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A b s t r a c t - - A  method, which utillses the Delaun~y criterion, is described by which cmnputatitm,d 
grids consisting of asseml~ies of triangles or t e t r M  can be constructed. An algorithm is briefly 
outlined to construct the t r la~l la t ion and its dual, the Voro~o| diagram. Issues related to how 
to construct boundary conforrnlng grids from such a t r i~p~Mian are ~ ] d r ~  and detal]s are 
presented of how grid points within the domain ~ be generated autcmatlc2dly. The point generation 
algorithm utUlses either the given boundary point distribution, or, for grid adsption, a ~ u n d  
mesh. Computstinn~ aspects of constructing the triangulation in both 2 and 3 dimensions are 
covered. Examples of meshes and flow computations for a range of aerospace geometries are presented. 

1. INTRODUCTION 

For most practical problems in fluid dynamics it is necessary to solve the governing equations 
numerically with the assistance of computers. The formulation of the equations into a form 
for numerical solution generally requires the flow domain to be discretized using a set of points 
which can be connected to form cells or elements. Such techniques as the finite difference or finite 
element method require this underlying space discretization. The computational grid or net of 
points and elements replaces the continuum, and the governing partial differential equations are 
replaced by appropriately constructed discretized forms. The mesh must accurately model the 
geometrical boundaries and it is essential that grid points are available in regions of the domain 
where flow features develop. Further, the relative grid point spacing and point connectivities 
influence the accuracy of a solution. 

With major advances in the numerical solution of the Euler and Reynolds-Averaged Navier- 
Stokes equations, the importance of the grid and its influence on accuracy has grown. Con- 
sequently, in recent times techniques for the automatic generation of computational grids have 
received much attention. 

Many techniques have been explored [1,2]. A rather simple but useful classification is that 
of methods which generate structured meshes, which possess curvilinear coordinate networks of 
points and associated regular connectivities, and methods which generate unstructured meshes 
which, in general, are assemblies of triangles in 2 dimensions and tetrahedra in 3 dimensions. 
Meshes of the latter type require a connectivity matrix to be introduced to explicitly define the 
connectivities between points. This is not required for a structured mesh since the points map 
to a matrix, where it is assumed that neighbors in the matrix are neighbors in the physical 
space in which the mesh is constructed. Traditionally, finite difference methods have employed 
structured curvilinear meshes, whilst finite element methods have utilised unstructured meshes. 
The relative advantages and disadvantages, from the viewpoint of computational fluid dynamics, 
together with details of other methods, have been discussed elsewhere [3]. 
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the Aircraft Research Association, Bedford, U.K. 

129 



130 N.P. WEATHERILL 

One of the major advantages of the unstructured approach is that it is applicable to very 
complex geometrical domains and amenable to mesh adaption to features in the flow. This is 
related to the fact that unstructured meshes do not possess any global property and elements 
and points can be added and deleted locally as the geometrical or flow features dictate. This 
is unlike structured meshes which possess a global eurvilinear coordinate system. The approach 
adopted for structured grids to alleviate this constraint is to subdivide the domain into a set of 
sub-regions. Each sub-region is topologically equivalent to a euboid within which a structured 
mesh can be generated. The sub-regions are defined appropriate to a given geometry and designed 
to give a suitable grid topology. This approach, commonly called multiblock or composite grid 
generation, has proved highly successful [4-6]. 

This paper will describe a method of generating unstructured meshes consisting of an assembly 
of triangles in 2 dimensions and tetrahedra in 3 dimensions. Traditionally, finite element tech- 
niques, applied to a wide range of engineering problems, have utilised unstructured meshes and 
the literature is extensive [7]. In fluid dynamics, the advancing front technique [8] has proved 
to be particularly flexible. In this approach the mesh is generated by advancing in from the 
boundary, by creating points and connections which produce valid non-intersecting elements. 
The position of the points can be created to ensure adequate resolution of the domain and flow 
features. The connection of points is performed according to a set of pre-defined rules. In con- 
trast, in the approach to be discussed here, the point connections, from which the elements are 
derived, uses a classical geometrical construction which has been recorded in the literature for 
over a century. 

Our approach to mesh generation separates the problem into two parts. First, given a set 
of points, can a valid triangulation be defined, and second, how are the positions of the points 
derived? These problems will be addressed before demonstrating the method with examples. 

2. VORONOI  N E I G H B O R H O O D S  

Dirichlet [9], in 1850, first proposed a method whereby a given domain could be systematically 
decomposed into a set of packed convex polygons. Given two points in the plane, Pi and Pj, the 
perpendicular bisector of the line joining the two points subdivides the plane into two regions, 
P~ and ~ .  The region ~ is the space closer to Pi than to Pj. Extending these ideas, it is clear 
that for a given set of points in the plane, the regions ~ are the territories which can be assigned 
to each point, such that Vi represents the space closer to Pi than to any other point in the set. 
This geometrical construction of tiles is known as the Dirichle~ tesseUalion. This tessellation 
of a closed domain results in a set of non-overlapping convex polygons, called Voronoi regions, 
covering the entire domain. This definition readily extends to higher dimensions where, for three 
dimensions, the Voronoi regions are convex polyhedra. 

