Bonferroni Inequalities and Negative Cycles in Large Complete Signed Graphs

Dragoş Popescu and Ioan Tomescu

In this paper the problem of characterizing extremal graphs K_n relatively to the number of negative p-cycles, when the number of negative edges is fixed, is solved for large n. This number can be expressed as an alternating sum for which the Bonferroni inequalities hold.

Finally, the asymptotic value of the probability that a p-cycle of K_n is negative is found as $n \to \infty$, if the negative edges induce a subgraph the components of which are paths or cycles.

1. Introduction

A signed graph G based on F is an ordinary graph F with each edge marked as positive or negative. In this paper we shall consider only the case in which F is the complete graph K_n. A cycle of K_n is said to be negative if it contains an odd number of negative edges; otherwise, it is positive [2]. Let us denote by $K_{p,q}$ the complete bipartite graph the partite sets of which contain p and q vertices respectively, by sK_2 the graph on $2s$ vertices consisting of s vertex-disjoint edges, by $G(K_n; H)$ the complete signed graph K_n the negative edges of which induce a subgraph isomorphic to H, and by $C_p(G)$ the number of negative p-cycles contained by the signed graph G. If signed (or ordinary) graphs G and H are isomorphic, we shall denote this by $G \equiv H$.

A signed graph is called balanced if each of its cycles is positive. It is easy to show that a signed graph G based on K_n is balanced iff $G \equiv G(K_n; K_{p,q})$, where $p + q = n$ and $p, q \geq 0$. Psychologists are sometimes interested in the smallest number $d = d(G)$ such that a signed graph G may be converted into a balanced graph by changing the signs of d edges. It is easy to see that, for a signed graph G having $d(G) = k$, there exists a cocycle ω of K_n such that the signed graph obtained from G by changing the signs of all edges of ω has exactly k negative edges.

2. Bonferroni Inequalities for the Symmetric Difference

It is well known that for s sets A_1, A_2, \ldots, A_s, their symmetric difference, denoted $\bigtriangleup_{i=1}^s A_i$, is the set of elements in $\bigcup_{i=1}^s A_i$ that belong to an odd number of sets A_1, \ldots, A_s.

The following property is an analogue of the inclusion–exclusion principle for the symmetric difference of s sets.

Lemma 1. The following equality holds:

$$\left| \bigtriangleup_{i=1}^s A_i \right| = \sum_{i=1}^s (-2)^{i-1} \sum_{K \subseteq \{1, \ldots, s\} \setminus \{i\}} \left| \bigcap_{p \in K} A_p \right|.$$
PROOF. By Jordan’s sieve formula, we deduce that

\[
\left| \hat{\Delta}_i A_i \right| = \sum_{k \geq 1} \sum_{k \text{ odd}} (-1)^{\nu(k)} \binom{k}{i} \sum_{|p=K|} \left| p \cap K \right| A_p
\]

\[
= \sum_{k \geq 1} \sum_{k \text{ odd}} (-1)^{\nu(k)} \binom{k}{i} \sum_{|p=K|} \left| p \cap K \right| A_p
\]

\[
= \sum_{i=1}^s (-2)^{i-1} \sum_{K \subseteq \{1, \ldots, s\}} \left| p \cap K \right| A_p.
\]

\[
\left| \hat{\Delta}_i A_i \right| = 2^{i+1} \sum_{i=1}^s (-2)^{i-1} \sum_{K \subseteq \{1, \ldots, s\}} \left| p \cap K \right| A_p
\]

for every \(0 \leq t \leq \frac{s-1}{2}\);

\[
\left| \hat{\Delta}_i A_i \right| = 2^i \sum_{i=1}^s (-2)^{i-1} \sum_{K \subseteq \{1, \ldots, s\}} \left| p \cap K \right| A_p
\]

for every \(1 \leq t \leq \frac{s}{2}\).

