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We unify two long-memory Fokker–Planck mechanisms. Stationary solutions of the equation ∂ p(x,t)
∂t =

− ∂
∂x [F (x)p(x, t)] + 1

2 D ∂2

∂x2 [φ(x, p)p(x, t)] (D ∈ R; F (x) = −∂V (x)/∂x) exist for a wide class of systems,

namely for φ(x, p) = [A + B V (x)]θ [p(x, t)]η , (A, B , θ , η) being constants. We obtain that, for θ �= 1 and
arbitrary confining potential V (x), p(x,∞) ∝ {1−β(1−q)V (x)}1/(1−q) ≡ e−βV (x)

q , where q = 1+η/(θ −1).
© 2012 Elsevier B.V. All rights reserved.
1. Introduction

One of the cornerstones of statistical mechanics is the func-
tional connection of the thermodynamic entropy with the set of
probabilities {pi} of microscopic configurations. For the celebrated
Boltzmann–Gibbs (BG) theory, this central functional is given by
SBG = −k

∑W
i=1 pi ln pi , where W is the total number of micro-

scopic states which are compatible with the information that we
have about the system. This powerful connection is in principle
applicable to a vast class of relevant systems, including (classi-
cal) dynamical ones whose maximal Lyapunov exponent is pos-
itive, thus generically warranting strong chaos, hence mixing in
phase space, hence ergodicity (in some sense, Boltzmann embod-
ied all these features in his insightful molecular chaos hypothesis).
Within this theory, it ubiquitously emerges the Gaussian distri-
bution pG ∝ e−βx2

(β > 0). Indeed, this important probabilistic
form (i) maximizes the (continuous version of the) entropy SBG =
−k

∫
dx p(x) ln[p(x)] under the basic constraints of normalizability

and finite width; (ii) constitutes the exact solution, for all values
of space and time, of the simplest form of the (linear and homo-
geneous) Fokker–Planck equation for (attractive) quadratic poten-
tial, in turn based on the simplest form of the Langevin equation
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(which includes additive noise); (iii) is the N → ∞ attractor of
the (appropriately centered and scaled) sum of N independent
(or weakly correlated in an appropriate sense) discrete or con-
tinuous random variables whose second moment is finite (Central
Limit Theorem, CLT); (iv) is the velocity distribution (Maxwell dis-
tribution) of any classical many-body Hamiltonian system whose
canonical (thermal equilibrium with a thermostat) partition func-
tion is finite, i.e., if the interactions between its elements are
sufficiently short-ranged, or nonexistent (more precisely, infinitesi-
mally small, like in the ideal gas). The simplest probabilistic model
which realizes these paradigmatic features is a set of N indepen-
dent equal binary random variables (each of them taking say the
values 0 and 1 with probability 1/2). The probability of having,
for fixed N , n 1’s is given by N!

n!(N−n)! 2−N . Its limiting distribu-
tion is, after centering and scaling, a Gaussian (as first proved by
de Moivre and Laplace), and its (extensive) entropy is the BG one,
since SBG(N) = Nk ln 2.

What happens with the above properties when the correla-
tions between say the elements of a probabilistic model are strong
enough (basically in the sense that they strongly spread over all
elements of the system)? There is in principle no reason for gener-
ically expecting the relevant limiting distribution to be a Gaussian,
and the entropy which is extensive (i.e., S(N) ∝ N for N 	 1) to
be SBG . The purpose of the present Letter is to focus on such and
related questions for a class of systems which are ubiquitous in
natural, artificial and even social systems, for example some of
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those which are scale-invariant in a probabilistic sense [1], some
overdamped diffusive systems [2], some systems with restricted
diffusion mechanisms [3], among others.

Let us now discuss the frequent emergence of q-exponentials,
defined as

Pq(x) = Nq
[
1 − (1 − q)βV (x)

]1/(1−q) = Nqe−βV (x)
q , (1)

where Nq is a normalization factor; P1(x) = N1e−βV (x) is the stan-
dard BG case; for V (x) ∝ x2, Pq(x) is a q-Gaussian, which displays
asymptotic power-laws and can be seen as a natural generalization
of the Gaussian (q = 1).

