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a b s t r a c t

This paper is devoted to robust hypothesis testing based on saddlepoint approximations
in the framework of general parametric models. As is known, two main problems can
arise when using classical tests. First, the models are approximations of reality and slight
deviations from them can lead to unreliable results when using classical tests based on
these models. Then, even if a model is correctly chosen, the classical tests are based on
first order asymptotic theory. This can lead to inaccurate p-values when the sample size
is moderate or small. To overcome these problems, robust tests based on dual divergence
estimators and saddlepoint approximations, with good performances in small samples, are
proposed.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The nonrobustness of classical estimators and tests for parametricmodels is awell knownproblemand alternative robust
methods have been proposed in the literature. Usually, the robust methods are based on first order asymptotic theory and
their accuracy in small samples is often an open issue. In this paper, we propose test statistics which have both robustness
and small sample properties. We combine robust dual divergence estimators [1,2] and saddlepoint approximations – as
presented in Robinson et al. [3] – and obtain robust test statistics which are asymptotically χ2 distributed with a relative
error of order O(n−1), where n is the sample size.
Recently introduced inBroniatowski andKeziou [1] for general parametricmodels, the class of dual divergence estimators

is based on the optimization of a new dual form of a divergence. It represents a class of M-estimators indexed by a tuning
parameter and by the used divergence. Toma and Broniatowski [2] have proved that this class contains robust and efficient
estimators and proposed robust test statistics based on divergence estimators. However, these robust testing methods are
based on first order asymptotic theory and have absolute error of orderO(n−1/2). This can lead to inaccurate p-values when
the sample size is moderate to small. For this reason, we investigate new test statistics which combine robustness with good
accuracy for small sample sizes, by using saddlepoint approximations.
Saddlepoint approximations have been widely studied and used in different areas in recent years due to their excellent

performances. Their main property is that it provides very accurate approximations of the exact distribution of a statistic
with a relative error of orderO(n−1). For details on the statistical importance and applications of saddlepoint approximations
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we refer to the books Field and Ronchetti [4], Jensen [5] and to the papers Field [6], Field andHampel [7], Almudevar et al. [8],
Field et al. [9] for M-estimators.
The paper is organized as follows. In Section 2 we present the class of dual divergence estimators. In Section 3 we

introduce test statistics for hypotheses testing based on dual divergence estimators and saddlepoint approximations. In
Section 4 we show that when using robust dual divergence estimators, the corresponding saddlepoint test statistics are
robust too. For several parametric models, we indicate simple specific conditions on the dual divergence estimators such
that the corresponding test statistics are robust and asymptotically χ2-distributed with a relative error of order O(n−1). In
Section 5, for the scale normalmodel and for the Cauchy locationmodel, we presentMonte Carlo simulation studies to show
the performance of the proposed tests from both robustness and small sample accuracy points of view.

2. Dual divergence estimators

The class of dual divergence estimators has been recently introduced by Broniatowski and Keziou [1]. In the following,
we shortly recall their context and definition.

2.1. A class of divergence measures

Let ϕ be a non-negative convex function defined from (0,∞) onto [0,∞] and satisfying ϕ(1) = 0. Let (X,B) be
a measurable space and P be a probability measure defined on (X,B). Following Rüschendorf [10], for any probability
measure Q absolutely continuous with respect to P , the φ-divergence between Q and P is defined by

φ(Q , P) :=
∫
ϕ

(
dQ
dP

)
dP. (1)

When Q is not absolutely continuous with respect to P , we set φ(Q , P) = ∞.
The Kullback–Leibler (KL), modified Kullback–Leibler (KLm), χ2, modified χ2 (χ2m), Hellinger (H) and L1 divergences are

respectively associated to the convex functions ϕ(x) = x log x − x + 1, ϕ(x) = − log x + x − 1, ϕ(x) = 1
2 (x − 1)

2,
ϕ(x) = 1

2 (x− 1)
2/x, ϕ(x) = 2(

√
x− 1)2 and ϕ(x) = |x− 1|. All these divergences excepting the L1 one, belong to the class

‘‘power divergences’’ introduced in Cressie and Read [11] and defined through the class of convex functions

x ∈ R∗
+
7→ ϕγ (x) :=

xγ − γ x+ γ − 1
γ (γ − 1)

(2)

for γ ∈ R \ {0, 1}, where R∗
+
is the set of all non-zero positive real numbers, and otherwise by ϕ0(x) := − log x + x − 1,

ϕ1(x) := x log x− x+ 1. The KL divergence is associated with ϕ1, the KLm to ϕ0, the χ2 to ϕ2, the χ2m to ϕ−1 and the Hellinger
distance to ϕ1/2.

