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An analysis is carried out to study the heat transfer characteristics in a 
viscoelastic fluid over a stretching sheet with frictional heating and internal heat 
generation or absorption. Two cases are studied, namely (i) the sheet with prescribed 
surface temperature (PST case) and (ii) the sheet with prescribed wall heat flux 
(PHF case). The solutions for the temperature, the heat transfer characteristics and 
their asymptotic limits for large and small Prandtl numbers are obtained in terms 
of Kummer’s and parabolic cylinder functions. For large Prandtl numbers, a 
boundary layer width of m is noticed in both PST and PHF cases. Furthermore, 
it is shown that there is no boundary layer type of solution for small Prandtl 
number. 0 1991 Academic Press. Inc. 

1. hiTRoDucT10~ 

Boundary layer behavior over a moving continuous solid surface is an 
important type of flow occurring in several engineering processes. For 
example, materials manufactured by extrusion processes and heat-treated 
materials traveling between a feed roll and a wind-up roll or on conveyor 
belts possess the characteristics of a moving continuous surface. In view of 
these applications, Sakiadis [l] initiated the study of boundary layer flow 
over a continuous solid surface moving with a constant speed. Due to 
entrainment of ambient fluid, this boundary layer flow is quite different 
than boundary layer flow over a semi-infinite flat plate. Erickson et al. [2] 
extended this problem to the case in which the transverse velocity at the 
moving surface is nonzero, with heat and mass transfer in the boundary 
layer being taken into account. 

These investigations have a definite bearing on the problem of a polymer 
sheet extruded continuously from a dye. It is often tacitly assumed that the 
sheet is inextensible, but situations may arise in the polymer industry in 
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which it is necessary to deal with a stretching plastic sheet, as pointed out 
by McCormack and Crane 13). Danberg and Fansler [4] investigated the 
nonsimilar solution for the flow in the boundary layer past a wall that is 
stretched with a velocity proportional to the distance along the wall. Gupta 
and Gupta [S] analyzed the heat and mass transfer corresponding to the 
similarity solution for the boundary layer over a stretching sheet subject to 
suction or blowing. Recently, Chen and Char [6] investigated the effects of 
power-law surface temperature and power-law surface heat flux vaiation on 
the heat transfer characteristics of a continuous, linearly stretching sheet 
subject to suction or blowing. 

All the above investigations are resricted to flows of Newtonian fluid. 
However, of late non-Newtonian fluids have become more important 
industrially. The laminar boundary layer on an inextensible continuous flat 
surface moving with a constant velocity in its own plane in a non-New- 
tonian fluid characterized by a power-law model (Ostwald-de Waele fluid) 
is studied by Fox et al. [7], using both exact and approximate methods. 
Apart from the limitations of the above power-law model, which does not 
exhibit any elastic properties (such as normal stress differences in shear 
flow), in certain polymer processing applications one deals with flow of a 
viscoelastic fluid over a stretching sheet. Due to this reason, Rajagopal et 
al. [8] studied the flow behavior of a viscoelastic fluid over a stretching 
sheet and gave an approximate solution to the flow field. They considered 
the incompressible second-order fluid whose constitutive equation is based 
on the postulate of gradually fading memory suggested by Coleman and 
No11 [9] as 

T= -PI+/LA, +a,A,+a,Af, (1) 

where T is the stress tensor, P is the pressure, p, ~1,) a, are material 
constants with t(l < 0, and A, and A, are defined as 

A, = (grad v) + (grad v)‘, (2) 

Recently, Troy et al. [lo] gave the exact solution for the problem of 
Rajagopal et al. [S]. 

Motivated by these analyses, the present authors studied heat transfer in 
a viscoelastic fluid over a continuous stretching sheet with power-law 
surface temperature or power-law surface heat flux including the effects of 
viscous dissipation and internal heat generation or absorption. A series 
solution to the energy equation in terms of Kummer’s and parabolic cylin- 
der functions are developed and some asymptotic cases are studied. Also. 
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several closed form analytical solutions are presented for special conditions. 
Further, the contributions of the elastic parameter m, the Prandtl number 
Pr, the frictional heating parameter (Eckert number) E, and the heat 
source/sink parameter CY to the heat transfer characteristics are found to be 
quite significant. 

2. FLOW ANALYSIS 

Consider the flow of a second-order fluid obeying (1) past a flat sheet 
coinciding with the plane y = 0, the flow being confined to y > 0. Two equal 
and opposite forces are applied along the x-axis so that the wall is 
stretched keeping the origin fixed (see Fig. 1). The steady two-dimensional 
boundary layer equations for this fluid (for details see Beard and Walters 
[ll]) in usual notation are 

“+“=o, 
ax ay (4) 

where v=p/p and R = -a,/~. In deriving these equations it was assumed 
that the contribution due to the normal stress is of the same order 
of magnitude as that due to the shear stress, in addition to the usual 
boundary layer approximations. Thus both v and 1 are O(S*), 6 being the 
boundary layer thickness. 