A more formal definition can be stated. If a set of points is denoted by {Pi}, then the Voronoi 
region {~}  can be defined as 

= {p : Hp- aH < lip- P ll,Vj # i}, 

i.e., the Voronoi region {~} is the set of all points of p that are closer to Pi than to any other 
point. The sum of all points p forms a Voronoi polygon. 

From this definition, it is clear that, in two dimensions, the territorial boundary which forms 
a side of a Voronoi polygon must be midway between the two points which it separates, and is 
thus a segment of the perpendicular bisector of the line joining these two points. If all point pairs 
which have some segment of boundary in common are joined by straight lines, the result is a 
triangulation within the convex hull of the set of points {Pi}. This triangulation is known as the 
Delaunay triangulation [10]. An example of this geometrical construction is given in Figure 1. 

The equivalent is also true for higher dimensions. In three dimensions, the territorial boundary 
which forms a face of a Voronoi polyhedron is equidistant between the two points which it 
separates. If all point pairs which have a common segment in the Voronoi construction are 
connected, then a set of tetrahedra is formed which covers the convex hull of the data points. 

The Delaunay triangulation possesses some interesting properties [11]. One of these is the 
in-circle criterion. 
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A triangulation T(Pi) satisfies the in-circle criterion if and only if no point of the set Pi is 
interior to the circumcircle of any triangle of T(Pi). This criterion provides a mechanism from 
which the Delannay triangulation of a given set of points can be obtained. To illustrate this 
geometrical property, consider the four points P1, P~, Pa, P4, as shown in Figure 2. If points P1, 
P2, Pa form one triangle and points P2, Pa, P4 the other, it is seen that the circumscribing circle 
through the points P1, P2, Pa encloses the fourth point P4. Hence, this connection of points 
does not satisfy the in-circle criterion. However, if points Pz, P2, P4 and points P1, Ps, P4 are 
connected, then it is immediately obvious that the two circumscribing circles satisfy the in-circle 
criterion. An arbitrary triangulation can be transformed into a Delaunay triangulation by the 
repeated application of the in-circle criterion to each edge. 

As a consequence of the in-circle criterion the maximum-minimum criterion follows. If the 
diagonal of any strictly convex quadrilateral is replaced by the opposite one, the minimum of the 
six internal angles will not decrease. Hence, the Delaunay triangulation produces a triangulation 
which is 'optimally equivalent' (Figure 3). 
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Voronoi Diagram 

Delaunay Triangulation 

Figure 1. Voronoi region~ and aa~)ciated De~aunay triangulation. 

P1 P1 

4 

Figure 2. The in-circle criterion for 4 points. 

Figure 3. The diagonal of the convex q-~irilate~'al nmximlsea the minimum of the 
six internal Anslea. 

Clearly, the in-circle criterion and the maximum-minimum criterion are desirable properties 
for the generation of regular unstretched meshes. 
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It is pcasible to completely describe the structure of the Voronoi diagram and Delaunay tri- 
angulation by constructing two lists for each Voronoi vertex; a list of the points which define a 
triangle for a given vertex of the Voronoi construction (so-called forming points), and a list of 
neighboring Voronoi vertices to a given Voronoi vertex. As an example, Table 1 contains the 
vertex structure for the construction shown in Figure 1. 

Table 1. The  da ta  s t ruc ture  for the const ruct ion shown in Figure 1. (* signifies 
vertex no t  defined.) 

Voronoi vertex Forming points  Neighboring Voronoi vertices 

1 2 3 

2 3 4 

3 4 9 

4 7 9 

7 8 9 

4 7 6 

5 6 7 

5 7 8 

2 * * 

1 3 * 

2 4 * 

3 5 6 

4 8 * 

4 7 * 

6 8 * 

5 7 * 

This data structure naturally extends to applications in three dimensions, where each Voronoi 
vertex has four forming points (tetrahedra of the Delaunay triangulation) and four neighboring 
Voronoi vertices. 

This data structure provides the infra-structure to enable the Delaunay triangulation to be 
constructed. As will be shown, it can be used to implement fast search algorithms which are 
required for an efficient implementation of the Delaunay construction. 

3. A L G O R I T H M  TO C O N S T R U C T  THE DELAUNAY T R I A N G U L A T I O N  

The algorithm used to construct the Delaunay triangulation is a sequential process and follows 
the work of Bowyer [12]. Each point is introduced into an existing structure, which is broken and 
then reconnected to form a new Delannay triangulation. 

The algorithm applies to both two and three dimensions. In the presentation here, the terms 
between parentheses indicate the interpretation for three dimensions. 

Step 1. 

Step 2. 
Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 7. 

Define the convex hull within which all points will lie. It is appropriate to specify 
4 points (8 points) together with the associated Voronoi diagram structure. 
Introduce a new point anywhere within the convex hull. 
Determine all vertices of the Voronoi diagram to be deleted. A point which lies 
within the circle (sphere), centred at a vertex of the Voronoi diagram and which 
passes through its three (four) forming points, results in the deletion of that vertex. 
This follows from the 'in-circle' definition of the Voronoi construction. 
Find the forming points of all the deleted Voronoi vertices. These are the contiguous 
points to the new point. 
Determine the neighboring Voronoi vertices to the deleted vertices, which have not 
themselves been deleted. These data provide the necessary information to enable 
valid combinations of the contiguous points to be constructed. 
Determine the forming points of the new Voronoi vertices. The forming points of new 
vertices must include the new point, together with the two (three) points which are 
contiguous to the new point and form an edge (face) of a neighbor triangle (tetrahe- 
dron). (These are the possible combinations obtained from Step 5.) 
Determine the neighboring Voronoi vertices to the new Voronoi vertices. Following 
Step 6, the forming points of all new vertices have been computed. For each new ver- 
tex, perform a search through the forming points of the neighboring vertices, as found 
in Step 5, to identify common pairs of forming points. When a common combination 
occurs, then the two (three) associated vertices are neighbors of the Voronoi diagram. 