2.2. Dual divergence estimators

Let {Pθ : θ ∈ Θ} be some identifiable parametric model with Θ an open subset of Rd. Assume that for any θ ∈ Θ , Pθ
has density pθ with respect to some dominating σ -finite measure µ. Consider the problem of estimating the unknown true
value of the parameter θ0 on the basis of an i.i.d. sample X1, . . . , Xn with probability measure Pθ0 .
Let φ be a divergence as defined in (1) and suppose that the corresponding function ϕ is C2, strictly convex and satisfies∫ ∣∣∣∣ϕ′ (pαpθ

)∣∣∣∣ dPα <∞, α, θ ∈ Θ. (3)

With this hypothesis, using Fenchel duality technique, Broniatowski and Keziou [12] have proved the following dual
representation of divergences:

φ(Pα, Pθ0) = sup
θ∈Θ

∫
m(θ, α, x)dPθ0(x), (4)

with

m(θ, α, x) :=
∫
ϕ′
(
pα
pθ

)
dPα −

{
ϕ′
(
pα(x)
pθ (x)

)
pα(x)
pθ (x)

− ϕ

(
pα(x)
pθ (x)

)}
.

The supremum in (4) is unique and is attained in θ = θ0, independently upon the value of α. Naturally, an estimator of
the divergence between Pα and Pθ0 is given by

φ(Pα, Pn) := sup
θ∈Θ

∫
m(θ, α, x)dPn(x),
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where Pn is the empirical measure placing mass 1/n in each sample observation, namely Pn = 1
n

∑n
i=1 δXi , with δx denoting

the Dirac measure.
Minimum divergence estimators of the parameter θ0 have been defined by minimizing φ(Pα, Pn) with respect to α on

the parameter space. Also, various parametric tests for simple and composite hypotheses, using φ(Pα, Pn) to construct the
test statistic, have been proposed; see Broniatowski and Keziou [1] and Toma and Broniatowski [2] for details on these
estimation and testing procedures.
In this paper, our interest focuses on the class of estimators of θ0, called dual divergence estimators, which are defined

as follows. For a given α ∈ Θ , a dual divergence estimator of θ0 is defined by

θ̂ϕ,n(α) := arg sup
θ∈Θ

∫
m(θ, α, x)dPn(x). (5)

Formula (5) determines a class of M-estimators indexed by some instrumental value of the parameter α and by the function
ϕ specifying the divergence. The choices of α and ϕ represent amajor feature of the estimation procedure, since they induce
efficiency and robustness properties.
Note that the maximum likelihood estimator belongs to the class (5). It is obtained for ϕ(x) = − log x+ x− 1, that is as

dual KLm divergence estimator.

2.3. Influence functions

Robustness properties of dual divergence estimators have been studied by Toma and Broniatowski [2] by means of the
influence function.
We recall that a map T which sends an arbitrary probability measure into the parameter space is a statistical functional

corresponding to an estimator θ̂n of the parameter θ0 whenever T (Pn) = θ̂n. The influence function of the functional T in P
measures the effect on T of adding a small mass at x and is defined as

IF(x; T , P) = lim
ε→0

T (̃Pεx)− T (P)
ε

,

where P̃εx = (1− ε)P + εδx. When the influence function is bounded, the corresponding estimator is called robust.
The statistical functional Tϕ,α associated to a dual divergence estimator θ̂ϕ,n(α) is defined by

Tϕ,α(P) := arg sup
θ∈Θ

∫
m(θ, α, x)dP(x).

