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SUMMARY

Mycobacterium tuberculosis mycobacterial mem-
brane protein large (MmpL) proteins are important
in substrate transport across the inner membrane.
Here, we show that MmpL proteins are classified
into two phylogenetic clusters, where MmpL cluster
II contains three soluble domains (D1, D2, and D3)
and has two full-length members, MmpL3 and
MmpL11. Significantly, MmpL3 is currently the
most druggable M. tuberculosis target. We have
solved the 2.4-Å MmpL11-D2 crystal structure,
revealing structural homology to periplasmic porter
subdomains of RND (multidrug) transporters. The
resulting predicted cluster II MmpLmembrane topol-
ogy has D1 and D2 residing, and possibly interacting,
within the periplasm. Crosslinking and biolayer
interferometry experiments confirm that cluster II
D1 and D2 bind with weak affinities, and guided D1-
D2 heterodimeric model assemblies. The predicted
full-length MmpL3 and MmpL11 structural models
reveal key substrate binding and transport residues,
and may serve as templates to set the stage for
in silico anti-tuberculosis drug development.

INTRODUCTION

Mycobacterium tuberculosis (Mtb) is the pathogenic microbe

responsible for the communicable disease tuberculosis (TB),

which has burdened civilization throughout history. TB continues

to be a global health problem, with an estimated 9 million cases

and 1.4 million deaths reported in 2013 (World Health Organiza-

tion, 2014). The confluence of a progressively ineffective drug

treatment regimen, emergent drug-resistant strains, and AIDS/

HIV synergism dictate the need to develop new treatment strate-

gies to combat TB. Consequently, a better understanding of the

complex biology of Mtb is required.

InMtb, theMmpL (mycobacterialmembraneprotein large) pro-

tein family consists of 13 actinobacteria-specific innermembrane

proteins of approximately 1,000 residues. Significantly, in the last

several years MmpL3 has become the most successful anti-TB
1098 Chemistry & Biology 22, 1098–1107, August 20, 2015 ª2015 El
drug target. High-throughput whole-cell screens identified

several potent anti-mycobacterial agents that target MmpL3,

including BM212 and SQ109 (Grzegorzewicz et al., 2012; La

Rosa et al., 2012; Owens et al., 2013a; Tahlan et al., 2012). More-

over, mutational analyses revealed that MmpL3 is essential for

Mtb viability (Domenech et al., 2005; Tullius et al., 2011). In addi-

tion, several MmpL proteins are necessary for Mtb virulence in

mouse infections.MmpL4 andMmpL7 knockoutmutants appear

to be avirulent and have severely attenuated growth within mice

lungs, and mice infected with MmpL8 and MmpL11 knockout

mutants survive for considerably longer than with wild-type Mtb

infection (Domenech et al., 2005). Furthermore, a separate study

suggests that MmpL5 andMmpL10 are required for Mtb survival

in mouse lungs (Lamichhane et al., 2005).

MmpL proteins have been implicated in mediating substrate

transport across the mycobacterial membrane. MmpL3 and

MmpL11 exhibit dual roles in the export of trehalose monomyco-

late (TMM) forMmpL3 (Grzegorzewicz et al., 2012; La Rosa et al.,

2012; Varela et al., 2012), and monomeromycolyl diacylglycerol

(MMDAG) and mycolate ester wax for MmpL11 (Pacheco et al.,

2013), andboth have also been implicated in heme import (Tullius

et al., 2011). MmpL4 and MmpL5 have redundant functions in

siderophore export, and a double MmpL4/5 mutant cannot be

constructed (Wells et al., 2013), suggesting that they are essential

for siderophore-mediated iron acquisition. MmpL7 and MmpL8

have been shown to transport polyketide phthiocerol dimycocer-

osate and sulfolipid-1, respectively (Converse et al., 2003; Cox

et al., 1999; Jain andCox, 2005; Seeliger et al., 2012). In addition,

MmpL5 andMmpL7have been implicated in drug efflux (Lamich-

hane et al., 2005; Milano et al., 2009). These data present

convincing evidence of the importance ofMmpLproteins; hence,

their further characterization contributes to an enhanced under-

standing of Mtb biology and will open up new avenues for anti-

TB therapeutics.

It has been suggested that MmpL proteins belong to the resis-

tance-nodulation-cell division (RND) permease superfamily of

transmembrane transporters (Domenech et al., 2005). Inner

membrane RND transporters associate with outer membrane

factors, and this assembly is stabilized byperiplasmicmembrane

fusion proteins to forma three-component efflux pump (reviewed

in Ruggerone et al., 2013). To date, the five available RND trans-

porter structures (i.e., AcrB, CusA,MexB, ZneA, andMtrD) reveal

homotrimerswherein eachmonomer harbors 12 transmembrane

helices (TM) with N-terminal andC-terminal periplasmic domains
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Figure 1. Canonical RND Transporter Struc-

ture and Topology

(A) Cartoon representation of monomeric CusA

(PDB: 4DNT) showing the docking, porter, and

transmembrane subdomains. The N- and C-ter-

minal docking (DN and DC) and porter (PN1, PN2,

PC1, and PC2) subdomains are colored shades of

purple and green, respectively, while the trans-

membrane subdomain is colored wheat, except

for the central transmembrane helices, TM4 and

TM10, which are colored red.

