies either / F(Y n 
or N(Y n qF’X”=’ is an extension of L,(qI) with qr E -1 mod 4. 

Now if / F(Y n II)\ = 2 then as Y n D 4 C,(a), C',(a) < D. 
q > 7 and if N s L,(9) then D * S, , so C*(Q) is maximal in 
D = C,(a). 

On the other hand if Y < D then as YU 4 CH(a), F(Y) cF(X) and then 
IF( = 2. So we may assume Y 4 D. Then YFcYno) is a normal cyclic 
subgroup of HFfYnD), so qI = j YFcynoi 1 = j Y: Y n La / is prime. Further 
C( Y n ZPjF(YnD) covers the socle of iV(Y (7 D)F(YnD), so C&Y n D)F(YnD’ 
contains a cyclic subgroup WF(y”D) of order (ql - 1)/Z acting semiregulariy 
on YFrunD) 

Assume qI > 3. Then as W < C(Y n D) acts semiregularly on Y/(Y n D), 
we conclude @‘is of prime order p. Then p = q2p and q1 = (4%” - c)/(qz - 6) 
where *I = E = q mod 4. But (ql - 1)/2 = p, so we slhus~ have q = 27 
andp = 3, contradicting 10.3. 

Thus q1 = 3, and it remains to show D < C(a), So assume not. Then by 
10.2, L n D s PGL,(q,). Now either q = qae or q. = 3 or 5. As 
3 # (qoe - e)/(qo - E)? q0 = 3 or 5. Thus 1 Y n D ! = 4 and q = 4q, li I = 
12 + 1 = II or 33. But then [ U n L j = 4, a contradiction, 

LEMMA 10.6. De$ne Y as in 10.3 and assume C(a)F(“) is not 2-tram&e. 
Then Y n D = <a>. 

Prooj- Assume Y n D # {a). Then by IO.4 and 10.5, F(Y fi I)) is a 
set of imprimitivity for C(a)F(a), and is of order 2 or 4. Let 0 be the set of 
conjugates of F(Y n 0) under C(a). Let m = j F(a)\, and s = j aM 0 D j. 

y 10.5, \P(Y n D)\ = 2 or 4 and s = 1 + (q - c)/Z or 3 + (q - c)/6, 
respectively, for E = &l = q mod 4. 

Now by 10.4, F(Y n D) - a = PC~ca) and a E Z(D). So by 2.1, 
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I F(Y n D)l = 1 + (m - 1)/s. Then m = 2 + (q - ~)/2 or 4 + (4 - ~)/2 
for 1 F(Y n D)l = 2, or 4, respectively. 

Next, each A in 19 distinct from F( Y n D) corresponds to a unique d-group, 
X in C,(a) fixing 2 points of A. Suppose l3 = (b) is a cyclic subgroup of 
order 4 in U. Then B normalizes each 4-group X in C,(a) and then also 
F(X) - F(Y n D) = F(X) n A. So B is in the kernal of the action of C(a) 
on 0. As B(t) is the weak closure of B in the stabilizer of F(Y n D) we 
conclude B(t) g C(a). B and (bt) are the conjugates of B in B(t), so C(a) 
acts on F(B) u F(bt). Then F(a) = F(B) u F(bt) is of order 2 1 F(Y n D)/ 
so (q - ~)/2 = 1 F(Y n D)\ and either q = 5, or q = 7 or 9 and 
IY:YnD/=3.By10.9,p=9,soYisa2-groupand/Y:YnDj f3. 

Sol UI =4.NowmrOmod4,soif)F(YnD)~ =4thenp=Emod8 
and 1 UI >4, whileif IF(YnD)[ =2thenq+-mod&.So [F(Y)1 =2 
and q + E mod 8. Then Y/(a) acts regularly on the (p - ~)/4 4-groups in 
C,(a) and then also on 6 - F(Y). So C( a e ) is 2-transitive and the stabilizer 
of F( Y) has a normal cyclic subgroup Y/<a) regular on 0 - F(Y). It follows 
that C(a) either has a RNS or is an extension of L&r), q1 = (q - ~)/4. In 
either case C(X) is 2-transitive on the fixed points of X on 8, so as X fixes 
F(Y) pointwise, any member of 0 fixed by X is fixed pointwise, so as 
1 F(X)] = 4, X fixes exactly 2 points of 8. Thus C(a)e is an extension ofL,(q,). 

Then C,(a) contains a subgroup W of order (qr - 1)/Z& 6 = 1 or 2, 
acting semiregularly on Y(a). W must induce field automorphisms 
on L. 

IfW=~lthenq,=3or5andq=11,13,or19andn==1+~N:D[ = 
56, 92, or 172. If ql = 5, then m = 12 = n mod 8, so a Sylow 2-group S of 
C(a) is an abelian Sylow group for G, contradicting 3.4. Similarly Q # 3. 

So W # 1. Then as W acts semiregularly on Y/(a), W is of prime order p, 
and q = 3~ or 5~. If q = 5” thenp = (ql - l)/ZS = ((5P - I)/4 - l)/ZS = 
5(5p-r - l)/SS. So p = 5. But 54 - 1 # 8 or 16. So q = 39 and as above 
p = 3, contradicting 10.3. 