Let m′′(θ, α, x) be the d × d matrix with entries ∂2

∂θi∂θj
m(θ, α, x) and ṗθ be the derivative with respect to θ of pθ . Suppose

that, for each α, the function θ → m(θ, α, x) is C2 and thematrix
∫
m′′(θ0, α, y)dPθ0(y) exists and is invertible. For example,

these conditions are satisfied in the cases of the parametric models considered in Section 4.3, for the choices indicated in
each case.
Then, the influence function of a dual divergence estimator is given by

IF(x; Tϕ,α, Pθ0) =
[
M(ψϕ,α, Pθ0)

]−1
ψϕ,α (x, θ0) , (6)

where

M
(
ψϕ,α, Pθ0

)
= −

∫
∂

∂θ

[
ψϕ,α(y, θ)

]
θ0
dPθ0(y) = −

∫
m′′(θ0, α, y)dPθ0(y) (7)

and

ψϕ,α(x, θ0) = −
∫
ϕ′′
(
pα
pθ0

)
pα
p2θ0
ṗθ0dPα + ϕ

′′

(
pα(x)
pθ0(x)

)
p2α(x)
p3θ0(x)

ṗθ0(x). (8)

When using Cressie–Read divergences, formula (6) writes as

IF(x; Tϕγ ,α, Pθ0) =

[
−

∫ (
pα
pθ0

)γ ṗθ0 ṗtθ0
pθ0

dµ

]−1 {∫ (
pα
pθ0

)γ
ṗθ0dµ−

(
pα(x)
pθ0(x)

)γ ṗθ0(x)
pθ0(x)

}
. (9)

For scale models and location models, Toma and Broniatowski [2] have indicated conditions on α and on the Cressie–Read
divergence such that the influence function IF(x; Tϕγ ,α, Pθ0) is a bounded function of x, and consequently the corresponding
θ̂ϕγ ,n(α) is a robust estimator of θ0. In Section 4.3, for several parametric models, we indicate choices of α and of the
Cressie–Read divergence such that θ̂ϕγ ,n(α) is a robust estimator of θ0 that can be used to construct test statistics with
both robustness and small sample properties.
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3. Saddlepoint test statistics based on dual divergence estimators

In order to test the hypothesis H0 : θ = θ0 in Rd against the alternatives H1 : θ 6= θ0, we consider test statistics based on
dual divergence estimators θ̂ϕ,n(α) defined in (5).
Let α ∈ Θ be fixed. Note that a dual divergence estimator of the parameter θ0 is an M-estimator obtained as solution of

the equation
n∑
i=1

ψϕ,α(Xi, θ̂ϕ,n(α)) = 0, (10)

where ψϕ,α(x, θ) is defined as in (8).
Suppose that the cumulant generating function of the vector of scores ψϕ,α(X, θ) defined by

Kψϕ,α (λ, θ) := log E{e
λtψϕ,α(X,θ)}, (11)

where the expectation is taken with respect to Pθ0 , exists.
We consider the test statistics hϕ,α (̂θϕ,n(α)), where

hϕ,α(θ) := sup
λ

(−Kψϕ,α (λ, θ)),

with Kψϕ,α defined in (11).
Following Robinson et al. [3], we will use an approximation to the p-value

p = PH0(hϕ,α (̂θϕ,n(α)) ≥ hϕ,α(θϕ,n(α))) (12)

of the test based on the test statistic hϕ,α (̂θϕ,n(α)), where θϕ,n(α) is the observed value of θ̂ϕ,n(α).
In order to derive the approximation of the p-value (12), we assume that the density of θ̂ϕ,n(α) exists and has the

saddlepoint approximation

f̂θϕ,n(α)(t) = (2π/n)
−d/2enKψϕ,α (λϕ,α(t),t)|Bϕ,α(t)||Σϕ,α(t)|−1/2(1+ O(n−1)), (13)

where λϕ,α(t) is the saddlepoint satisfying

K ′ψϕ,α (λ, t) :=
∂

∂λ
Kψϕ,α (λ, t) = 0, (14)

| · | denotes the determinant,

Bϕ,α(t) := e
−Kψϕ,α (λϕ,α(t),t)E

{
∂

∂t
ψϕ,α(X, t)eλ

tψϕ,α(X,t)
}

and

Σϕ,α(t) := e
−Kψϕ,α (λϕ,α(t),t)E

{
ψϕ,α(X, t)ψϕ,α(X, t)teλ

tψϕ,α(X,t)
}
.