(B) RND transporter membrane topology with two

periplasmic domains, each containing two porter

subdomains and one docking subdomain. An

additional extracytosplasmic a helix between TM6

and TM7 is located near the cytoplasmic mem-

brane surface and runs almost parallel to it. Sub-

domain color designation is as in (A).
inserted between TM1 and TM2 and between TM7 and TM8,

respectively (Figures 1A and 1B) (Long et al., 2010; Murakami

et al., 2002; Nakashima et al., 2013; Pak et al., 2013; Sennhauser

et al., 2009; Su et al., 2012). Each periplasmic domain comprises

two structurally similar porter subdomains (N-terminal porter

subdomains PN1 and PN2, and C-terminal porter subdomains

PC1 and PC2, each with a babbab motif) and a docking subdo-

main (DN or DC; Figures 1A and 1B) (reviewed in Ruggerone

et al., 2013). In all five structures there is also an additional

a helix between TM6 and TM7 that runs almost parallel to the

cytoplasmic membrane surface (Figure 1B). Furthermore, RND

transporters are categorized into heavy metal efflux (HME) and

hydrophilic andamphiphilic efflux (HAE) subfamilies, transporting

a wide array of substrates including metals, antibiotics, deter-

gents, and dyes (reviewed in Delmar et al., 2014). Driven by pro-

ton-motive force (PMF), substrate shuttling occurs via a rotating

mechanism whereby each monomer within the RND transporter

homotrimer adopts a unique conformation for substrate access,

binding, and release (reviewed in Ruggerone et al., 2013).

As members of the MmpL family are large, structural and

biochemical analyses of the full-length proteins has evaded the

TB community thus far; however, the divide-and-conquer strat-

egymay prove more tractable. To this end, we present the struc-

tural characterization of a soluble domain, D2, from an MmpL

cluster II protein (depicted in Figure 3B). The 2.4-Å X-ray crystal

structure of MmpL11-D2 domain reveals structural homology to

the porter subdomains of RND transporters. This structure has

allowed membrane topology predictions for all members of the

MmpL family. Moreover, these predictions alluded to potential

interactions between periplasmic domains, D1 and D2, from

both MmpL11 and its closest homolog, MmpL3, and interdo-

main interactions were confirmed by both affinity and cross-

linking experiments. Herein, we describe the results of these

studies, and discuss their implications with respect to MmpL3

and MmpL11 substrate binding and transport.

RESULTS

MmpL11-D2 Shares Structural Homology with RND
Transporter Porter Subdomains
Crystals ofMmpL11-D2were obtained using a construct that en-

compassed residues 390–529.MmpL11-D2 crystallized in space
Chemistry & Biology 22, 1098–
groupC2221 with onemolecule in the asymmetric unit. Themass

of a single crystal wasmeasured byMALDI-TOF to be 9556.3 Da,

which corresponds to the final structural model where MmpL11-

D2 is truncated at its N and C termini prior to crystallization.

The 2.4-Å MmpL11-D2 structure reveals two anti-parallel a he-

lices (a2 and a3) sitting atop a four-stranded anti-parallel b sheet,

forming a babbab fold enclosing a hydrophobic core of residues

(Figure 2A). Notably, the three-residue b2 is interrupted with a

bulge introduced by a pair of proline residues (i.e., Pro463 and

Pro464), while the loop connecting b2 and b3 is stabilized by

five hydrogen bonds (H-bonds) with a2 and b3 (Figure 2B).

Furthermore, an extended loop region between b1 and a2 is sta-

bilized by p-p stacking between Phe431 and His441 (Figures 2B

and S1). Additionally there are numerous H-bonds and an ion

pair between Arg430 and Asp509 stabilizing the overall globular

structure (Figure S1). The observed ligands in the structure are

nine iodide ions from KI and a single sulfate ion from the crystal-

lization condition along with 16 water molecules (Table 1).

A structural homology search for MmpL11-D2 using DALI

(Holm and Rosenstrom, 2010) demonstrates that the closest

structural homologs are porter subdomains of RND transporters

(Table S1). Thus, MmpL11-D2 was structurally aligned with AcrB

(PDB: 3W9H), CusA (PDB: 4DNT), MexB (PDB: 2V50), ZneA

(PDB: 4K0E), and MtrD (PDB: 4MT1) (Bolla et al., 2014; Naka-

shima et al., 2013; Pak et al., 2013; Sennhauser et al., 2009; Su

et al., 2012) using RaptorX (Wang et al., 2013). Of the approxi-

mately 1,000 residues of the RND transporters, MmpL11-D2

aligns to the conserved porter subdomains, with a root-mean-

square deviation (RMSD) range of 2.0–2.9 Å over 69–74 Ca

atoms. Notably, the RMSD was consistently lowest (2.0–2.3 Å)

betweenMmpL11-D2 and porter subdomain PC1.While the sec-

ondary structural elements between MmpL11-D2 and PC1 sub-

domains arewell aligned, the b1-a2 loop and the loop connecting

the three-residue b2 strand to b3 are most divergent (Figure 2B).

The MmpL11-D2 b1-a2 loop tilts toward the b sheet, causing the

extended b2-b3 loop to be displaced compared with that of the

RND transporter, which may be a result of its interrupted b2.