Step 8. Reorder the Voronoi diagram data structure, overwriting the entries of the deleted 
vertices. 

Step 9. Repeat Steps 2-8 for the next point. 

The algorithm described here can connect an arbitrary set of points which lie within a convex 
hull. An example, in 2 dimensions, is given in Figure 4. The algorithm described above is the 
basis for connecting points. However, it must be augmented with other routines for use as a mesh 
generator. 

Delaunsy triangulation 133 

Figure 4. Delatmay trlangu]ation of an arbitrary set of points. 

4. APPLICATION TO MESH GENERATION 

The Delannay triangulation, its geometrical properties and how to construct it, have been 
widely known for a considerable time. However, the application of the construction to mesh 
generation in computational fluid dynamics has only recently been explored [13]. 

The previous sections have discussed how to create a triangulation from a given set of points. 
Three basic problems now remain in applying the technique to mesh generation. The Delaunay 
triangulation produces a triangulation of a geometrically convex domain. Triangles are produced 
inside and outside boundaries of the domain and, hence, it is necessary to identify these and delete 
them in the mesh generation procedure. Furthermore, a major requirement of a mesh generation 
procedure is to ensure that the mesh is boundary conforming, i.e., in two dimensions, edges in 
the triangulation form the boundaries and, in three dimensions, triangular faces of the assembly 
of tetrahedra conform to the boundary surface. Unfortunately, given a set of points {J~} and the 
corresponding triangulation {~  }, obtained from the Delaunay triangulation of the points, there 
is no guarantee that the bounding edges will be contained within {T$ }. The triangulation routine 
described in Section 3 does not account for a requirement that certain edges must be recovered to 
ensure a boundary conforming mesh. Hence this problem must be addressed. Also, as mentioned 
in the introduction, the Delaunay criterion provides a mechanism to connect an arbitrary set of 
points to form a valid triangulation. It does not indicate how the points should be generated. 
However, for general flexibility of a mesh generator based upon the Delaunay approach, some 
technique is required to automatically define the points. Each of these problems will now be 
discussed. 

4.1. Boundary Integrity 

As an example of the boundary integrity problem, consider the boundary point distribution 
shown in Figure 5. The spatial distribution of points is such that it is not possible to ensure that 
edge AB is contained within a Delaunay triangulation, since it proves impossible to construct a 
circle through AB and one other point which does not include at least one other point in the 
set {P~}. 
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A similar situation can be arise in three dimensions. Consider the triangular face in Figure 6a 
consisting of the edges [PI, P2], [P2, P3], and [P3, P1]. Although these edges may be contained 
within the three-dimensional triangulation this does not guarantee that the triangular face is 
present, since another tetrahedra could penetrate through the face (Figure 6b). 

A 

Figure 5. Boundary point distribution. Edge AB cannot be recovered in a Delmmay 
triangulation of these points. 

P2 

P3 

(a) Edges of the triangular face. 
Figure 6. 

P2 

P1 

T1 

T3 

T2 

(b) Edges recovered but not the face. 

The boundary connectivity constraint, required of a mesh generator, is not naturally built 
into the Delannay construction. The length scales and point distribution determine the point 
connectivities, irrespective of the boundary surfaces. Hence, it is necessary to ensure that the 
problem is well defined and that the boundary data is appropriately included in any Delaunay 
triangulation algorithm. 

This problem is widely recognieed and several approaches to its solution have been pro- 
posed [14,15]. Here two methods are presented which have proved successful. Both are applicable 
in two and three dimensions. 

4.1.1. Boundary Integrity in Two Dimensions 

Two approaches to ensure that a given set of edges can be recovered within a Delaunay tri- 
angulation will be presented. The first has been described in detail elsewhere [16] and only the 
outline of the method will be given. It is particularly interesting in that it contains aspects of 
the advancing front method and provides a way of combining this technique with the Delaunay 
triangulation. 

The Creation of a Point for Every Boundary Edge 

The basis for this algorithm, which can ensure that arbitrary shapes can be made to conform 
to the Delaunay criterion, can be found in the work of Peraire [17] on the mesh generation 
procedure based on the concept of the advancing front. In this work, an algorithm was proposed 
whereby triangles were formed by connecting edges on the front to new points or existing points. 
The procedure ensures that no triangles can be formed which contain any other point or that 
edges intersect any other edge (except at the given nodes of the triangulation). It is clear 
that if this first criterion is replaced by one which ensures that no other points lie within the 
ci~cumcircle through the three points which form the triangle, then the resulting triangulation 
will be Delaunay-satisfying. 

Weatherill [16] has adopted this basic idea and constructed an algorithm to ensure that given 
boundary edges are recovered in the Delaunay triangulation. An example of the application of 
this algorithm, at various stages, is shown in Figure 7. 



Delaunay triangulation 

/ / \ . _ u , )  ....... 