LEMMA 10.7. C(Q)~(~) is 2-transitive. 

Proof. Assume C(a)F(a) is not 2-transitive. Then by 10.6, LU n D = U 
is of order 4. By 7.13, C(U)r(U) has a RNS T:(u) and if T E Syls(T& then T 
is elementary. 

Next D = UK, where K is a cyclic group inducing field automorphisms 
onL. By 2.5, [KFcu) , T] = 1, so we may choose t E T with [D, t] = 1. 

By 7.8, q # 5, so 1 # O(CL(a)) = Q 9 C,(a) acts semiregularly on 
P(a) - 01. Thus <QC(U))~(@ satisfies Hypothesis 5.4, so by 5.5, either C(U)~(@ 
has a RNS or C(a)F’a) g L,(S) or 5L,(32). 

Now L,(2i) has no FPF involutions so if C(a)F(a) z L,(29 then all 
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involutions in G fix points of .Q and hence are conjugate to a. Let 
S E Syl,(C(a)). Then S E SyI,(G). We find S abelhn contradicting 3.4. 

So C(a)F(a) has a RNS E:(a). Let E E Syl,(E,) and S = EU E Syl,(C(a)), 
As T is elementary E is elementary. S’ < Z(S) so by 2.9, S’ n aG is empty. 
So we may choose t to be FPF. Let U = (u, a)* Then ~5 E uE and u and w 
are conjugate to a, so aG n D* - D = (at, nt, ad). We conclude from 3.5 
that YZ = (F(a)/2e Then by 2.4, G has a RNS. 

We are now almost in position to derive a contradiction and establish the 
theorem. 

Let Y be the cyclic subgroup of index 2 in C,,(a). Then Y n D g C’,(a) 
so as C(C~)“!~) is Z-transitive, Y n D < GFca) . Y n D is weakly c!osed in 
C,(a) with respect to Cc(a), so Y n D 4 C(a). 

By 7.9, C(a) F(al has a RNS or is an extension of L,(r), Y E I mod 4. As 
Y n 63 is a cyclic normal subgroup of C(a) contained in GFca) it follows 
from 2.5, that we may choose t to centralize Y n D. 

Next by 10.2, L n D E L2(qo) f  or some odd q0 3 3. Then as t centralizes 
Y n D and hi and acts on L n D, t induces an inner automorphism on I, r\ II 
and we may choose f  to central&L n D. Indeed we may take [II, t] < O(D). 

NowD==K(ULnD) h w ere K is a cyclic group of odd order inducing 
field automorphisms in L. Further O(D) < K. As above, t centralizes 

w%bd ~ 
Let (d) E Syl,(O(D)). Then t either inverts or centralizes d. Assume the 

former. If  j F(dia)j > 2 then by 7.9, t centralizes &a. So if 8 f  I then 
C&a&) < D. As d induces a field automorphism on IL, it follows that 
q = qo*, d has order p, and H = LU(d). By 7.9, C(U)~(@ is an extension 
of L&Y), r E -1 mod 4, so p = /[IPa), t] j = (7 - 1)/2. Then 2~ + % = 
r = I P(a)/ - 3 = I CH(a): CD(a)1 = (q$ - c>/(qo - c) > yOpw2(qG - I). So 
4 = 27, contradicting 10.3. 

Thus we have shown that: 

It follows from 7.9 that: 

LEbuvu 10.9. C(a)F(a) has a RNS ??;(‘(a), 

As q > 7, C,(a) is maximal in L. Thus as I. n D 4 C,(a) and L < D, 
Y g w. 

Suppose j F(a)\ = 4. Then 1 Y: Y n D j = 3. Recall L n D gg I&,), 
Suppose q = qor. Then 3 < (q - e)/(qo - G) = j Y: Y n D I7 a contra- 
diction. So q,, = 3 or 5, and U = CL,,(a). Thus q - E = 6, so q < 7 
contradicting 10.3. 
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So j F(a)j > 4. Let T E Syl,(T,) and S = UT E Syl,(C(u)). By 7.9, 
T = V x E, where E = [T, N,(T) n C(V)]. Let a # u = ah E U. Then 
UC’s(U) C vE and C,(U) = [C’s(u), N,(T) n C(U)] < Eh. So ZcEh _C aG and 
then aE 6 aG. 

Next T is the unique abelian subgroup of index 2 in S, so T is characteristic 
in S. Further if V # (a) then (a> = SZ,(W(T)) is characteristic in S, 
contradicting 2.9. Thus V = {a) and 5” = C,(u). Also U <L so H has 
one class of involutions. By 2.9, aG n 5” is empty. So Eg consists of FPF 
involutions. 

Suppose t = ag. Then U = [U, D] < [Sg, D] < Es, impossible as E# 
consists of FPF involutions. So t is the unique FPF involution with cycle 
(01, ,f3). Further defining e and s as in 3.6, s = j uD 1 = I(at)D 1 = e. So by 
3.6, n = 1 F(a)j2. Now by 2.4, G has a RNS. 

This completes the proof of Theorem 2. 
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