MmpL3 and MmpL11 D1 and D2 Have Identical
Topologies
Utilizing ClustalW (Larkin et al., 2007), the MmpL protein family

phylogenetic tree reveals two distinct clusters: the majority of
1107, August 20, 2015 ª2015 Elsevier Ltd All rights reserved 1099



Figure 2. MmpL3/11 D1 and D2 Domains Share Structural Homology to RND Transporter Porter Subdomains

(A) Cartoon representation of MmpL11-D2 structure with missing residues 479–489 depicted as dashed lines. a Helices, b strands, and loops are colored cyan,

magenta, and wheat, respectively.

(B) MmpL11-D2, colored blue, is rotated 90� clockwise from (A) and structurally alignedwith RND transporter PC1 porter subdomains fromZneA (PDB: 4K0E) and

MexB (PDB: 2V50), colored magenta and cyan, respectively.

(C) MmpL11 and MmpL3 cluster II D1 and D2 domain sequence alignment based on secondary structural prediction and MmpL11-D2 structure. Colors of

cylinders (a helices) and arrows (b sheets) correspond to the secondary structural elements in (A). The predicted a helices (a1 and a4) are shown as white

cylinders.
MmpL proteins belong to cluster I while MmpL3, MmpL11, and

MmpL13 are grouped in cluster II (Figure 3A). A major difference

is the presence of three predicted soluble domains in the

MmpL3/11/13 cluster (D1, D2, and D3), whereas the other

MmpL proteins have two predicted soluble domains, D1 and

D2 (Figure 3B). Notably, secondary structural predictions (Cole

et al., 2008) of MmpL3/11 D1 and D2 domains are identical,

suggesting that these domains harbor the conserved porter

subdomain motif as observed for MmpL11-D2 (Figures 2A and

2C). Moreover, MmpL3/11 D1 and D2 domains each have

two additional predicted a helices, a1 and a4, which are not

part of porter subdomains or observed in the MmpL11-D2 struc-

ture. Sequence alignments, as assessed by EMBOSS Needle

(Rice et al., 2000), revealed that all MmpL3/11 D1 and D2

domains share similarities ranging from 34% between MmpL3-

D1 and MmpL3-D2 domains to 13% between MmpL3-D2 and

MmpL11-D2 (Figure 2C). Due to their similarity to periplasmic

RND transporter porter subdomains, this would strongly suggest

that MmpL3/11 D1 and D2 domains also reside in the periplasm

(Figures 1B and 2B). In contrast, secondary structure predictions

of MmpL3/11 D3 domains are dissimilar fromMmpL3/11 D1 and
1100 Chemistry & Biology 22, 1098–1107, August 20, 2015 ª2015 El
D2 domains and each other, whereby MmpL3-D3 is predicted

to be largely unstructured andMmpL11-D3 predominately a-he-

lical. Furthermore, recent in vivo fluorescence studies suggest

localization of MmpL3/11 D3 domains to the cytoplasm (Carel

et al., 2014). Taken together, an MmpL3/11 topology is pro-

posed, whereby D1 and D2 domains are periplasmic while D3

resides in the cytoplasm (Figure 3B).

Distinct from the reported RND transporter structures, the

D1 and D2 periplasmic domains in MmpL3 and MmpL11 are

significantly shorter, �150 residues in MmpL3/11 as opposed

to�300 residues in RND transporters. Based on domain bound-

aries and structural alignments, MmpL3/11 D1 and D2 domains

appear to contain a single porter subdomain babbab motif with

additional predicted flanking a helices (a1 and a4, Figure 2C),

whereas each RND transporter periplasmic domain contains

one docking and two porter subdomains (Figure 1B) (Long

et al., 2010; Murakami et al., 2002; Pak et al., 2013; Sennhauser

et al., 2009). This suggests that MmpL3/11 (MmpL cluster II pro-

teins) belong to a new subclass of RND transporters that only

contain a total of two periplasmic porter domains (D1 and D2)

and a unique cytoplasmic D3 domain (Figure 3B).
sevier Ltd All rights reserved



Table 1. MmpL11-D2 Data Collection and Refinement Statistics

Data Collection

Wavelength (Å) 1.54

Resolution range (Å) 53.36–2.4 (2.49–2.4)

Space group C2221

Unit cell (Å) 65.60 3 91.73 3 32.85

Unit cell (�) 90 3 90 3 90

Total reflections 23,972

Unique reflections 4,128

Multiplicity 5.8 (6.1)

Completeness (%) 99.78 (100.00)

Mean I/s 20.5 (7.8)

Wilson B factor (Å2) 25.95

Rmerge
a 0.109 (0.290)

Rpim
b 0.049 (0.133)

Refinement

Rwork
c 0.2077 (0.2132)

Rfree
d 0.2537 (0.2519)

No. of atoms 612

No. of iodides 9

No. of waters 16

No. of protein residues 80

RMSD, bonds (Å) 0.003

RMSD, angles (�) 0.73

Ramachandran favored (%) 96

Ramachandran outliers (%) 0

B factor (Å2)