At this point let us make a few remarks. (i) q-Gaussians
appear as the exact solutions of paradigmatic non-Markovian
Langevin processes and their associated Fokker–Planck equa-
tions. Langevin equations with both additive and multiplicative
noise [4], or Langevin equations with long-range-memory [5], lead
respectively to inhomogeneous linear [6], or homogeneous non-
linear [7,8] Fokker–Planck equations (see also [9–12]). (ii) q-CLT
attractors are q-Gaussians [13] (see also [14]). (iii) The extrem-
ization of the entropy Sq with norm and finite width constraints
yields q-Gaussians, where Sq is a generalization of BG entropy,
namely [15,16]

Sq = k
1 − ∫

dx[p(x)]q

q − 1
(q ∈ R; S1 = SBG). (2)

This entropy is, for q �= 1, nonadditive (see [17] for the current
definition of additivity), i.e., for arbitrary probabilistically inde-
pendent systems A and B , the equality S(A + B) = S(A) + S(B)

is not satisfied. However, for many systems a value of q, de-
noted by qent, exists for which Sqent is extensive, i.e., Sqent (N) ∝ N
(N 	 1). As is well known, for all standard short-range-interacting
many-body Hamiltonian systems, we have qent = 1. However, some
systems exist for which qent < 1 [18–21]. (iv) Numerical indi-
cations [22] for the distributions of velocities in quasistation-
ary states of long-range Hamiltonians [23] suggest q-Gaussians.
Further, experimental and observational evidence for q-Gaussians
exists for the motion of biological cells [24,25], defect turbu-
lence [26], solar wind [27,28], cold atoms in dissipative optical
lattices [29], dusty plasma [30], high energy collisional experi-
ments [31], among others (see also [32]). Numerical indications
are also available at the edge of chaos of unimodal maps [33].

A domain where the nonadditive entropy Sq can be nat-
urally incorporated is for describing anomalous diffusion like-
phenomena. From modified Langevin equations, inhomogeneous
linear or homogeneous nonlinear Fokker–Planck equations have
been derived and used in order to obtain the mesoscopic dynamic
evolution of systems where such diffusion occurs.

2. Model and results

Let us consider here the nonlinear Fokker–Planck (FP) equation
given by

∂ p(x, t)

∂t
= − ∂

∂x

[
F (x)p(x, t)

] + 1

2
D

∂2

∂x2

[
φ(x, p)p(x, t)

]
, (3)

where D ∈R is the coefficient of diffusion, F = − ∂V (x)
∂x is the drift

term, and V is a confining potential. We shall further assume the
following wide connection:

φ(x, p) = [
g(V )

]θ [
p(x, t)

]η
, (4)

with g(V ) = [A + B V ], A, B , θ and η being real constants (notice
that θ �= 0 essentially yields a space-dependent diffusion coeffi-
cient).
It should be noted that the present equation encompasses also
the general inhomogeneous (θ �= 0) nonlinear (η �= 0) case. Our
aim is to find whether a q-exponential Pq(x) exists as a stationary
solution (i.e., limt→∞ p(x, t) = Pq(x)) of this FP equation such that
the inhomogeneous linear and the homogeneous nonlinear FP equa-
tions become unified.

The condition ∂ p(x,t)
∂t = 0 implies

∂ F (x)p(x,∞)

∂x
= D

2

∂2

∂x2

[
φ(x, p)p(x,∞)

]
. (5)

By assuming appropriate boundary conditions (basically p(±∞,∞)

= 0), changing variables and developing, we obtain

∂[g(V )θ p(V )1+η]
∂V

= −2p(V )

D
, (6)

where p(V ) ≡ p(V (x),∞). It follows that

∂ p(V )

∂V
= −2g(V )−θ p(V )1−η + θ B Dg(V )−1 p(V )

D(1 + η)
. (7)

Now, we will first consider the θ �= 1 case. Let us propose a solu-
tion of Eq. (7) satisfying

g(V )1−θ p(V )−η = C (8)

with ∂C/∂V = 0. By direct substitution in Eq. (7), we can easily
show that p(V ) = Pq(V ), as given by Eq. (1), with

q = 1 + η

θ − 1
(9)

and

β = 2C + θ B D

AD(1 + η)
, (10)

where

C = [
ANq−1

q
]1−θ

. (11)

These results reproduce, for θ = 0, the homogeneous nonlinear
case discussed in [7,8,5], i.e., q = 1 − η and N1−q

q β = 2/D(1 + η),
which leads to normal diffusion for η = 0.