The saddlepoint approximation of the form (13) was introduced in Field [6] for a general M-estimator and has
subsequently been considered by Skovgaard [13] and Almudevar et al. [8]. Conditions which imply this saddlepoint
approximation are given in [8].
Under the assumption that the density of the dual divergence estimator θ̂ϕ,n(α) exists and admits the saddlepoint

approximation (13), the p-value (12) admits the approximations (1.5) and (1.6) in [3]. This means that the test statistic
2nhϕ,α (̂θϕ,n(α)) is asymptotically χ2 with a relative error of order O(n−1).
Our interest is to combine the test accuracy in small samples with the robustness property of the dual divergence

estimator. The result of this combination is discussed in Section 4.

4. Robust saddlepoint test statistics based on dual divergence estimators

Parametric models are idealized approximations of reality and slight deviations from them can have significant effects
on classical estimators and tests based on these models. In spite of their second order accuracy, classical inference based on
saddlepoint approximations can be affected by small deviations from the assumptions on the model (see [14]). Therefore,
robust alternatives need to be looked for. To achieve both robustness and small sample properties, we combine results
from Toma and Broniatowski [2] and Robinson et al. [3] and obtain robust test statistics for hypotheses testing which are
asymptotically χ2 distributed, with a relative error of order O(n−1).
For testing the hypothesisH0 : θ = θ0with respect to the alternatives θ 6= θ0, we consider the test statistics hϕ,α (̂θϕ,n(α)),

with θ̂ϕ,n(α) robust dual divergence estimators of θ0. As it is shown in the following subsections, these test statistics are
also robust and, moreover, their breakdown point is greater or equal to the breakdown point of the corresponding dual
divergence estimator.
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4.1. Influence functions

The influence function of a test statistic shows the influence of an outlier in the sample on the value of the test statistic
and hence on the decision (acceptance or rejection ofH0) which is based on this value. Boundedness of the influence function
of the test statistic implies that in a neighborhood of the model, the level of the test does not become arbitrarily close to 1
and the power of the test does not become arbitrarily close to 0.
The statistical functional associated to a test statistic hϕ,α (̂θϕ,n(α)) is defined by Uϕ,α(P) := hϕ,α(Tϕ,α(P)), where Tϕ,α is

the statistical functional corresponding to θ̂ϕ,n(α). As it can be deduced from the following result, the test statistic is robust,
because θ̂ϕ,n(α) itself is a robust estimator of θ0.

Proposition 1. The influence function of the test statistic hϕ,α (̂θϕ,n(α)) is

IF(x;Uϕ,α, Pθ0) = h
′

ϕ,α(θ0)
t
[M(ψϕ,α, Pθ0)]

−1ψϕ,α (x, θ0) , (15)

where

h′ϕ,α(θ0) = −
E{eλϕ,α(θ0)

tψϕ,α(X,θ0) ∂
∂θ
ψϕ,α(X, θ0)λϕ,α(θ0)}

E{eλϕ,α(θ0)tψϕ,α(X,θ0)}
,

the expectation being taken with respect to Pθ0 , M(ψϕ,α, Pθ0) is given by (7) and ψϕ,α (x, θ0) is given by (8).

Proof. First, observe that

Tϕ,α(Pθ0) = arg sup
θ∈Θ

∫
m(θ, α, x)dPθ0(x) = θ0,

since the function θ →
∫
m(θ, α, x)dPθ0(x) has a unique maximizer θ = θ0 (see [1]).

Then, for the contaminated model P̃θ0 εx := (1 − ε)Pθ0 + εδx, where ε > 0, it holds Uϕ,α(P̃θ0 εx) = hϕ,α(Tϕ,α(P̃θ0 εx)) and
differentiation with respect to ε yields

IF(x;Uϕ,α, Pθ0) =
∂

∂ε
[Uϕ,α(P̃θ0 εx)]ε=0 = h

′

ϕ,α(θ0)
t IF(x; Tϕ,α, Pθ0). (16)

Differentiation with respect to θ yields

h′ϕ,α(θ) = −
∂

∂λ
[Kψϕ,α (λ, θ)]λ=λϕ,α(θ)λ

′

ϕ,α(θ)−
∂

∂θ
[Kψϕ,α (λ, θ)]λ=λϕ,α(θ)

= −
∂

∂θ
Kψϕ,α (λϕ,α(θ), θ),

by using the definition of λϕ,α(θ). Consequently,

h′ϕ,α(θ0) = −
E{eλϕ,α(θ0)

tψϕ,α(X,θ0) ∂
∂θ
ψϕ,α(X, θ0)λϕ,α(θ0)}

E{eλϕ,α(θ0)tψϕ,α(X,θ0)}
, (17)

which exists since ψϕ,α(x, θ0) is bounded and the integral
∫

∂
∂θ
ψϕ,α(x, θ0)pθ0(x)dx exists.