Average 37.5

Macromolecules 37.4

Solvent 32.8

Ligands 44.6

PDB 4Y0L

Statistics for the highest-resolution shell are shown in parentheses.
aRmerge = S Si jIi � (I)j/S Si Ii.
bRpim = S {1/[N � 1]}1/2SijIi � (I)j/S Si Ii.
cRwork = S jjFobsj � jFcalcjj/SjFobsj.
dRfree was computed identically, except all reflections belonged to a test

set consisting of a 5% random selection of the data.
MmpL3 and MmpL11 D1 and D2 Domains Interact
The MmpL cluster II topology suggests that periplasmic D1 and

D2 domains interact, as observed in the structures of known

RND transporters (Bolla et al., 2014; Long et al., 2010; Murakami

et al., 2002; Pak et al., 2013; Sennhauser et al., 2009). To test for

stable interactions between MmpL3/11 D1 and D2 domains, pu-

rified recombinant MmpL3 or MmpL11 D1 and D2 domains were

mixed together and analyzed by size-exclusion chromatog-

raphy. The results revealed no evidence for MmpL3/11 D1-D2

heterodimers, suggesting that stable D1-D2 complexes are not

formed (data not shown). To further investigate weak/transient

MmpL3/11 D1-D2 interactions, the homobifunctional primary

amine crosslinker BS3 was used. To this end the abundance of

lysines in MmpL3-D1 and MmpL3-D2 (nine and seven, respec-

tively) was exploited, while the BS3 crosslinking experiments
Chemistry & Biology 22, 1098–
could not be performed for MmpL11 due to the lack of lysines

in MmpL11-D2. After combining MmpL3-D1 and MmpL3–D2 in

the presence of BS3, SDS-PAGE analysis revealed the emer-

gence of a 34.9-kDa band corresponding to the MmpL3-D1-

D2 heterodimer (verified by mass spectrometry, arrowheads in

Figure 4A); however, complete dimerization was not observed

under conditions tested. Moreover, a prominent band corre-

sponding to the MmpL3-D1 homodimer (38.3 kDa, verified by

mass spectrometry, boxes in Figure 4A) is also observed, but

not for that of MmpL3-D2. Thus, these results suggest that

MmpL3-D1 and MmpL3-D2 may form a weak heterodimer.

To confirm and assess the binding affinity of the MmpL3-D1

and MmpL3-D2 interaction, biolayer interferometry was utilized.

Increasing concentrations of MmpL3-D2 were titrated to bio-

tinylated MmpL3-D1 immobilized on a streptavidin biosensor,

and the association and dissociation were assessed by a shift in

wavelength. This resulted in an observable but low micromolar-

range binding affinity (KD = 4.1 ± 0.2 mM) between MmpL3-D1

and MmpL3-D2 (Figure 4B). Similar to MmpL3, biolayer interfer-

ometry reveals that the MmpL11-D1-D2 domains interact with a

comparableweakKD (4.5 ± 1.1 mM; Figure 4C). These results con-

firm the formation of theMmpL3-D1-D2 heterodimer and demon-

strate thatMmpL11-D1andMmpL11-D2also formaheterodimer,

whereby both interactions are in the low micromolar range.

To test the molecular determinants of MmpL3/11 D1 and D2

interactions guided by the structure of MmpL11-D2 (Figure 2A),

we designed two sets of truncated variants without either the last

predicted a helix (Da4) or the first and last predicted a helices

(Da1a4) (Figure 2C). BS3 crosslinking experiments reveal that

the interaction between MmpL3-D1 and MmpL3-D2 is abro-

gated with the Da1a4 domain variants, whereas the interaction

is restored in the Da4 domain variants, suggesting that a1 is

essential for MmpL3-D1-D2 heterodimer formation (Figure 4A).

These results are supported by biolayer interferometry experi-

ments whereby no interaction is observed between the Da1a4

D1 and D2 variants for both MmpL3 and MmpL11. Furthermore,

a similar binding affinity is obtained between the respective D1

and D2 Da4 domains for both MmpL3 and MmpL11, implying

that the a1 helix is required for D1-D2 heterodimer formation

for both MmpL3 and MmpL11.

To investigate the interaction interface between MmpL3-D1

and MmpL3-D2, the SDS-PAGE protein band corresponding

to the heterodimer (Figure 4A) was excised, trypsinized, and

analyzed with liquid chromatography-tandem mass spectrom-

etry (LC-MS/MS). Strikingly, of the seven lysines present in

MmpL3-D2, only Lys504 is crosslinked to MmpL3-D1 at four

distinct primary amines (i.e., N terminus, Lys88, Lys89, and

Lys125) (Table S2). An intermolecular peptide is also identified

between both N termini of MmpL3-D1 and MmpL3-D2, support-

ing both crosslinking and biolayer interferometry data that a1

from either MmpL3/11 D1 or D2 domains is important for

domain-domain interactions.

DISCUSSION

Comparison of D1-D2 Dimer Model with CusA Porter
Subdomain Interactions
An initial heterodimer model was built based on the MmpL11-D2

structural model and the CusA porter subdomain interactions
1107, August 20, 2015 ª2015 Elsevier Ltd All rights reserved 1101



Figure 3. Phylogenetic Analysis of MmpL

Proteins and their Cluster I and II Predicted

Topologies

(A) Phylogenetic tree of MmpL proteins reveals two

distinct clusters.