(a) Boundary of the estuary. 

(b) Edges of the estuary, as obtained after the Delaunay triangulation. 

(c) Point distribution derived from the algorithm. 

(d) Delaunay triangulation. 

(e) Final triangulation after sAdition of points and smoothln~, 

Figure 7. Application of the algorithm to the profile of an estuary (Carmarthen Bay, 
Seven Estuary, U.K,). 
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Edge Checking 

The second method involves an a posteriori approach, in that the given boundary edges are 
checked after the Delaunay triangulation has been completed for a given set of points. 

The following algorithm outlines the approach. 

START 

STEP 1 

STEP 2 

STEP 3 

STEP 4 

STEP S 
STEP 6 

Input  boundary poin ts  {P~], i =  1,1P and boundary poin t  

c o n n e c t l v i t i e s  which def ine  the  edges {Ej}, j = 1,3P. 

Input field points {PPk}, k = I, FP. 

Pr r0  umA ,Y nI   .zn0  or {P,} {Pek} to  

obta in  t r i a n g u l a t i o n  {Tra), m -- I ,NT .  

(i) Are boundary edges {Ej} contained in {Tm}. 

(ii) If yes - go to STEP 5. 

(iii) If no - add new point at told-point of all missing edges. 

Ze. point .et {PP,}, I = I,MPz~d new derived edgee{EM.}. 

PERFO~ DELLUIAY TRIJdlQULLTIOi OF {PP1} 

add {PPI} to {el} and add {EM.} to {Ej} 

Return t o  STEP 4(I). 

Identify all triangles outside domain of interest {TOm}, rn = 1, NP 

Delete triangles {TOm), m = I, NP. 

END 

This procedure is different from the approached described in Method I, in that it performs an 
a posterior/check on whether the boundary edges are recovered in the Delann~ triangulation. 
If an edge is missing, an additional point is inserted which acts to 'block' the breakthrough. This 
process has been called 'stitching' [18]. An example of this procedure is shown in Figure 8. 

Comparing the two methods described, the second method is the simplest to implement and, in 
general, proves to be more computationslly efficient in that a point is created only when required, 
rather than in the first approach where a point is assigned to every edge of the boundary. However, 
both techniques have proved successful for a variety of configurations. 

4.1.~. Boundary Integrity in Three Dimensions 

The two methods to ensure boundary integrity in two dimensions can be extended into three 
dimensions. 

The Creation of a Point for Every Boundary Face 

This approach is the three-dimensional extension of the algorithm described for two dimensions. 
A point is assigned to every boundary face ensuring that the sphere through the resulting four 
points does not include any other points. Details of this algorithm, together with examples, are 
given elsewhere [3]. Mthough the method works well, it is more computationally expensive than 
the a posteriori approach of the following method. 

Edge and Face Checking 

The previous method used an a priori approach, in which points were created before the 
triangulation process, to ensure that the resulting trian~laticm was boundary conforming. Of 
course, such an approach does not take into account the fact that many surface faces would 
naturally be recovered in the triangulation and, hence, the effort expended in creating a point 



efine the boundary. The edges shown must be recovered 

Ddsmmy triangulation 

I: 

(b) The Delsunay t r ianb~t ion of the ori~nat 
set of points. Note, also shown are the 4 points 
which define the convex hull. AH the original 
edges are not recovered in the triangulation. 

13T 

(c) One point is added at the told-point of one 
of the required edges which is missing. This 
then prbduces a triangulation from which one of 
the required edges can be recovered. 

(d) Anoth~ point is added. This recovers the 
oth¢~ required edge. 

(e) All triangles outside the domain are deleted. 
Note the additional boundary points crested to 
e~sure boundary integrity. 

Figure S. An example showing the process of ensuring boundary integrity using the 
addition of boundary points. 

for such faces is unnecessary.  Alternatively,  an a p o a t e r i o r / a p p r o a c h  can be adop ted  whereby 
the  t r iangula t ion  is per formed and then tested to  determine the  faces which are missing. Only  
at  this s tage are new points  added to  ensure b o u n d a r y  integrity. Such an a poster /or i  approach  
is now described. 
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The  global procedure is outlined below. 

START 

STEP 1 

STEP 2 

STEP S 

STEP 4 

STEP 5 

STEP 6 

STEP 7 

STEP 8 

I npu t  boundary p o i n t s  {Pi},  i : 1 , I P  and boundary  p o i n t  

connectivities {Cj}, j = I, JP. 

Input field points {PPt}, k = I, FP. 

Derive boundary  edges {Ea},! -- 1,JE f rom boundary 

connectivities {Cj }. 
PERFORM DELAUIAY TRIAIGULATIOl OF (P,} and {PPt} to 

obtain triangulation {Tin} , m -- I,NT. 

(i) Are boundary edges {El} contained in {Tin} 

(ii) If yes - go to STEP 6.  

(iii) If no - add new point at mid-point of all missing edges. 

h ,  p o i n t  s e t  { P P , } ,  = 1, MP and new d e r i v e d  edges {EMo}. 

Pz~oRM Dz~AV TRIU~U~TIOm OF {PPj}. 

Add {PP,} to {P,} and add {EM0} to {E,}. 

Return t o  STEP 5(i). 

(i) Are boundary faces {Cj} contained in {Tin} 

(ii) If yes - go to STEP 7. 