The proof is similar to that of the Bonferroni inequalities for the inclusion–exclusion principle (see [3, 4]), since \(\left| \hat{\Delta}_{i=1} A_i \right| = |\Delta_{i=1} A_i| + |A_{i+1}| - 2 |\Delta_{i=1} (A_i \cap A_{i+1})|\).

3. Extremal Numbers of Negative p-Cycles in Large Complete Signed Graphs with a Given Number of Negative Edges

We need the following auxiliary result, the proof of which can be set out using standard methods [1].

LEMMA 3. Suppose that the vertex-disjoint paths \(P_1, \ldots, P_s\) containing together \(t+s\) vertices are induced subgraphs of \(K_n\). The number of \(p\)-cycles of \(K_n\) that contain all paths \(P_1, \ldots, P_s\) is equal to \(2^{s-1}(p-1)! \binom{n-p}{n-p}^s\).

THEOREM 1. Let \(G\) be a complete graph of order \(n\) containing \(s\) negative edges.

(a) If \(n \geq \max(s+1, 2p-2)\), then \(C_p(G) \geq C_p^-(G(K_n; K_{1,s}))\) and the equality holds iff: \(G \equiv G(K_n; K_{1,s})\) for \(s \neq 3\) and \(p \geq 3\) or \(s = 3\) and \(p = 3\); \(G \equiv G(K_n; K_{1,3})\) or \(G \equiv G(K_n; K_3)\) for \(s = 3\) and \(p \geq 4\).

(b) If \(n \geq 2s\) for \(p = 3\) and \(n \geq 2p-2+2(\frac{s}{2})\) for \(p \geq 4\), then \(C_p^-(G) \leq C_p^-(G(K_n; sK_2))\) and the equality holds iff \(G \equiv G(K_n; sK_2)\).

PROOF. (a) Suppose that the negative edges of \(G(K_n; K_{1,s})\) are denoted by \(e_1, \ldots, e_s\), and let \(A_i\) be the set of \(p\)-cycles of \(K_n\) containing edge \(e_i\) for \(i = 1, \ldots, s\). Then

\[
C_p^-(G(K_n; K_{1,s})) = \left| \hat{\Delta}_{i=1} A_i \right| = \sum_{i=1}^s |A_i| - \sum_{1 \leq i < j \leq s} |A_i \cap A_j|
\]

\[
= \binom{s}{1}(p-2)! \binom{n-2}{n-p} - 2 \binom{s}{2}(p-3)! \binom{n-3}{n-p}.
\]
If $G \not= G(K_n^+; K_n^+)$, let f_1, \ldots, f_s be the negative edges of G and let B_i be the set of p-cycles of K_n that contain edge f_i for $i = 1, \ldots, s$. By the Bonferroni inequalities we deduce that

$$C_p^r(G) = \left| \bigcup_{i=1}^s B_i \right| \geq \sum_{i=1}^s |B_i| - \sum_{i<j<s} |B_i \cap B_j|.$$

(2)

If the edges f_i and f_j have no common vertex, then $|B_i \cap B_j| = 2(p-3)! \binom{n-3}{p-3}$ by Lemma 3; otherwise, $|B_i \cap B_j| = (p-3)! \binom{n-3}{p-3}$ and $2(p-4)! \binom{n-3}{p-4}$ is equivalent to $n \geq 2p - 2$. For $s = 1$ the property is obvious and for $s \geq 2$ and $s \neq 3$, since $G \not= G(K_n^+; K_n^+)$, there exist two edges f_i and f_j having no common extremity; hence $|B_i \cap B_j| < (p-3)! \binom{n-3}{p-3}$. Since, for every i, $|B_i| = (p-2)! \binom{n-2}{p-2}$, from (1) and (2) it follows that $C_p^r(G) > C_p^r(G(K_n^+; K_n^+))$.

If $s = 3$, $G \not= G(K_n^+; K_n^+)$ and any pair of edges among f_1, f_2 and f_3 have a common extremity, then $G \equiv G(K_n^+; K_3)$ and in this case we obtain that $C_p^r(G) > C_p^r(G(K_n^+; K_3))$ and the equality sign occurs iff $p \geq 4$.