(B) The predicted membrane topologies of MmpL

clusters I and II proteins are based on RND trans-

porters. The predicted porter domains (N-terminal

D1 [PN], cluster I C-terminal D2 [PC1 and PC2],

and cluster II C-terminal D2 [PC]) are colored

green, and the predicted cluster I C-terminal

docking domain (DC) is colored purple. D3

is colored yellow while the transmembrane

subdomain is colored wheat, except for the central transmembrane helices, TM4 and TM10, which are colored red. The predicted additional extra-cytoplasmic a

helix located between TM6 and TM7 is shown almost parallel to the cytoplasmic membrane surface, as observed in RND transporter structures (Figure 1B).
(PC1 and PN2) to satisfy the intermolecular crosslinked peptides

determined for MmpL3-D1 and MmpL3-D2 (Table S2). CusA

was selected due to the presence of an additional PC1 a helix

(Ca20) that interacts with PN2 porter subdomain (Figure 5A)

(Long et al., 2010); the CusA Ca20 helix is proposed to corre-

spond to one of the predicted a1 helices from either MmpL3-

D1 or MmpL3-D2 (Figure 2C). In short, as MmpL3/11 D1

and D2 domains are predicted to have similar porter domain

structures, the MmpL11-D2 structure was threaded with the

sequence of MmpL11-D1, and analogous residues within

MmpL11-D1 and MmpL11-D2 were mutated to lysines based

on the sequence alignment with MmpL3-D1 and MmpL3-D2

(Figure 2C). Then the individual MmpL11-D1 and MmpL11-D2

models were oriented to bring the crosslinked lysines within

the BS3 spacer arm distance of 11.4 Å (Figure 5B), using the

CusA porter subdomain heterodimer as a structural template,

whereby MmpL11-D1 corresponds to PC1 and MmpL11-D2 to

PN2. Finally, the MmpL11-D1-D2 heterodimer model underwent

a round of energy minimization (Figure 5B). The structure of

MmpL11-D2was further used as a template to calculate I-Tasser

models for MmpL3-D1 and MmpL3-D2 (Yang et al., 2014a).

Based on the MmpL11-D1-D2 heterodimer model, an MmpL3-

D1-D2 heterodimer model was predicted and energy minimized,

resulting in a complex consistent with the crosslinking results

(Figure 5C).

While the MmpL3/11 D1-D2 porter domain interactions

are dependent on a1 helix, the CusA porter subdomain interac-

tions are not facilitated by the Ca20 helix. Moreover, porter inter-

domain interactions within RND transporters are facilitated by

the formation of a b sheet with strands donated by both porter

domains (Figure 5A) and extensive interactions between docking

and porter subdomains, which aid in stabilizing porter interdo-

main interfaces. Within the MmpL3/11 D1-D2 heterodimers,

there is an absence of a stabilizing b sheet and docking subdo-

mains along with the absence of the second RND porter subdo-

main, suggesting that the a1-helix-mediated MmpL3/11 D1-D2

domain interactions evolved within the MmpL cluster II proteins.

Implications of MmpL3/11 Functions
Substrate Binding

RND transporters bind their substrates or inhibitors within the

same pocket through extensive PC1 subdomain interactions

regardless of the vast differences in substrate sizes, ranging

from 63 Da for copper ions to 694 Da for a pyridopyrimidine de-
1102 Chemistry & Biology 22, 1098–1107, August 20, 2015 ª2015 El
rivative inhibitor (ABI-PP) (Long, et al., 2010; Pak et al., 2013).

Strikingly, sequence alignment of the porter subdomains shows

that PC1 has the lowest homology within the subfamilies (56%

and 25% compared with 75% and 37% for PN1 between HAE

and HME RNDs, respectively), suggesting that PC1 subdomains

have evolved to confer substrate specificity. MmpL3 and

MmpL11 have a variety of proposed substrates: heme (616 Da;

Tullius et al., 2011), TMM (�1,500 Da; Fujita et al., 2005), and

MMDAG and mycolate ester wax (�1,300 and �1,600 Da,

respectively; Pacheco et al., 2013); analogous to the RND trans-

porters, they may bind these substrates primarily via their

respective D1 domains. It is of interest to note that MmpL3/11

D1 domains are able to bind heme while the D2 domains do

not exhibit any heme-binding abilities (Tullius et al., 2011). In

addition, it was shown that MmpL3 and MmpL11 D1 domains

are able to accept heme from a proposed secreted heme trans-

porter, Rv0203 (Owens et al., 2013b), further supporting the hy-

pothesis that the MmpL3/11 D1 domains are mainly responsible

for substrate binding. In contrast to the cluster II MmpL proteins

that only have two porter subdomains, the RND transporters

have four. Thus, one may speculate that the two MmpL3/11

porter domains may allow for more flexibility to accommodate

export of the larger TMM and MMDAG substrates compared

with the four porter and two docking subdomains of RND trans-

porters (Fujita et al., 2005; Pacheco et al., 2013).