Substituting h′ϕ,α(θ0) from (17) and IF(x; Tϕ,α, Pθ0) from (6) in (16) we obtain (15). �

4.2. Breakdown point

The breakdown point, as well as the influence function, provides information about the stability of an estimator or of a
test statistic at the presence of outliers. It quantifies howmuch a small change in the underlying distribution impacts on the
distribution of estimators or test statistics.
Weprove that a dual divergence estimatorwith high breakdownpointwill induce this characteristic to the corresponding

test statistic.
The breakdown point of an estimator θ̂n of a parameter θ0 is the largest amount of contamination that the data

may contain, such that θ̂n still gives some information about θ0. Following Maronna et al. [15] (p. 58), the asymptotic
contamination breakdown point of an estimator θ̂n at Pθ0 , denoted by ε

∗(̂θn, θ0), is the largest ε∗ ∈ (0, 1) such that for
ε < ε∗, T ((1 − ε)Pθ0 + εP) as function of P remains bounded and also bounded away from the boundary ∂Θ of Θ . Here,
T ((1− ε)Pθ0 + εP) is the asymptotic value of the estimator at (1− ε)Pθ0 + εP by means of the convergence in probability.
The definition means that there exists a bounded and closed set K ⊂ Θ such that K ∩ ∂Θ = ∅ and

T ((1− ε)Pθ0 + εP) ∈ K , ∀ε < ε∗, ∀P.

Similarly, it can be defined the asymptotic contamination breakdown point of a test statistic at Pθ0 .
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Proposition 2. Assuming that the asymptotic breakdown point of θ̂ϕ,n(α) at Pθ0 exists, the asymptotic breakdown point of the
test statistic hϕ,α (̂θϕ,n(α)) at Pθ0 exists too and verifies

ε∗(hϕ,α (̂θϕ,n(α)), Pθ0) ≥ ε
∗(̂θϕ,n(α), Pθ0). (18)

Proof. Let ε < ε∗(̂θϕ,n(α), Pθ0). Then there exists a bounded and closed set K ⊂ Θ such that K ∩ ∂Θ = ∅ and

Tϕ,α((1− ε)Pθ0 + εP) ∈ K , ∀P.

Since hϕ,α is continuous as function of θ and the spaces onwhich it is defined, respectively, takes values are separated, using
Borel–Lebesgue theorem, hϕ,α(K) is compact. Therefore we get the existence of the set hϕ,α(K)which is bounded and closed
in [0,∞) such that

Uϕ,α((1− ε)Pθ0 + εP) = hϕ,α(Tϕ,α((1− ε)Pθ0 + εP)) ∈ hϕ,α(K), ∀P.

Consequently, the inequality (18) is verified. �

It is difficult to give a general theoretic result concerning the breakdown point of dual divergence estimators. The fact
that the correspondingψ-function, given by (19) for Cressie–Read divergences, has a part which depends on θ but does not
depend on x induces some difficulties when adapting known methods of finding the breakdown point for M-estimators.
However, Monte Carlo simulations show that in many cases the dual divergence estimators have high breakdown point. In
some particular cases we can confirm that from theoretical point of view.
For example, for locationmodels, when theψ-function of the dual divergence estimator, as function of x−θ , is increasing

and it can be established that ψ(∞) = k2 and ψ(−∞) = −k1, the asymptotic breakdown point is

ε∗(̂θϕ,n(α), Pθ0) =
min{k1, k2}
k1 + k2

(see [15], p. 59). This is the case of some dual divergence estimators corresponding to the KLm divergence. For instance, for
the logistic location model, the ψ-function associated to the dual KLm divergence estimator of the location parameter θ0 is

ψ(x, θ) =
1− eθ−x

1+ eθ−x
,

hence k1 = k2 = 1 and ε∗(̂θϕ,n(α), Pθ0) = 0.5.
Moreover, the dual divergence estimators of a location parameter that are redescending M-estimators have the

asymptotic breakdown point 0.5 (see [15], p. 59). This is the case of the dual KLm divergence estimator of the location
parameter from the Cauchy model, for which

ψ(x, θ) =
2(x− θ)
1+ (x− θ)2

.

