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We attempt to reformulate eleven dimensional supergravity in terms of an object that unifies the three-
form and the metric and makes the M-theory duality group manifest. This short Letter deals with the
case of where the U-duality group SO(5,5) acts in five spatial dimensions.
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1. Introduction

In [1], a generalized metric was introduced from considering
duality from the perspective of the membrane world volume the-
ory. This naturally combined the metric and the three-form of
eleven dimensional supergravity into one geometric object. The
space on which the metric acts will be the usual spacetime ex-
tended by n dimensions whose coordinates are p-forms. The de-
tails of how many dimensions one needs to add i.e. n and which
p-forms to use for the coordinates is dependent on several details
that we describe in the next section.

This metric is a generalization of the generalized geometry in-
troduced by Hitchin [2] and developed in M-theory by Hull [3]
and Pacheco and Waldram [4]. A key goal of the work of [1] was
to encode the equations of motion of the space on which the du-
ality group acts (when there is no dimensional reduction) in terms
of the generalized metric. This then makes the duality group a
manifest global symmetry of the action. Note, we are making no
assumptions about the space such as the existence of Killing vec-
tors.

In [1] the duality group was taken to be SL(5) corresponding
to the U-duality group of six dimensions. The four dimensional
space on which this duality group acts was extended to ten dimen-
sions with the additional six dual dimensions having coordinates
described by two-forms on the four dimensional space.
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In this Letter, we will extend this to five spatial dimensions
where the duality group is SO(5,5). In doing so we will have to
produce the appropriate generalized metric that combines gij and
Cijk and determine the action that will reduce to the standard ac-
tion of eleven dimensional supergravity.

The reduction is when we make the section condition that the
fields are independent of dual coordinates. This is a necessary con-
dition for consistency but it is expected that a more general notion
of the section condition can be constructed and different solutions
will correspond to different duality equivalent theories.

Let us examine the analogy with Kaluza–Klein theory to de-
scribe these ideas. Starting with Einstein–Maxwell theory in four
dimensions with four dimensional diffeomorphism symmetry and
U (1) gauge symmetry one asks whether this can be reproduced by
a higher dimensional theory of gravity alone with diffeomorphism
symmetry in higher dimensional space. The answer is of course
yes. One removes dependence of the metric on the fifth dimen-
sion and the theory reduces to Einstein–Maxwell with the vector
field of electromagnetism being the off diagonal component of the
metric and its gauge symmetry a remnant of the five dimensional
diffeomorphism. Once this has been constructed it is then tempt-
ing to remove the Kaluza–Klein reduction and consider the full five
dimensional theory.

Now we have in eleven dimensional supergravity with a met-
ric and a three-form abelian gauge potential, C3. Can one play
the same trick and find an extended space in which a reduction
will produce our original theory. No ordinary Kaluza–Klein the-
ory can do this. Yet if we construct the extended space to have
two-form coordinates as one does in generalized geometry then
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one can write an action on the extended space that will reduce
à la Kaluza and Klein to the usual eleven dimensional supergravity
where the C-field is again the off diagonal component of the met-
ric and its gauge transformation a remnant of the diffeomorphisms
on the extended space.

Other work along these lines has been done recently by Hohm,
Hull and Zwiebach [5] for generalized geometry in string theory
and by Hillmann [6] in M-theory for the group E7 and by West [7]
for the relationship with M-theory to the IIA string. The general
set up of considering the role of the duality groups in eleven di-
mensional supergravity has been discussed over a period of years
by amongst others [8–11]. Recent work studying the idea of curva-
tures in generalized geometry has appeared in [12,13] and for the
heterotic string in [14].