The HAE RND subfamily porter PC1 and PN2 subdomains

have numerous identical residues that interact with their respec-

tive substrates/inhibitors (Murakami et al., 2006; Nakashima

et al., 2013); in particular, a pocket consisting of several

conserved phenylalanines in AcrB and MexB PC1 subdomain

is attributed to the trapping of the inhibitor, ABI-PP (Nakashima

et al., 2013; Figures S2C and S2D). Close inspection of the

RND transporter residues involved in substrate binding reveal

no obvious conserved residues in MmpL3/11 D1 or D2 domains.

Instead, there is an overrepresentation of residues, especially

within D1 domains (�10%), typically associated with hydropho-

bic substrate binding, including tyrosines, histidines, and phe-

nylalanines (Figures S2A andS2B). In particular, three D1 domain

conserved residues (Phe43/Phe42, Tyr61/Tyr60, and Tyr127/

Tyr117 in MmpL3/11), with a particular emphasis on Tyr127/

Tyr117 located in the vicinity of the HAE RND family substrate

binding pocket, may play vital roles in substrate transport and,

perhaps, binding of a subset of MmpL3-targeted anti-mycobac-

terial compounds (Owens et al., 2013a).
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Figure 4. MmpL3 and MmpL11 D1 and D2 Domains Interact

(A) SDS-PAGE of MmpL3 D1 and D2 domains and their respective truncated

constructs (Da4 and Da1a4) in the presence of BS3, suggesting that a1 helix

is essential for heterodomain interaction. In all instances, the MmpL3-D1

homodimer (38.3 kDa for wild-type [WT]) is boxed, whereas arrowheads

identify the MmpL3-D1-D2 heterodimer (34.9 kDa for WT). Notably, for the

Da1a4 constructs the heterodimer is absent.

(B and C) Biolayer interferometry experiments to assess interactions

between (B) MmpL3 D1 (biotinylated) and D2 domains, and (C) MmpL11 D1

(biotinylated) and D2 domains. All reactions were performed at 25�C in 20 mM

sodium phosphate (pH 7.4) and 150 mM NaCl. Immobilized biotinylated D1

domains were exposed to different concentrations (25–3.125 mM) of D2

domains, where interaction (association and dissociation) is assessed by a

wavelength shift (nm).
Proton-Motive Force

To date, all RND transporters are reported to utilize PMF to

provide the necessary energy for substrate transport. Charged

residues have been implicated to play critical roles in PMF. In

particular a conserved aspartate, located in the middle of TM4,

has been shown to be essential for transporter function (Franke

et al., 2003; Goldberg et al., 1999; Guan and Nakae, 2001; Jan-

ganan et al., 2013; Murakami et al., 2002; Pak et al., 2013). The

mechanism for cluster II MmpL substrate export and, perhaps,

import is unknown, although recent inhibitory Mtb compounds,

such as BM212 and SQ109, were suggested to non-specifically
Chemistry & Biology 22, 1098–
target MmpL3 by dissipating its electrochemical proton gradient

(Li et al., 2014b). More importantly, a recent report demonstrated

that Corynebacterium glutamicum CmpL4, the closest homolog

of cluster II MmpL13, is dependent on PMF (Yang et al., 2014b),

making a convincing argument that MmpL3 and MmpL11

also rely on a coupled proton gradient for substrate transport.

MmpL3 and MmpL11 Phyre2 models (Kelley and Sternberg,

2009) were analyzed for the conservation of proton relay network

residues. Within TM4, MmpL3 Asp251 and MmpL11 Asp248

correspond to the conserved essential aspartate required for

PMF (Figure 6A). Furthermore, the corresponding PMF-associ-

ated TM10 residue found in CusA, AcrB, MtrD, and MexB (Jan-

ganan et al., 2013; Long et al., 2010; Murakami et al., 2002;

Sennhauser et al., 2009) is present in MmpL3 and MmpL11

(Asp640 and Asp609, respectively), whereas TM11 contains

positively charged residues (MmpL3 Arg672 and MmpL11

Arg641) analogous to CusA Lys984 (Long et al., 2010).

Cluster I and II MmpL Periplasmic Domains Share
Similar Motifs
The previously published structural model for cluster II MmpL3/

11 is reminiscent of the RND superfamily, and is similar to our up-

dated MmpL3/11 topology and model supported by structural

and biochemical data (Figures 3B and 6A) (Li et al., 2014a).

The Phyre2 structural prediction (Kelley and Sternberg, 2009)

for cluster I MmpL4 reveals a similar topology of two periplasmic

domains, each inserted between TM1/2 and TM7/8, respectively

(Figure 6B). Cluster I MmpL D1 domains are predicted to have

porter babbab motifs identical to those of cluster II MmpL D1

and D2 domains (Figure S3). In contrast, cluster I MmpL D2

domains are much larger than cluster II MmpL D2 domains, con-

sisting of approximately 350 residues. This larger cluster I MmpL

D2 domain is predicted to correspond to an RND docking and

two porter subdomains, as observed within domains of RND

transporters (Figure 6C). Finally, cluster II MmpL proteins contain

cytoplasmic D3 domains, whereas cluster I MmpL proteins do

not (Figure 6). Thus, the cluster I MmpL model is more similar

to RND transporters than the cluster II MmpL model, and con-

tains docking domains that may play roles in protein interactions

with accessory and outer membrane channel proteins, as

observed for RND transporters (Du et al., 2014; Su et al., 2011).