FIG. 1. A sketch of the physical model. 
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The appropriate boundary conditions for the problem are 

u=Bx,li=O at v = 0, B > 0, 

U+O 
(6) 

as J+~x. 

Here the flow is caused solely by the stretching of the sheet, since the free 
stream velocity is zero. Equations (4) and (5) admit a self-similar solution 

u = W-‘(rl), u = -(Bv)';*f(q), (7) 

r/ = (B/lpy, (8) 

where a prime denotes differentiation with respect to ye. Clearly u and u 
defined above satisfy the continuity equation (4). Substituting (7) and (8) 
in (5) we get 

(f’)2 -ff” =f”’ -i, [Zf’f” - (f”)2 -ff'"], (9) 

where A, = lB/v is the elastic parameter. The boundary conditions (6) 
become 

f’= I,,f=O at v =O, 

f'-+O as q+co. 

In 1987, Troy et al. [lo] obtained the exact solution 

(10) 

f= (1 -ePmq)/m, m= l/J1 -A,, (11) 

for the differential equation (9) satisfying conditions (10). This gives us the 
velocity components 

u = BXe-.““l, 

u= -(Bv)“‘(l -e-“‘l)/m, 
(12) 

and the dimensionless shear stress at the wall 

t=(l-A,)f”(O)= -(l-/Q? (13) 

3. HEAT TRANSFER ANALYSIS 

The governing boundary layer equation with viscous dissipation (or 
frictional heating) and internal heat generation or absorption is 
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The thermal boundary conditions depend on the type of heating process 
under consideration. We consider two different heating processes, namely, 
(i) prescribed surface temperature and (ii) prescribed wall heat flux. The 
heat transfer analysis for these two processes are carried out in Sections 3.1 
and 3.2. 

3.1. Prescribed Surface Temperature (PST-Case) 

For this circumstance, the boundary conditions are 

T= T,,[ = T, + A(x/l)‘] at y=O, 
(15) 

T+ T, as y-00, 

where 1 is characteristic length. Defining the nondimensional temperature 

e(rl)= CT- T,)/(Tw,- T,)> (16) 

and using the relations (7)-(8), Eq. (14) and the boundary conditions (15) 
can be written as 

0” + Prfe’ - Pr(2f’ - LY) 19 = -Pr E(f”)*, (17) 

where 

f=(l-e-““)/m, j”‘=e-“q, 

m = l/J=, elastic parameter 

Pr = pC,/k, Prandtl number 

ci = QIBPC,, heat source/sink parameter 

E = Bl’jC, A, Eckert number, 

(19) 

and a prime denotes differentiation with respect to q. 
Defining a new variable 

5 = -reemq (with r-3) 

and substituting the solution f into Eq. (17), we get 

(20) 

@“+(l-r-4)0’+(2+ctr/<)O= -(BE/r’){, (21) 
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where prime denotes differentiation with respect to < and fl= Pr. The 
boundary conditions translate to 

O(-r)= 1 and O(0 )=O. (22) 

The solution of Eq. (21) satisfying the conditions (22) in terms of 
Kummer’s functions (see [ 12)) is 

e(4) = 
1 +/X(4-2r-W) ’ -r (,-+‘J2 

i-1 M((r+s-4)/2, 1 +A---r) r 

-PE(4-2r-cxr)-’ (23) 

where 

x (a),? 
M(a,b:z)=l+ c - 

n=l (b),n!’ 

and 

(a),=a(a+l)(a+2)...(a+n-l), 

(b),,=b(b+ l)(b+2)...(b+n- 1). 

The solution (23) can be written in terms of q as 

e(v) = 
1 +PE(4-2r-xv)-’ 

M((r+s-4)/2, 1 -r)e -(r+S)WV,/2M r+s-4 
+s; -, 2 1 +s; -rCmV 

-fiE(4-2r-cw) ‘e 2mrl. (24) 

The nondimensional temperature gradient derived from (24) is 

e’( 0) = 
1 +pE(4-2r-ar)-’ 

M((r+s-4)/2, 1 +s; -r) 
-T(r+s)M(y, l+s; -r 

-r >I + 2mpE(4 - 2r - ar) ‘, (25) 

and the local wall heat flux can be expressed as 

= -kA(B/v)“’ (x/l)’ W(0). 
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TABLE Ia 

Temperature Expressions for Various r and s 

( = Pr/m2) 

r 

r-6 

r-4 

exp[r-(r-3)mq-reCmq] 

rm2E _-e-h 
13-5r 

mZmll~(r-44, reemq) 
d-4, r) 

r&E -2m,, 
-me 

where y is the incomplete gamma function. 