4.3. Choices of the tuning parameter and of the Cressie–Read divergence

In the following, for some parametric models, we provide simple conditions such that θ̂ϕ,n(α) is a robust estimator of θ0
and admits a saddlepoint approximation of the density of the form (13). These simple conditions turn out when we check
in each case the conditions settled by Almudevar et al. [8] in order to have the saddlepoint approximation of the density of
the dual divergence estimator. They assure that the test statistic is robust and asymptotically χ2 distributed with a relative
error of order O(n−1). In Section 5, we use these conditions for the scale normal model and for the Cauchy location model
in order to perform some Monte Carlo studies.
We consider the Cressie–Read divergences. For these divergences, the ψ-function corresponding to a dual divergence

estimator is

ψϕγ ,α(x, θ) = −
∫ (

pα
pθ

)γ
ṗθdµ+

(
pα(x)
pθ (x)

)γ ṗθ (x)
pθ (x)

. (19)

Consider the normal distributionN (m, σ 2)with known mean, σ being the parameter of interest. The ψ-function of a dual
divergence estimator of σ is

ψϕγ ,σ (x, σ ) = Iγ ,σ (σ )+ cγ ,σ (x, σ ), (20)

where

Iγ ,σ (σ ) =
σ γ−2

σ γ
√
2π

∫ [
1−

(
x−m
σ

)2]
e−

1
2 (
x−m
σ )

2
(
e−

1
2

[
( x−mσ )

2
−( x−mσ )

2
])γ

dx
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and

cγ ,σ (x, σ ) =
σ γ−1

σ γ

[(
x−m
σ

)2
− 1

](
e−

1
2

[
( x−mσ )

2
−( x−mσ )

2
])γ

.

Here, σ plays the role ofα. In [2] it is shown thatψϕγ ,σ (x, σ ) is bounded as function of xwhen γ > 0 and σ < σ , respectively
when γ < 0 and σ > σ . In each of these situations, the integralM(ψϕγ ,σ , Pσ ) exists and is invertible, therefore θ̂ϕγ ,n(σ ) is
robust. The conditions of Almudevar et al. [8] are satisfied if additionally γ < 0. Thus we state that whenever γ < 0 and
σ > σ , θ̂ϕγ ,n(σ ) is a robust estimator of σ and its density have a saddlepoint approximation of the form (13).
For the exponential distribution, the ψ-function corresponding to a dual divergence estimator of θ0 is

ψϕγ ,α(x, θ) = Iγ ,α(θ)+ cγ ,α(x, θ),

with

Iγ ,α(θ) =
∫
∞

0

(
θ

α

)γ
(e−x(

1
α−

1
θ
))γ
(
x
θ3
−
1
θ2

)
e−

x
θ dx

and

cγ ,α(x, θ) =
(
θ

α

)γ
(e−x(

1
α−

1
θ
))γ
(
x
θ2
−
1
θ

)
.

The dual divergence estimator is robust when γ > 0 and α < θ or when γ < 0 and α > θ . If moreover γ < 0, the
conditions to have the saddlepoint approximation of the density of dual divergence estimator are satisfied. Therefore the
choice will be with respect to γ < 0 and α > θ .
For the Cauchy distribution,

ψϕγ ,α(x, θ) = Iγ ,α(θ)+ cγ ,α(x, θ), (21)

where

Iγ ,α(θ) = −
∫ (

1+ (x− θ)2

1+ (x− α)2

)γ 2(x− θ)
π [1+ (x− θ)2]2

dx

and

cγ ,α(x, θ) =
2(x− θ)

π [1+ (x− θ)2]

(
1+ (x− θ)2

1+ (x− α)2

)γ
.

Note thatψϕγ ,α(x, θ) is bounded with respect to x for any α and any γ and that θ̂ϕγ ,n(α) is always robust. In the case of this
distribution, any α together with γ ≤ 1 assure the conditions of robust testing procedure.
In the case of the logistic distribution,

ψϕγ ,α(x, θ) = Iγ ,α(θ)+ cγ ,α(x, θ),

where

Iγ ,α(θ) = −(eα−θ )γ
∫ (

1+ e−(x−θ)

1+ e−(x−α)

)2γ e−(x−θ) − e−2(x−θ)
(1+ e−(x−θ))3

dx

and

cγ ,α(x, θ) = (eα−θ )γ
(
1+ e−(x−θ)

1+ e−(x−α)

)2γ 1− e−(x−θ)
1+ e−(x−θ)

.