(iii) If no - add new point at centroid of all missing bound~ury faces. 

hw point set {PSr}, r= I,SP and new dariw.i faces {SM.}. 

PERFORM DELAI~AY TRIAIGULATI01 OF {PSr}. 

Add {PSr} t o  {P,} and add {SM,} t o  {C#}. 

Return to STEP 5(i). 

I d e n t i f y  a l l  t e t r a h e d r a  o u t s i d e  domain of  i n t e r e s t  {TO,}, t = 1 ,NP 

D e l e t e  t e t r a h e d r a  {TOt},t = 1,NP. 

It is clear that the global procedure is iterative. Firstly, the boundary and field points are 
connected using the Delaunay triangulation. This is followed by a phase when the edges in the 
surface triangulation are recovered. Again, in general, this is also an iterative process whereby, 
for each edge which is missing, a new point is created which lies at the mid-point of the edge. 
All such points are then introduced to the Delaunay algorithm and the edges rechecked. This 
continues until all edges are recovered. This is a necessary step to ensure boundary conformity, 
but it is not sufficient since it is possible to have tetrahedra which penetrate the interior of a 
triangular face (see Figure 6). Hence, the next step is to check if the faces have been recovered. 
Due to the introduction of the additional edge points, some of the original triangles will now be 
formed by the sum of other smaller triangles. If a boundary triangle cannot be recovered, then a 
new point is added at the centroid of the surface region which is missing. These new points are 
then connected using the Delaunay triangulation, after which the edges are recovered followed 
by the surface faces. 

As an example of this procedure, the algorithm has been applied to a double ellipsoid which 
has been considered extensively in the recent Hermes project. The surface mesh on the geonmtry 
and flow boundaries was obtained using a parametric representation of the surface geometry and 
use of the advancing front grid generator [19]. The field points were also obtained by the 'front' 
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Figure 9. Surface triangulation of a double ellipsoid. 

technique. A summary of the Delannay triangulation and the boundary recovery history for this 
configuration is given in Table 2. A section of the surface triangulation is shown in Figure 9. 

The general procedure for the Delaunay triangulation with boundary constraints indicates 
that all points should be added before the surface edge and face checking begins. A possible 
modification to this is to add the surface points, recover the surface faces, protect the tetrahedra 
outside the domain which contain the triangles which are on the surface, and then add the field 
points. Any field point which attempts to delete one of the protected tetrahedra is rejected. This 
procedure was implemented on this double ellipsoid geometry. However, it was found that the 
total number of rejected field points was 725, which is unacceptably high. 

4.2. Rejection of Unwanted Triangles 

The procedure outhned results in a triangulation covering the convex hull. It is necessary to 
delete all triangles which fall outside the domain of interest. This is achieved easily, since the 
boundaries between inside and outside of the domain are known and, following the procedures 
outlined in the Section 4.1, have been recovered in the Delaunay triangulation. 

In two dimensions, a triangle is identified which lies interior to the domain. Using the data 
structure of the Voronoi diagram, a tree search is performed in which a neighbor triangle is 
visited if the common edge is not a boundary edge. Each triangle visited can be flagged as being 
inside the domain. When no triangle can be identified which has not already been visited, then all 
triangles not flagged are outside of the domain of interest and can be deleted. A similar procedure 
also applies in 3D, where one interior tetrahedron is found and a tree search is performed in which 
neighbor tetrahedra are visited provided this does not involve passing through a boundary face. 
Other techniques can be used which rely upon directionality of the boundary edges and faces. 
However, the procedure outlined proves to be very robust. 
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Table 2. Triangulation history for the double ellipsoid. 

STATISTICAL SUMMARY FOR THE DOUBLE ELLIPSOID 

INPUT DATA 

No. of surface points: 3309 

No. of field points:  2 2 0 3 2  

No. of surface faces: 6614 

No. of surface edges: 9921 

No. of te t rahedra  obtained: 1 3 9 4 3 6  

After t r i angu~t ion  of all points: Edge ~ o v e r y  history 

I terat ion Po in~  Tetrahedra  Surface Edges MissingF_~lges 

1 2 2 0 4 0  1 3 9 4 3 6  9 9 6 9  48  

2 2 2 0 8 8  1 3 9 7 2 8  1 0 0 2 1  52 

3 2 2 1 4 0  1 4 0 0 7 4  1 0 0 6 8  44  

4 2 2 1 8 4  1 4 0 3 4 4  1 0 0 9 3  28  

5 2 2 2 1 2  1 4 0 5 1 7  1 0 1 0 9  16 

6 2 2 2 2 8  1 4 0 6 1 4  1 0 1 1 6  7 

7 2 2 2 3 5  1 4 0 6 4 2  1 0 1 2 1  5 

8 2 2 2 4 0  1 4 0 6 6 9  1 0 1 2 4  3 

9 2 2 2 4 3  1 4 0 6 8 8  1 0 1 2 5  1 

10 2 2 2 4 4  1 4 0 6 8 9  1 0 1 2 6  1 

11 2 2 2 4 5  1 4 0 6 9 6  1 0 1 2 6  0 

T o ~ m i e s i n g f a c e s a d d :  O points 

AH surface facesrecovered 

No. of te t rahedra  outside domain: 

No. of tetrahedr& inside domain: 

SUMMARY 

No. of surface points added: 

No. of surface edges added: 