Eq. (9) shows that, for η �= 0, the limit θ → 1 corresponds to
a singularity in the |q| value. However, in this limit, we still find
q-exponentials as stationary solutions of the above FP equation,
in two different situations:

(a) For η considered as a function of θ with the leading term
given by η ∼ α(θ − 1)δ , the analytical extension of the solution
given by Eqs. (8)–(11) results in q-exponentials presenting the in-
dices q = 1 for δ > 1 and q = 1 + α for δ = 1, with β = (2 + B D)/

AD in both cases.
(b) An isolated solution (which is not a particular case of the

previous ones) can also be found by setting η = 0 and θ = 1 in
Eq. (7). By so doing we obtain

∂ p(V )

∂V
= −[2 + B D]g(V )−1 p(V )

D
. (12)

Now, imposing the relation

g(V )p(V )q−1 = C̄, (13)

where C̄ is independent of the potential V . Following the same
procedure used to obtain Eqs. (9) and (10), we finally have p(V ) =
Pq(V ), with

q = (1 + B D)
, (14)
(1 + B D/2)
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Fig. 1. q = 1+ η
θ−1 as a function of θ for selected values of η (the upper bound q = 3

herein shown corresponds to a potential V (x) ∝ x2, i.e., ρ = 2). For the special point
(θ → 1, η → 0), there are three different solutions for q, namely q = 1, q = 1 + α,
and q = (1 + B D)/(1 + B D/2) (see the text).

and

β = (2 + B D)

AD
. (15)

It should be noticed that this case ((η, θ) = (0,1)) recovers pre-
vious results already obtained in [6,4].

As final remarks, we note that:

(i) For A �= 0, we may take A = 1 without loss of generality, if the
(B, D) parameters are properly rescaled.

(ii) It is known [16], that the q-Gaussians, which emerge for
V (x) ∝ x2 are normalized only for q < 3, which implies the
following restrictions to the values of the parameters of the
FP equation: (a) For θ �= 1, η

θ−1 < 2, (b) For θ → 1, α < 2 if
δ = 1 and B D > −2 or B D < −4. For each V (x), an analysis
of integrability of Pq must be performed, in order to establish
the accepted range of values of the parameters (η, θ, B, D,q)
(e.g., if V (x) ∝ |x|ρ , in the limit |x| → ∞, then it must be
q < 1 + ρ).

(iii) We stress that Eq. (3) used in this Letter corresponds to the
Itô form of a generalized FP equation (a Stratonovich ap-
proach has already been examined [12], and the existence
of q-exponential distributions as stationary solutions has also
been proved).

(iv) Although we have not attempted the general proof of the sta-
bility of the present solution, the analysis of various particular
cases indicates that it is indeed so.

Let us emphasize that Eq. (9), here presented for the first time,
enables us to analyze in a unique way the present general inhomo-
geneous nonlinear case, which contains, as particular cases, several
FP equations used to describe a large class of non-Gaussian natural
systems. This unification constitutes the main result of this Letter.

3. Conclusions

To summarize, the nonlinear inhomogeneous FP process given by
Eqs. (3) and (4) has, as a stationary solution for any confining po-
tential V (x), a probability distribution given by the q-exponential
Pq(V ), with finite values of q and β (see Fig. 1 and Table 1).
These results exhibit that we may retain long memory (basically,
the probability distribution longstandingly, and nontrivially, main-
tains memory of its form at t = 0) as a unified (in the sense that
it simultaneously generalizes both the nonlinear homogeneous and
Table 1
Nonlinear inhomogeneous Fokker–Planck equation with q-exponential stationary-
state distribution. The present θ = 0 result recovers that of Eqs. (2.8) and (2.9) of [7]
with the notation correspondence (F , Q , D, K ) in [7] ↔ (P , D, Nq, F ) here. It also
recovers that of [8] by using there μ = 1 and ν = 1+η. The result presented by the
isolated solution at (θ,η) = (1,0) recovers that cited (for the Itô approach) in [4]
with the notation correspondence ( M

τ ) in [4] ↔ ( B D
4 ) here. A comparison is also

possible through Eq. (11) of [6] by using the notation correspondence (K , D, U (x))
in [6] ↔ (F , Dg(V )θ , V (x)) here.

Fokker–Planck Linear
(η → 0)

Nonlinear
(η �= 0)

Homogeneous
(θ = 0)

q = 1 q = 1 − η

Inhomogeneous
(θ �= 0)

If η ∼ α(θ − 1)δ and θ → 1,
q = 1 for δ > 1
q = 1 + α for δ = 1

q = 1 + η
θ−1

If η is strictly 0 and θ → 1,
q = 2(1+B D)

2+B D

the linear inhomogeneous cases) mesoscopic mechanism consistent
with nonextensive statistical mechanics.
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