(b) By the Bonferroni inequalities we deduce, as above, that

$$C_p^r(G(K_n^+; sK_2)) = \left(\begin{array}{c} s \\ 1 \end{array} \right) (p-2)! \binom{n-2}{p-2} - 2 \left(\begin{array}{c} s \\ 2 \end{array} \right) (p-3)! \binom{n-3}{p-3}.$$

(3)

Suppose that $G \not= G(K_n^+; sK_2)$. With the notation introduced above we find that $|B_i \cap B_j \cap B_k|$ is equal to: (i) $2^2(p-4)! \binom{n-4}{p-4}$ if $H_{i,j,k} \equiv 3K_2$, where $H_{i,j,k}$ denotes the subgraph induced by f_i, f_j and f_k; (ii) $2(p-4)! \binom{n-4}{p-4}$ if $H_{i,j,k}$ is isomorphic to a graph of order 5 consisting of a path of length 2 and an edge; (iii) 0 for $p \geq 4$ and 1 for $p = 3$ if $H_{i,j,k} \equiv K_5$; (iv) $(p-4)! \binom{n-4}{p-4}$ if $H_{i,j,k}$ is isomorphic to a path of length 3; (v) 0 if $H_{i,j,k} \equiv K_{1,3}$. Now the proof follows in a similar way as above, by considering the cases $p \geq 4$ and $p = 3$.

It is clear that $d(G(K_n^+; K_{1,3})) = d(G(K_n^+; sK_2)) = s$ for every $n \geq 2s$. Hence, for large n, from Theorem 1 we can deduce the structure of signed graphs based on K_n such that $d(G) = s$ having a minimum (resp. maximum) number of negative p-cycles.

4. **NEGATIVE p-CYCLES IN COMPLETE SIGNED GRAPHS THE NEGATIVE EDGES OF WHICH INDUCE PATHS OR CYCLES**

Lemma 4. Let k and i be natural fixed numbers and let G be a graph with s edges such that $d(x) \leq k$ for every $x \in V(G)$. If $M_i(G)$ denotes the number of matchings of G containing i edges, the following equality holds:

$$\lim_{s \to \infty} \frac{M_i(G)}{s!} = \frac{1}{i!}.$$

Proof. Since the number of ordered selections of i pairwise non-adjacent edges of G is greater than or equal to $(s - (2k - 1)) \cdots (s - (i - 1)(2k - 1))$, it follows that $s(s - (2k - 1)) \cdots (s - (i - 1)(2k - 1))/i! \leq M_i(G) \leq \binom{s}{i}$ and the result follows.

Theorem 2. Let $G = G(K_n^+; H)$ be a complete signed graph such that the negative edges span a subgraph H containing s edges. If $\lim_{n \to \infty} s/n = \lambda$, $\lim_{n \to \infty} p/n = \mu$ and all components of H are paths or cycles, then

$$\lim_{n \to \infty} \frac{2pC_p^r(G)}{(n)_p} = \frac{1}{2}(1 - e^{-4\lambda \mu}).$$
PROOF. Suppose that the negative edges of G are e_1, \ldots, e_s and let A_i be the set of p-cycles of K_n containing e_i, for $i = 1, \ldots, s$. We can write:

$$C_p(G) = \sum_{i=1}^{s} \left(-2 \right)^{i-1} \sum_{K \subseteq \{1, \ldots, s\}} \left| \bigcap_{k \in K} A_k \right|.$$

We shall prove that, for any fixed i, we have

$$\lim_{n \to \infty} 2p \sum_{K \subseteq \{1, \ldots, s\}, |K| = i} \left| \bigcap_{k \in K} A_k \right| / (n)_p = \frac{(2\lambda \mu)^i}{i!}.$$

Suppose that the s negative edges of G induce r components C_1, \ldots, C_r, that are paths or cycles, having a_1, \ldots, a_r vertices, respectively. The number of the selections of i edges from the set of the edges of a path P of length $a-1$, such that these i edges generate exactly j connected components on P, is equal to $\binom{a-1}{i} \binom{a-j}{i-j}$ [5] and the number of these selections for a cycle C of length a is equal to $\binom{a-1}{i} \binom{a-j}{i-j}$ [1].