Here the robust testing methodology works for any choice of α and any γ ≤ 0.
If we consider X distributed as a vector of three independent exponential variables with means θi, i = 1, 2, 3, the

conditions to apply the robust testing procedure reduce to a choice of the Cressie–Read divergence for which γ < 0 and to
a choice of α such that αi > θi, where αi are the components of α.

5. Monte Carlo results

In order to illustrate the behavior of the tests that we propose, we performMonte Carlo experiments for two parametric
models, namely for the scale normal model and for the Cauchy location model. We work with data generated from the
considered model and from slight perturbations of it. For some values of the tuning parameter α and for some Cressie–Read
divergences, as indicated in the Section 4.3, we compute θ̂ϕγ ,n(α) and the corresponding test statistic 2nhϕγ ,α (̂θϕγ ,n(α)).
Under the null hypothesis, these test statistics are asymptotically χ21 . In each experiment we simulate 50000 samples
and we report the actual levels P(2nhϕγ ,α (̂θϕγ ,n(α)) ≥ vα0) of the tests based on the test statistics 2nhϕγ ,α (̂θϕγ ,n(α))
corresponding to 100 values of the nominal level α0 = 1/1000, 2/1000, . . . , 100/1000, vα0 being the critical value given
by P(χ21 ≥ vα0) = α0. We also report the relative errors (P(2nhϕγ ,α (̂θϕγ ,n(α)) ≥ vα0)− α0)/α0.
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5.1. The scale normal model

In the first Monte Carlo experiment, we consider the scale normal model with known mean, σ being the parameter of
interest. The null hypothesis is H0 : σ = 1.

(a) n = 20. (b) n = 20.

(c) n = 50. (d) n = 50.

(e) n = 100. (f) n = 100.

Fig. 1. Comparison of the actual level and the nominal level of the tests RS1, RS2, CL and CS.
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Fig. 2. Relative errors of the robust tests applied to the scale normal model N (0, 1), when the data are generated from the model, the tuning parameter
is σ = 1.7 and γ = −2,−1.5,−1,−0.5.

Fig. 3. Relative errors of the robust tests applied to the scale normal model N (0, 1), when the data are generated from 0.95N (0, 1) + 0.05N (0, 2), the
tuning parameter is σ = 1.7 and γ = −2,−1.5,−1,−0.5.

In order to show the robustness of the proposed test, we consider data generated from model, and then from small
neighborhoods of it. More precisely, first, the data are generated from the normal distribution N (0, 1) and then from the
perturbed distributions of the form (1− ε)N (0, 1)+ εN (0, 2), where ε = 0.05, 0.1.
The choice of the tuning parameter is σ = 1.7 and the Cressie–Read divergences that we consider correspond to γ ∈

{−2,−1.5,−1,−0.5}. These choices are in accordance with the remarks in the Section 4.3, referring to the conditions to
achieve robustness and small sample accuracy of the testing procedure. For each of these divergences, we compute the dual
divergence estimator of the parameter σ = 1 (as solution of the Eq. (10) with the ψ-function (20)) and the corresponding
test statistic.
In addition to these robust saddlepoint test statistics, we consider the classical χ2 test statistic

∑n
i=1 X

2
i , as well as the

saddlepoint test statistic corresponding to the ψ-function ψ(x, θ) = x2 − θ2. The last ψ-function is associated to the
maximum likelihood estimator of σ = 1.
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Fig. 4. Comparison of the actual level and the nominal level of the robust tests applied to the scale normal model N (0, 1), when the data are generated
from 0.9N (0, 1)+ 0.1N (0, 2), the tuning parameter is σ = 1.7 and γ = −1,−0.5.

Fig. 5. Relative errors of the robust tests applied to the scale normal model N (0, 1), when the data are generated from 0.9N (0, 1) + 0.1N (0, 2), the
tuning parameter is σ = 1.7 and γ = −2,−1.5,−1,−0.5.