SIGNIFICANCE

Structural information on biologically important Mtb MmpL

proteins has remained elusive. Here, we report the structure

of an MmpL periplasmic domain, MmpL11-D2, and provide

a first glimpse of periplasmic interdomain interactions

(D1-D2) within MmpL3 and MmpL11. These analyses are of

significance as MmpL3 is currently the most promising

anti-tuberculosis drug target. Furthermore, we have demon-

strated the diversity of the periplasmic domain architecture

within the RND transporter superfamily. The canonical RND

transporters have an elaborate six-subdomain superstruc-

ture; the cluster I MmpL proteins have a pared-down assem-

bly and the cluster II MmpL proteins appear to have the

minimal components required for substrate transport within

this RND superfamily. Many outstanding questions remain

regarding the structural characterization of MmpL proteins.
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Figure 5. Structural Comparison of RND

Transporter and Predicted MmpL Cluster II

Porter Subdomain Heterodimers

(A) Cartoon representation of CusA PC1 and

PN2 heterodimer (PDB: 4DNT). PC1 and PN2 are

colored black and dark gray, respectively, while

PC1 Ca20 is colored light gray.

(B and C) Cartoon representations of the hetero-

dimer models of (B) MmpL11-D1-D2, depicting

crosslinked lysine residues as sticks, and (C)

MmpL3-D1-D2. MmpL3/11 D1 and D2 are colored

black and dark gray, respectively.
All known RND transporter structures are organized as ho-

motrimers, implying that the functional oligomeric state of

MmpL proteins is also trimeric. In addition, the orientation

of the periplasmic domains D1 and D2, and the roles each

domain plays in facilitating substrate transport, need further

investigation. Finally, the structure/function of D3, which is

unique for cluster II MmpL proteins, is still unresolved. To

fully understand these new subclasses of RND transporters,

full-length structures of both cluster I and II MmpL proteins

are necessary.

EXPERIMENTAL PROCEDURES

Domain Cloning, Expression, and Purification

DNA sequences of MmpL3 residues 32–187 and 419–560 and MmpL11 resi-

dues 41–187 and 390–529, corresponding to D1 and D2 domains (Table S3),

were PCR-amplified from Mtb genomic DNA and cloned into pET28a (Nova-

gen) using NdeI and HindIII for all domains except for MmpL11-D1, for which

BamHI and XhoI were used (Fermentas Scientific), as outlined in Table S3. All

domain constructs, which encode for fusion proteins with N-terminal His6,

were overexpressed and purified with the following protocol. Expression plas-

mids encoding individual domains were transformed into BL21-Gold (DE3)

cells and grown at 37�C in LBmedium containing 30 mg/ml kanamycin. Protein

expression was induced when cells reached OD600 of 0.8 by the addition of

1 mM isopropyl b-D-1-thiogalactopyranoside and cells were harvested after

4 hr by centrifugation at 5,100 rpm for 20 min, followed by resuspension in

50 mM Tris (pH 7.4), 350 mM NaCl, and 10 mM imidazole. Cells were then

lysed by sonication after addition of egg hen lysozyme (5 mg, Sigma) with

PMSF (40 mM, Sigma) and the cell lysate centrifuged at 14,000 rpm for

20 min. The supernatant was filtered using a 0.45-mm membrane, loaded

onto an Ni2+-charged HisTrap column (GE Healthcare), and eluted with a linear

imidazole gradient. Fractions containing D1 or D2 domains (between 100 and

250 mM imidazole) were visualized by SDS-PAGE, pooled, and concentrated

using an Amicon centrifugal filter (10 kDa cutoff, Millipore). Further purification

was achieved by size-exclusion chromatography (SEC) using an S75 gel filtra-

tion column (GE Healthcare) pre-equilibrated with 50 mM Tris (pH 7.4) and

150 mM NaCl, yielding nearly 100% homogeneous protein. Cleavage of the

His6-tag was conducted in cleavage buffer (50 mM Tris [pH 7.4], 150 mM

NaCl, 10 mM CaCl2) by the addition of 1 ml thrombin-agarose suspension

(Sigma). After an overnight incubation at 4�C, the thrombin-agarose was

removed on a glass frit. Each domain was further purified over an S75 SEC col-

umn pre-equilibrated with 50 mM Tris (pH 7.4) and 150 mMNaCl to separate it

from the His6-tag.

Truncated constructs are outlined in Table S3. Expression and purification

for the truncated domains proceeded as for the full-length domain.
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Crystallization, Data Collection, Structure

Determination, and Refinement of

MmpL11-D2

Purified MmpL11-D2 (residues 390–529) was con-

centrated to 10 mg/ml in 50 mM Tris (pH 7.4) and
150 mM NaCl for crystallization trials. Several MmpL11-D2 (residues 390–

529) crystals grew after 2 years in 0.1 M 2-(N-morpholino)ethanesulfonic

acid (pH 6.7) and 2 M MgSO4. Crystals were soaked for 2 min in 0.5 M KI dis-

solved in mother liquor containing 20% glycerol, and a diffraction dataset was

collected at 100 K. A single-wavelength anomalous dispersion (SAD) dataset,

which diffracted to 2.4 Å, was collected from an iodide-soaked crystal (l =

1.54 Å) with unit dimensions of 65.6 3 91.7 3 32.9 and one molecule per

asymmetric unit in space group C2221. The images were indexed, integrated,

and reduced using iMOSFLM (Battye et al., 2011). Data collection statistics

are summarized in Table 1. The initial phase and model were determined

by SAD using phenix.Autosol (Adams et al., 2010). The final model was deter-

mined using reiterative rounds of model building with phenix.Autobuild

(Adams et al., 2010), followed by manual building through Coot (Emsley

et al., 2010) and refinement with phenix.refine (Adams et al., 2010). The final

model contained MmpL11-D2 residues 424–511; however, no electron den-

sity was observed for residues 479–489 that correspond to a loop region.