By Lemma 3, we deduce that

$$\lim_{n \to \infty} 2p \sum_{K \subseteq \{1, \ldots, s\}, |K| = i} \left| \bigcap_{k \in K} A_k \right| / (n)_p = \lim_{n \to \infty} 2p M(n, p, i, a_1, \ldots, a_r) / (n)_p,$$

where

$$M(n, p, i, a_1, \ldots, a_r) = (p - i - 1)! \sum_{i_1 + \cdots + i_r = i} \sum_{j_1, \ldots, j_r} \prod_{r=1}^{i} a(a_r, i_r, j_r) 2^{i-1} \times \binom{n - i - j}{n - p} = \sum_{i_1 + \cdots + i_r = i} \prod_{r=1}^{i} a(a_r, i_r, j_r) \times \binom{n - i - j}{n - p}$$

and

$$a(a_r, i_r, j_r) = \binom{i_r - 1}{j_r - 1} \binom{a_r - i_r}{j_r}$$

if C_i is a path and

$$a(a_r, i_r, j_r) = \binom{a_r}{j_r} \binom{i_r - 1}{j_r - 1} \binom{a_r - i_r - 1}{j_r}$$

if C_i is a cycle. But

$$a(a_r, i_r, j_r) = \binom{i_r - 1}{j_r - 1}$$

which implies that

$$\prod_{r=1}^{i} a(a_r, i_r, j_r) = s^i \prod_{r=1}^{i} \binom{i_r - 1}{j_r - 1}.$$

Let

$$N(n, p, s, i, j) = 2p(p - i - 1)! \binom{n - i - j}{n - p - i - j} / (n)_p = 2^s s! (p^i + O(p^{i-1})) / (n^{i+j} + O(n^{i+j-1})).$$

For $j < i$ we have $\lim_{n \to \infty} N(n, p, s, i, j) = 0$. If $j = i$, or $j_k = i_k$ for $k = 1, \ldots, r$, the i_k negative edges in C_k are pairwise non-adjacent for every $k = 1, \ldots, r$, i.e., they are the edges of a matching of cardinality i of H. By Lemma 4 we obtain that

$$\lim_{s \to \infty} \frac{M_i(H)}{s^i} = \frac{1}{i!}.$$
and if \(j_k = i_k \) for \(k = 1, \ldots, r \), then the corresponding part of the sum \(M(n, p, i, a_1, \ldots, a_r) \) is equal to \((p - i - 1)! M_i(H) 2^{i-1}(p - 2) \). It follows that

\[
\lim_{n \to \infty} 2pM(n, p, i, a_1, \ldots, a_r)/\binom{n}{p} = \frac{1}{i!} \lim_{n \to \infty} N(n, p, s, i, i) = \frac{(2\lambda \mu)^i}{i!}
\]

which proves (5). Since the alternating sum (4) satisfies the Bonferroni inequalities, it follows, by standard techniques, that

\[
\lim_{n \to \infty} \frac{2pC^r_p(G)}{\binom{n}{p}} = \sum_{i=1}^{\infty} (-2)^{i-1} \frac{(2\lambda \mu)^i}{i!} = \frac{1}{2}(1 - e^{-2\lambda \mu}).
\]

Note added in proof: The authors proved that the conclusion of the Theorem 2 holds also if we suppose that the degrees of vertices of \(H \) are bounded above by an absolute constant \(C \).

References

Received 9 July 1990 and accepted 20 June 1995

D. POPESCU AND I. TOMESCU

Department of Mathematics, University of Bucharest,
Str. Academiei, 14, R-70109 Bucharest, Romania