No. of addit ional  surfaces faces: 

No. of surfaces points: 

No. of field points:  

No. of surfaces faces: 

No. of surfaces edges: 

No. of te trahedra:  

~ 8 3  

1 3 1 2 1 3  

205 

205 

410 

3514 

22032 

7024 

10126 

1 3 1 2 1 3  

.~.3. Poin~ Generation 

4.3.1. Points from an Ezgernal Source 

The points for connection by the Delaunay algorithm could be derived by a method external to 
the triangulation routine. Given a particular geometry, it may prove useful to adopt this approach. 
To illustrate this, consider a high lift multielement aerofoil configuration. It is relatively easy to 
generate a high quality mesh around each individual aerofoil component. The difficulty arises in 
connecting the component meshes. However, the Delaunay approach provides a suitable method 
of connecting points. Hence, a suitable solution method would be to generate component meshes, 
combine all the points and derive a connection of all these points. The triangulation process can 
be used to detect points which fall within an aerofoil component. This procedure results in a 
valid mesh as shown in Figure 10a. This approach was applied in both 2 and 3 dimensions in the 
early stages of our work [13,20,21]. 
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(a) Triangulation obtained using points from a conforma] mapping grid generator 
applied to each component. 

(b) Triangulation using automatic point generation. 

Figure 10. Delaunay triangulation for a two element aerofiol configuration. 

This approach can lead to high quality meshes. However, it is clearly limited in its flexibility 
for arbitrary shapes, and hence it is necessary to devise a technique which can derive points for 
any shaped domain. 

4.3.2. Automatic Point Generation 

The computational domain is defined by the boundary points. It will be assumed that this 
point distribution reflects appropriate geometrical features, such as variation in curvature and 
gradient. Ideally, any method for automatic point generation should ensure that the boundary 
point distribution is extended into the domain in a smooth manner. A procedure, which has 
proved to be most successful in creating a smooth point distribution consistent with boundary 
point spacing and which naturally extends to 3D, is as follows. 

CN~A 24:5/6-J 
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(1) Compute the point distribution function for each boundary point zi, i.e., for point i, 

d p ,  = - = , ) 2  + _ xi_1)2 
2 

where it is assumed that points i + 1 and i -  1 are contiguous to i .  
(2) Generate the Delaunay triangulation of the boundary points. 
(3) For all triangles within the domain: 

(a) Define a prospective point to be at the centroid of the triangle. 
(b) Derive the point distribution, dp, for the prospective point by interpolating the point 

distribution function from the nodes of the triangle. 
(c) Compute the distances din, m = 1,2,3, from the prospective node to each of the 

nodes of the triangle. 
If dm< ~ dpm, then reject the point. Return to the beginning of Step (3). 
If d m >  a dpm, then insert the point using the Delaunay triangulation algorithm. 

(d) Assign the interpolated value of the point distribution function to the new node. 
(e) Next triangle. 

(4) Smooth the mesh. 

The coefficient a is effectively the parameter which controls the grid point density. 
An application of this algorithm, at various stages of point generation, is shown in Figure 11. As 

can be seen, an appropriate grid point distribution is obtained. The automatic point placement 
applied to the 2 component aerofoil produces a mesh of the kind shown in Figure 10h. 

The procedure outlined above is appropriate when the only known quantity is the boundary 
point distribution. However, in many problems information is known about features in the 
domain, for example, if a flow simulation has been performed on a coarse mesh, the position 
of flow features which require further point resolution may be known. In such cases, it would 
be advantageous if the above simple algorithm could be amended to include such information. 
It proves possible to do this by using the concept of a 'background mesh.' This idea has been 
explored and fully exploited in other unstructured mesh methods, such as in the work of Per- 
aire et al. [8]. Here, its application to the Delaunay approach will be outlined. 

In the algorithm just presented, it is clear that the point spacing is controlled by Step (3b). 
The boundary point distribution is interpolated linearly throughout the field. If information is 
available from a flow calculation which indicates that refinement is required in a particular region 
of the field, it is necessary to convey that information to Step (3b). The mechanics of this are 
achieved by the use of the background mesh. 

As a simple test case, take the rectangular domain shown in Figure 12a, in which mesh point 
clustering is required along the diagonal BD. An underlying mesh covering the domain is created, 
which at each node has a point distribution function specified. On creation of a prospective new 
node, the point distribution function for that node is obtained by interpolation of the distribution 
function from the background mesh. For the case in Figure 12, two triangles are sufficient 
to generate a mesh with the required point spacing. The distribution function at points B 
and D is defined to be small compared with those defined at points A and C. In this case, if 
a prospective point is generated close to the line BD, then the resulting interpolated value of 
the point distribution function will be small, resulting in a concentration of points along the 
diagonal BD. Hence, to implement the background mesh procedure, Step (3b) in the above 
algorithm is replaced by an interpolation of the point distribution function from the background 
mesh. The final result of the method for the rectangle is shown in Figure 12c. 

In practice, the background mesh will be the previous mesh used for a flow simulation in which 
the features of the flow have been converted, by an appropriate transformation, to spacings in 
the physical space. The ideas expressed here can be also applied in three dimensions. 

To show the flexibility of the approach, Figure 13a shows a background mesh in which the 
nodes which describe the letters 'CFD' have been assigned a small mesh point spacing. The 
resulting unstructured mesh derived using the automatic point creating algorithm is shown in 
Figure 13b. 
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Figure 11. Automatic point generation. Shown is a sequence of grids during the 
point generation process. 