TABLE Ib 

Temperature Gradient Expressions for Various r and s 

r 

( = Prim*) 

5 1 

r r-6 

r r-4 

-(‘<T:f(‘*) (2m+3mrm5)-:m’E. 

3m(l+$$$+E. 

-( 1+g)[ 
2my(r-4,r)+me-‘r’~3 

y(r - 4, r) ] 

m3E 
+‘n. 
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FIG. 2. Temperature protiles for E= 0.02 when (a) Pr = 1 and (b) Pr = 5. 

I II III IV 

m 1 1.1 1.1 1.1 

u 0.1 0.1 0 -0.1 
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For several sets of values of r ( = Pr/m’) and s [ =r( 1 + 4c(/r)“‘], closed 
form solutions are obtained and some of the interesting results are 
presented in Table I. Also, the expressions in (24) and (25) are numerically 
evaluated for several sets of values of the parameters m, Pr, E, and CI and 
some of the qualitatively interesting results are presented in Fig. 2 and 3. 

3.2. Prescribed Wall Heat Flux (PHF Case) 

Here, the boundary conditions are 

-kg=q,,,=D(~/l)~ at y=O, 

and 

Defining 

(26) 

T-+ T, as y-co. 

T- T, = F (v/B)“2 g(v]) (27) 

and substituting the relations (7) and (8) into (14) and (26), we get 

g” + Pr,fg’ - Pr(2f’ - a) g = - Pr E(f”)2, (28) 

g’(0) = - 1 and g(m)=O, (29) 

where a prime denotes differentiation with respect to q, E = 
B’I’(B/v)‘l’/DC,, and all other parameters are as defined in Section 3.1. 

0 

-1 - 

e’(o) -2 - 

-3 - 

-4 7 
0 1 2 3 4 5 

Pr 

FIG. 3. Temperature gradient in the PST case for E=0.02; curves as in Fig. 2. 
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Using transformation (20) we reduce Eq. (28) and the boundary condi- 
tions (29) to 

g’(-r)= -’ and g(O ) = 0, 
rrn 

where a prime denotes differentiation with respect to [. The solution g 
satisfying (30) and (31) is obtained as 

s(5) = ( 4e~~ar+~)[~M(~, l+s; -r) 

-rM 
( 

r+s-4 
-, 1 +s; -r 

2 !I 
-1 

x(~)‘rf”“‘M(~, I+.~;t)-~(4-2r-ctr)-‘i;‘, (32) 

where M’(a, h; z) = (a/b) M(a + 1, h + 1, z). 
In terms of v], the solution can be written as 

&I) = 
( 

4-~~ur+~)[~M(~, l+s; -r) 

-I 
- rM’ 

( 

r+s-4 
-, l+s; -r 

2 )I 

x e -(r+S)mfl/2 M 
r+s-4 
-, 

2 
1 +s; --Ye- mq 

-j3E(4-2r-cw~‘e~2”“. (33) 

The wall temperature T, is obtained from Eq. (27) as 

T, - T, = q (v/B)“’ g(O). (34) 

As in Section 3.1, several closed form solutions are developed from Eq. (33) 
and are presented in Table II. Also, numerical values of g(0) for several sets 
of values of the parameters m, Pr, E, and CY are obtained and are presented 
in Fig. 4. 
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TABLE II 

Temperature Expressions for Various r and s 

r 

( = Pr/m’) { 2(,:q~} &T(v) 

5 

r 

1 

r-6 

r-4 

c,e-2mq 

( ) 5 
[l -exp(-5e-““)I 

+im2Eem2mq. 

c,exp[-(r-3)mq-remmq] 

c,e-*““y(r-4, remmq) 

where 

+z$q [; (l-ems)-5M'(1,2;-5) ]-I, 

c2= -(gg+;) 3=‘, 

c3= g+i [(r-2)y(r-4,r)-y(r-3,r)]-‘. 
( > 

4. ASYMPTOTIC LIMIT FOR LARGE PRANDTL NUMBER 

In this section we derive the asymptotic results for the temperature func- 
tions O(q) and g(q), which arise respectively in the PST and PHF cases. 

4.1. PST Case 

In this case the boundary layer equation and the boundary conditions 
are 

)O’-Pr(2e-“U-a)8= -PrEm2e~““, (35) 

e(o) = i and e(m)=o, (36) 
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Pr 

FIG. 4. Temperature at q =0 in the PHF case for E=0.02; curves as in Fig. 2 

where the prime denotes differentiation with respect to q. Letting E = l/Pr 
(be the small parameter) and using E we can write (35) as 

The outer solution to the zeroth-order for 0(&r”) < ‘1~ cc is 

2mt7 + Coe-““‘l(l -py~, (38) 

with C, to be determined from matching. 
The above expression only satisfies the infinity condition when c( > 0. 