In Fig. 1 we compare the tests corresponding to these test statistics (RS1 and RS2 are the robust saddlepoint tests for
γ = −1 andγ = −0.5, CL is the classicalχ2 test andCS is the classical saddlepoint test).We represent the actual levels of the
tests to be compared with the nominal levels. The data are generated from themodelN (0, 1) in (a), (c) and (e), respectively
from the perturbed model 0.95N (0, 1) + 0.05N (0, 2) in (b), (d) and (f). The sample size is n = 20, 50, 100. When the
data are not contaminated, all the tests give very good results, for all the sample sizes. When the data are contaminated, the
robust saddlepoint tests give better results than the classical χ2 test or the classical saddlepoint test. The best results are
obtained by the robust saddlepoint test corresponding to γ = −0.5 when n = 20, respectively by the robust saddlepoint
test corresponding to γ = −1 when n = 50, 100.
In Fig. 4 we report the actual levels of the tests when the data are generated from 0.9N (0, 1) + 0.1N (0, 2) and the

sample size is n = 20.
In Figs. 2, 3 and 5 we report the relative errors of the tests based on robust saddlepoint test statistics, when the

data are generated from the model N (0, 1), respectively from the perturbed models 0.95N (0, 1) + 0.05N (0, 2) and
0.9N (0, 1)+ 0.1N (0, 2). In each case the sample size is n = 20. When the data are not contaminated, the approximation
of the level is very good for all the considered divergences. For contaminated data, the results for the proposed test
statistics are slightly modified when comparing with the results for the noncontaminated data, the best being obtained for
γ = −0.5.
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5.2. The Cauchy location model

Another Monte Carlo experiment involves the Cauchy location model Cau(θ). The null hypothesis is H0 : θ = 0.
First, data are generated from the model Cau(0) and then from the perturbed distributions (1 − ε)Cau(0) + εCau(1),

where ε = 0.05, 0.1. The sample size is in all cases n = 20.
According to the results from Section 4.3, we choose α = −1 and Cressie–Read divergences corresponding to γ ∈ {−2,

−1.5, 0, 0.5}. For these choices we expect to achieve robustness and small sample accuracy for the testing procedure. For
each of the mentioned divergences, we compute the dual divergence estimator of the parameter θ = 0 (as solution of the
Eq. (10) with the ψ-function (21)) and the corresponding test statistic.
In Figs. 6 and 7 we represent the actual levels of the tests, respectively the relative errors, when the data are generated

from Cau(0). The approximation of the level is very good for all the considered divergences.
In the second case, we consider data corresponding to the contaminated model 0.95Cau(0) + 0.05Cau(1). With

this perturbation, the results for the proposed test statistics are slightly modified if compared with the results for the
noncontaminated data. This can be seen from Figs. 8 and 9, the best results being obtained for γ = 0.5 (the Hellinger
divergence).
In the third case, the data are generated from 0.9Cau(0)+ 0.1Cau(1). As it can be inferred from Figs. 10 and 11, despite

of larger deviations from the model, the results are still good, the best being again obtained for the Hellinger divergence.

Fig. 6. Comparison of the actual level and the nominal level of the robust tests applied to the model Cau(0), when the data are generated from the model,
the tuning parameter is α = −1 and γ = 0, 0.5.

Fig. 7. Relative errors of the robust tests applied to the model Cau(0), when the data are generated from the model, the tuning parameter is α = −1 and
γ = −2,−1.5, 0, 0.5.
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Fig. 8. Comparison of the actual level and the nominal level of the robust tests applied to the model Cau(0), when the data are generated from
0.95Cau(0)+ 0.05Cau(1), the tuning parameter is α = −1 and γ = 0, 0.5.

Fig. 9. Relative errors of the robust tests applied to the model Cau(0), when the data are generated from 0.95Cau(0)+ 0.05Cau(1), the tuning parameter
is α = −1 and γ = −2,−1.5, 0, 0.5.

Fig. 10. Comparison of the actual level and the nominal level of the robust tests applied to the model Cau(0), when the data are generated from
0.9Cau(0)+ 0.1Cau(1), the tuning parameter is α = −1 and γ = 0, 0.5.
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Fig. 11. Relative errors of the robust tests applied to the model Cau(0), when the data are generated from 0.9Cau(0) + 0.1Cau(1), the tuning parameter
is α = −1 and γ = −2,−1.5, 0, 0.5.

Thus, the numerical results show that the proposed tests are stable in the presence of small deviations from the
underlying model and, in the meantime, very accurate in small samples.
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