D C 

A B 

(a) Rectax~alax domain ABCD. 

D dp(d)=0.1 C dp(c)=l.0 

A dp(a)ffil.0 B dp(b)=0.1 

(b) Background mesh consisting of 
two triangles. Point distribution 
function is specified at the nodes. 

Figm~ 12. Generation of an adapted mesh ,mlng a bar.kground mesh. 

Whichever method is used to generate the points, it is useful to smooth the mesh using a 
Laplacian filter. Using the da ta  structure of the completed Voronoi diagram, it is possible to 
determine the points which define the polygon which encloses each point. Then each point is 
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(a) 

(b) 

Figure 13. An example of the application of the background mesh. 

smoothed N times according to 

~-,  Xo -- Xi  
X~+l = X ~ ' t - w  ~-~ M ' 

i = l  

where X~ +1 is the new position of the point X~, M is the number of neighboring points with 
coordinates Xi, and w the relaxation parameter. The number of iterations should be within the 
range 20 to 50 and the relaxation parameter 0.05 to 0.25. 

5. ASPECTS OF THE IMPLEMENTATION OF THE 
DELAUNAY TRIANGULATION 

5.1. The Convex Hull of Points 

The convex hull can be defined in a number of ways. It is only essential to define the hull such 
that it contains all the points which ate to be triangulated. The way adopted here is to define 
4 points (8 points, in 3 dimensionl) approximating a quadrilateral (cuboid). This is subdivided 
into 2 triangles (5 tetrahedra) which results in 6 Voronoi vertices (17 Voronoi vertices), of which 
4 (12) ate null vertices since they lie outside the convex hull. 
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5.2. Point Insertion and Floating Point Acc,racy 

Apart from computing the radius of a circle (sphere), Step 3 of the Delaunay algorithm involves 
one of the few floating point operations in the algorithm to construct the Delaunay triangulation. 
In this step, it is necessary to find all the circles (spheres) within which the new point is within. 
Since the coordinates of the centre of every circle (sphere) in the Voronoi construction are stored 
in memory this would appear to be a simple computation. A point positioned at (zp, yp) is within 
a circle of radius R~, centred at the Voronoi vertex P~ with coordinates (zi, yi), if 

z)p = - + - y,)2] < (5.1) 

A similar formula applies in three dimensions. Normally, such a computation can be performed 
without problems, but if IDp -R~I  is the order of the round-off error of the computer, it is likely 
that an error can arise. Such an error may lead to an incorrect rejection or acceptance of a point 
without making a compensatory error in the immediate environment. This leads to a structural 
error in the Voronoi data, such that, on the introduction of another point in the vicinity, the hole 
created is disjoint. Such an error can be tested for in the Delaunay construction. However, once 
an error of this type has been committed it is difficult to correct and the triangulation process 
breaks down. A number of authors have analysed this problem and Baker [15] has determined a 
condition which must be satisfied on the magnitude of the round off error in the computer for a 
given typical length scale associated with the data points. In practice, it is worthwhile to perform 
the floating point operations in double precision. 

It is a very simple procedure to test this type of error within a Delaunay triangulation algorithm. 
If the test (5.1) is implemented as 

IDp - R?I < Err, 

where Err is a variable defined in the computer program and represents the tolerance of the 
machine accuracy, then setting Err too large implies that this test is not suf~ciently well defined 
and inconsistencies will frequently arise. Reducing Err to an appropriate value, consistent with 
the machine accuracy in double precision will largely alleviate this problem. From experience on 
a 32-bit word machine, for general point distributions, no problems have been encountered. 

5.3. Degeneracies 

Degeneracies arise in the Delaunay triangulation. One of the most common forms is when 
points are distributed in a regular manner. For example, in two dimensions, a degeneracy in 
the triangulation occurs if four points lie on a circle. In this case, the two Voronoi vertices are 
coincident and the triangulation is not unique, since the connections of the interior diagonal could 
be either way (Figure 14). 

(a) Voronoi vertices V1 and V2 distinct. 

I 

I I 
(b) Voronoi vertices V1 and Va coincident. 
Triangulation not unique. 

Figure 14. Degeneracy and non-uniqueness of Delaunay triangulation for a res~ular 
distribution of points. 

A similar degeneracy occurs in higher dimensions. In three dimensions this occurs ff five or 
more points are on the surface of a sphere. 

This degeneracy does not require any special treatment within the algorithm. The implication 
of the degeneracy is, however, more related to the floating point accuracy which has previously 
been discussed. Clearly, for a degenerate case, ff a point is added, it is essential that the decision 
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as to whether the point is inside or outside the circle (sphere) must be consistent for the two or 
more coincident Voronoi vertices. 

One other form of numerical degeneracy which can occur is worthy of note. In the triangulation 
process, it is necessary to determine the centre of the circle (sphere) which passes through the 
three (four) points which form the associated triangle (tetrahedra). This calculation can be 
performed in a number of ways, but these usually involve the solution of two (three) linear 
equations for the unknown coordinates of the centre of the circle (sphere). If the three (four) 
points of a triangle (tetrahedra) are colinear, then this system of equations is singular and the 
effective centre of the circle (sphere) is at infinity. (If Cramer's rule were to be used to solve the 
two (three) equations, the singular nature of the system would be immediately obvious because 
the determinant of the coefficient matrix would be computed to be zero.) If this is the case, it has 
been found expedient to temporarily reject the point and save it for insertion at a later stage of 
the triangulation. Such degeneracies arise because of the particular spatial distribution of points, 
the order of insertion and the accuracy of the computer. However, the save and retry method 
works well. 