When a < 0 the only solution to the reduced version of (37) is the zero 
solution. Also the form of the particular solution changes when c( = 2. We 
restrict our attention to CI > 0 and c( # 2. 

To satisfy the boundary condition at zero, introduce the scaled 
coordinate f = V/E ‘12, then for 0 6 q < 1, Eq. (37) becomes 

d28 
~+ijz+(ct-2)B(tj)= -Em2. 
4 dr” 

The particular solution to (39) is simply Em2/(2 - tl). The homogeneous 
version of (39) can be transformed to 

(40) 
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by the change of dependent variable 

e(q) = ec”2’4@(v]). (41) 

Equation (40) has a solution in terms of parabolic cylinder functions (see 
[12]). The solution that matches (38) is 

Em2 e-62/4D,-3(-,7)+- 
2-U (42) 

where D ap3(x) = m ex2” s; e--‘2’2ta-3 cos(xt - (WC/~) + (3rr/2)) dr. 
After matching (38) with (42) the inner and outer solutions can be com- 
bined into a single uniform asymptotic expression as 

(43) 

From (43) we observe that there is a boundary layer of width 4. 

4.2. PHF case 

The analysis in Section 4.1 can be applied to PHF case. The uniform 
asymptotic expression in this case is 

g,(v)=&e 3 CI -2mrl + 71- 1/22(2--orV2 Ewr ___ ( ) 2 2 

--amq l-edmrl 2pX 
xe 

( 1 m9 

xe 

As in the PST case, the boundary layer width is also & 

(44) 

5. ASYMPTOTIC LIMIT FOR SMALL PRANDTL NUMBER 

As in Section 4, we derive the asymptotic results for the temperature 
functions e(q) and g(v]). It is not possible to find matched asymptotic 
expansions for small Prandtl number as we obtained for the large Prandtl 
number case. This is due to the solution changing by 0( 1) on a length scale 
of order l/Pr, which is arbitrarly large for small Pr. Hence, a perturbation 
expansion would require all terms. However, we give the exact solution for 
small Prandtl numer. 
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5.1. PST Casr 

Letting e= Pr in (35) we get 

The appropriate boundary conditions are 

O(0) = 1 and U(m)=O. (46) 

The solution satisfying Eq. (45) and conditions (46) can be obtained as 

Nrl) = 
1 + EE(4 - (E/W?) - (&c+?2))~ ’ ~rm,~ 

44(EU - 2, t + Eb; -E/WI*) ’ 

where 

(47) 

(48) 

The term e -“v shows the slow exponential decay. A boundary layer type 
of solution is not possible here because of this term. 

5.2. PHF-Case 

Here, g(q) turns out to be 

g(yI) = 4-FrEpar+A 
> 

[(&a)M(~a-2, 1 +Eb; -E/m*) 

- c/m*M’(Ea - 2, 1 + Eb; -E/m’)] ~ ’ 

xe pEumqM Ea-2, 1 +&b; - semmq , 
> 

- 1 
e-2mv 3 (49) 

where a and b are as in (48). Again, the solution decays slowly due to the 
term e pEomv. 



HEAT TRANSFER IN VISCOELASTICFLUID 255 

6. DISCUSSION OF THE RESULTS 

In Fig. 2a, for Pr = 1 and E = 0.02, we have plotted the temperature 
distribution 0(q) for several sets of values of m and a. Similar results are 
plotted in Fig. 2b with Pr = 5. From Fig. 2 it is evident that the tem- 
perature &’ increases with an increase in the viscoelastic parameter m. This 
phenomenon is true even with the heat source/sink parameter a. Further, 
it can be seen that the temperature at a point in a given second-order fluid 
decreases with an increase in the Prandtl number Pr. This is consistent 
with the fact that the thermal boundary layer thickness decreases with 
increasing Prandtl number. 

For E = 0.02, the wall terperature gradient e’(0) as a function of Pr for 
several sets of values of m and a is shown in Fig. 3. For given m, a, and 
E, the larger the Pr, the larger (in an absolute sense) the magnitude of the 
wall temperature gradient. In addition, the magnitude (in absolute sense) 
of the wall temperature gradient increases as m increases. This 
phenomenon is true even with the heat source/sink parameter a. From 
Fig. 3 it is evident that the temperature gradient e’(O) is negative for all 
values of the Prandtl number. Physically it means that there is heat flow 
only from the wall. 

The behavior of the wall temperature g(0) with changes in IPI, a, and Pr 
is shown in Fig. 4 for E = 0.02. From this figure it is clear that the wall tem- 
perature decreases rapidly as Pr increases from 0.5 to 1 and then slowly 
decreases with an increase in Pr. Furthermore, the effects of m and a are 
to increase the wall temperature g(0). Finally it should be mentioned that 
the effect of frictional heating parameter E on the heat transfer charac- 
teristics is to augment the values. 
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