The stereochemistry and geometry of MmpL11-D2 was validated with the

program Molprobity (Chen et al., 2010), with final refinement parameters

summarized in Table 1. All molecular graphics were prepared with PyMOL

(Delano, 2002).

Crosslinking Experiments

Crosslinking experiments with BS3 (Pierce) were performed with 50 mM of

each protein in 20 mM sodium phosphate (pH 7.4) and 150 mM NaCl. In

brief, 50 mM MmpL3 D1 and D2 domains, as well as the two sets of truncated

constructs (i.e., Da1a4 and Da4) were incubated together in the absence or

presence of 10-fold molar excess BS3 on ice for 2 hr. Reactions were

quenched by the addition of 1 M Tris (pH 7.4) to a final concentration of

50 mM. SDS-PAGE was performed to assess the formation of crosslinked

products.

Mass Spectrometry

Excised SDS-PAGE bands corresponding to the potential crosslinked heter-

odimer were in-gel digested with trypsin, as described by Tokhtaeva et al.

(2015). Nano LC-MS/MS with collision-induced dissociation (CID) was per-

formed on an Orbitrap XL (Thermo Fisher) integrated with an Eksigent

nano-LC. A pre-packed reverse-phase column (Acutech Scientific C18)

with a dimension of 75 mm 3 20 cm containing resin (Biobasic C18, 5-mm

particle size, 300-Å pore size, Acutech Scientific) was used for peptide chro-

matography and subsequent CID analyses. Electrospray ionization condi-

tions using the nano-spray source (Thermo Fisher) for the Orbitrap were

set as follows: capillary temperature 220�C, tube lens 110 V, and spray

voltage 2.3 kV. The flow rate for reverse-phase chromatography was

0.5 ml/min for loading and 400 nl/min for analytical separation (buffer A:

0.1% formic acid, 3% acetonitrile; buffer B: 0.1% formic acid, 100% aceto-

nitrile). Peptides were resolved by the following gradient: 0%–40% buffer B

over 180 min, and then returned to 0% buffer B for equilibration of 20 min.
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Figure 6. Distinct Domain Architecture between RND Transporters
and MmpL Cluster I and II Proteins

(A and B) Phyre2 models of (A) MmpL11 with additional restraints from the

crosslinking results, and (B) MmpL4. The transmembrane domains are colored

wheat, except for TM4 and TM10, which are colored red. The different peri-

plasmic porter subdomains are in shades of green, and the proposed MmpL4

docking domain is colored purple. The Cluster II MmpL (MmpL11) cytoplasmic

D3 domain is signified by a yellow circle.

(C) Cartoon representing the domain architecture of RND transporters,

MmpL cluster I and II proteins. Subdomain color designations are as in (A)

and (B).
The Orbitrap was operated in data-dependent mode with a full precursor

scan at high resolution (60,000 at m/z 400) and ten MS/MS experiments at

low resolution on the linear trap while the full scan was completed. For

CID the intensity threshold was set to 5,000, where mass range was 350–

2,000. Spectra were searched using Protein Prospector software (http://

prospector2.ucsf.edu/prospector/mshome.htm) in which results with p <

0.05 (95% confidence interval) were considered significant and indicative

of identity. Spectra for crosslinked peptides with score differences greater

than 5 were examined manually.

Biolayer Interferometry Experiment

MmpL3 andMmpL11 D1 and D2 domain binding affinities were determined by

biolayer interferometry (BLItz; ForteBio). All binding reactions were performed

at 25�C in 20 mM sodium phosphate (pH 7.4) and 150 mM NaCl. Biotinylated

D1 and D2 domains (NHS-PEG4-Biotin, ThermoScientific) were immobilized

on streptavidin biosensors and exposed to different concentrations (25–

3.125 mM) of interacting domains, as well as EC869 CdiIo11 (Morse et al.,

2012) as a negative control. A buffer reference was subtracted from all binding

curves before curve fitting. Curve fitting and data processing were performed

using BLItz Pro software (ForteBio).
Chemistry & Biology 22, 1098–
Model Building

To build the MmpL3 D1 and D2 heterodimer model, I-Tasser models for the in-

dividual domains were first determined based on the MmpL11-D2 structure

(Yang et al., 2014a). Both domain models were then oriented according to

the CusA structure (PDB: 4DNT) (Su et al., 2012) where D1 andD2were aligned

to the PC1 and PN2 porter subdomains, respectively. The heterodimermodels

were energy minimized with Yasara force fields (Krieger et al., 2009).
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