2. Generalized metrics and their dynamics

Generalized metrics are metrics on an extended tangent space.
In the initial work of Hitchin corresponding to string theory the
tangent space was extended as follows:

T Λ1(M) → T Λ1(M) ⊕ T Λ∗1(M) (1)

where the addition of the cotangent space T Λ∗1(M) can be viewed
as adding in the space of string windings. In M-theory, the appro-
priate extension should correspond to windings of membranes and
where possible five-branes.1 Thus, since we wish to consider the
duality group corresponding to five dimensions we must extend
the tangent space to include five-brane modes as follows:

T Λ1(M) → T Λ1(M) ⊕ T Λ∗1(M) ⊕ T Λ∗5(M). (2)

The dimension of the extended space is now sixteen dimensional
and so we seek a metric on this sixteen dimensional space. We
know that the theory possesses SO(5,5) duality symmetry so we
are left with the group theoretic problem of finding an object
that acts on the 16 dimensional representation of SO(5,5). Note,
in string theory the T-duality symmetry is O (d,d) and one might
imagine that this is therefore the same; however, in that case the
representation is ten dimensional and the generalized metric acts
on the 10 of SO(5,5). Here in M-theory we act on the 16.

In a future work we will detail the general construction of how
one determines this metric for all the relevant groups. For now we
simply state the result as coming from a group theoretic construc-
tion with the above considerations.

The generalized metric is (upper case Latin indices run from 1
to 16):
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(3)

where gab is the usual metric on the five dimensional space (the
lower case Latin indices run from 1 to 5); Cabc is the three-
form potential of eleven dimensional supergravity, and gmn,kl =
1
2 (gmk gnl − gml gnk) which may be used to raise an antisymmet-
ric pair of indices. We also define:

V ab = 1

6
εabcdeCcde, (4)

with εabcde being the totally antisymmetric tensor and

1 Also for seven dimensions and above six-brane windings are relevant.
Xa = V deCdea. (5)

Note, that the metric (3) is quartic in C3, and contains terms in-
volving the metric and also terms second order in the inverse
metric. It acts on a sixteen dimensional space of which the first
five dimensions are the usual space dimensions.

We now attempt to reconstruct the dynamical theory out of
this generalized metric. Consider the following Lagrangian,

L = g1/2
(

1

16
MMN(
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− 1

2
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+ 3
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(6)

where ∂M = ( ∂
∂xa , ∂

∂ yab
, ∂

∂z ).
L can then be evaluated using the definition of the generalized

metric MMN , described above, in terms of the usual metric and
three-form.

We have extended our space to allow the encoding of the du-
ality group as a geometric symmetry of the system. Obviously we
must restrict the physical dimension of the space back down to
five dimensions. Thus we need to supplement the action with a
physical section condition.

This section condition should be a group covariant. One natural
choice of condition is simply that all fields are independent of the
additional coordinates {yab}, z, i.e. on all fields

∂

∂ yab
= 0,

∂

∂z
= 0. (7)

This is not a covariant condition but it is a sufficient condition.
Restricting the fields in this way should then lead to the action
reproducing the usual action for the metric and C-field.

A challenge is to determine the SO(5,5) section condition in
generality. Note, that for the string this is known; there one simply
uses the metric of SO(5,5) to construct a projector that halves the
dimension of the space. Here we need to go from sixteen to five
dimensions and a simple projection equation of that sort won’t
suffice.

We then evaluate L in terms of gab and Cabc with the section
condition (7). After a long and careful calculation, the result, up to
a total derivative, is

L = g1/2
(

R(γ ) − 1

48
F 2

)
. (8)

Hence we recover the usual Lagrangian for (the bosonic sector of)
supergravity.

The Lagrangian (6) is a Lagrangian only for the directions in
which we allow a duality transformation to act. For the other di-
rections, the kinetic terms maybe written as follows.

T = g1/2
(

− 1

16

(
tr Ṁ−1Ṁ

) − 3

128

(
tr M−1Ṁ

)2
)

. (9)

This Letter shows that the generalized metrics can be used to
formulate the dynamics of the theory. This is an extension of the
Kaluza–Klein theory where the additional dimensions have p-form
coordinates and we have rewritten gravity with a three-form gauge
field in terms of the dynamics of a single generalized metric MI J

acting on the extended space. At this stage, this is simply a rewrit-
ing of supergravity. The suggestive thing about Kaluza–Klein theory
was that once Einstein–Maxwell theory was rewritten as a five
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dimensional theory it inspired the study of higher dimensional
theories where the reduction condition was dropped. This is un-
likely to make sense for M-theory. In the string theory context the
reduction occurs as a particular solution to the section condition
which has its origins in the level matching of the closed string the-
ory. What the physical section constraint is in general for M-theory
is the most important question for this approach.
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