5.4. Search Routines 

The efficiency of the Delannay algorithm described is dependent upon the use of fast search 
algorithms. In particular, routines which can efficiently perform the following operations. 

(a) Within the boundary integrity procedure for three dimensions: 
(i) Derive boundary edges from the boundary surface triangulation. 
(ii) Check that boundary edges and faces are contained in the Delannay triangulation. 

(b) Within the Delaunay algorithm: 
(i) Determine the circles (spheres) within which an added point lies. 

The key aspect of ensuring that such operations can be performed efficiently is the use of the 
inherent data structure, which has already been described, of the Delaunay construction. Of 
particular value is the information relating to the neighboring vertices of each Voronoi vertex. 
Furthermore, the points which define a triangle (tetrahedra) associated with a Voronoi vertex are 
also known. Hence, using this data structure it is possible to 'walk' through the Voronoi construc- 
tion identifying for example, neighboring nodes and triangles (tetrahedra), etc. Figure 15 shows 
a Voronoi diagram for a two-dimensional construction and the equivalent local data structure. 

The speed at which the boundary edges and surface faces are checked can be increased by 
firstly defining a vector which, for each node, assigns a Voronoi vertex of which one of its forming 
points is the node in question. In this way, when an edge is checked no search is required to find 
the region in the domain which contains the point and subsequent edges. Having once found a 
vertex, it is then necessary to perform a local tree search using the data structure inherent to the 
Delaunay construction, and illustrated in Figure 15. 

The efficiency with which the Voronoi vertices to be deleted can be found, on the  introduction 
of a new point, is largely dependent upon the time taken to find any vertex to be deleted. This 
time can be minimised if the points are firstly ordered such that contiguous points in the list 
are neighbors in physical space. If this is the case, then it is appropriate, when finding a circle 
(sphere) within which a point lies, to test the circles (spheres) created with the addition of the 
previous point. Once a circle (sphere), together with its Voronoi vertex has been found, then it 
is possible to utilise the tree data structure of the Voronoi construction. 

On finding a vertex to be deleted, a list is created of its neighboring vertices. These are 
then tested and, if one is to be deleted, then the neighboring vertices of that vertex are added 
to the list of vertices to be checked. If the point is outside the circle (sphere) associated with a 
vertex, then its neighbors are not added to the list. When the list is empty, then all relevant circles 
(spheres) have been checked. The faces of the empty region created by the deletion of all triangles 
(tetrahedra) associated with the deleted vertices form the empty polygon (polyhedron) which 
contains the new point. The new Voronoi structure and Delaunay triangulation is then formed 
by connecting the new point to all the points on the edge (surface) of the polygon (polyhedron). 
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VORONOI DATA STRUCTURE 

Figure 15. Voronoi vertices and data structure illustrating a local 'walk' around 
vertex 1. 
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(a) (b) (~) 

(e) , 

(s) (h) O) 

Figure 16. Mach 3 flow around a cylinder. Shown is the initial grld and flow solution 
together with subsequent grids and flow solutions using mesh _~_~tion. 
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No. of points=ll20 

No. of elements=2064 

No. of points=1715 
No. of clcmcnts=3165 

No. of points=2781 

No. of clcm~nts=5130 

Figure 17. Mach 2 flow over a wedge. Shown is the initial grid and flow aolutlon 
together with subsequent grids and flow solutions using meah adaptloa. 

6. APPLICATIONS 

To illustrate the use of these ideas, some examples of the use of unstructured grids in com- 
puta t ional  fluid dynamics are given for realistic problems. In every case, the flowfield has been 
simulated using a multistage t ime stepping algorithm for the solution of the Euler equations [21]. 

Figures 16 and 17 show a sequence of grids and flow solutions for the Mach 3 flow around 
a cylinder, and the Mach 2 flow over a wedge using the Euler equations. In these examples,  a 
combination of the use of a background mesh and local point enrichment has been used together 
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with an adapt iv i ty  criterion based upon pressure to adapt  the mesh to obtain a be t ter  resolution 
of the flowfield. 

Finally, Figure 18 shows the Mach number  contours on the surface of the double ellipsoid 
(Figure 9). This  is an example which illustrates the use of the ideas described to three-dimensional 
flow problems. 

A 
Figure 18. Mach number contours for the hypersonic flow around a double ellipsoid. 

7. C O N C L U S I O N S  

A method of constructing unstructured meshes from an arbi t rary set of points in bo th  two and 
three dimensions has been described. The  geometrical criterion on which the method  is based 
is due to Delaunay. To apply this approach to construct unstructured meshes which conform 
to a given boundary,  it is necessary to implement algorithms which ensure boundary  integrity 
of  the mesh. Two methods  have been discussed, each of which is applicable in two and three 
dimensions. Point generation strategies have also been discussed. These methods  can be used 
to generate points consistent with local boundary point spacing, or to be consistent with a 
background mesh which could have been derived from a flow simulation. 
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