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Abstract

In the context of a renormalizable supersymmetric SO(10) Grand Unified Theory, we consider the 
fermion mass matrices generated by the Yukawa couplings to a 10 ⊕ 120 ⊕ 126 representation of scalars. 
We perform a complete investigation of the possibilities of imposing flavour symmetries in this scenario; 
the purpose is to reduce the number of Yukawa coupling constants in order to identify potentially predictive 
models. We have found that there are only 14 inequivalent cases of Yukawa coupling matrices, out of which 
13 cases are generated by Zn symmetries, with suitable n, and one case is generated by a Z2 × Z2 sym-
metry. A numerical analysis of the 14 cases reveals that only two of them—dubbed A and B in the present 
paper—allow good fits to the experimentally known fermion masses and mixings.
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1. Introduction

SO(10) is a popular gauge group for the construction of Grand Unified Theories (GUTs). 
The reason is that its 16-plet accommodates at once all the chiral fields of one fermion family. 
Now [1,2],

(16 ⊗ 16)S = 10 ⊕ 126, (1a)

(16 ⊗ 16)AS = 120, (1b)

where the subscripts “S” and “AS” stand for, respectively, the symmetric and the antisymmetric 
parts of the tensor product. Therefore, in a renormalizable theory the scalars occurring in the 
Yukawa couplings belong solely to the irreducible representations (irreps) 10, 126, and 120.1

Previously, in the so-called “minimal supersymmetric SO(10) GUT” (for an incomplete list of 
references see Refs. [3–5]) the 120 was absent. However, inconsistencies in the fit of the exper-
imental masses and mixings of the fermions—in particular, a tension between the seesaw and 
GUT scales [6]—led to the inclusion of the 120-plet; the resulting theory has been called [7]
the “new minimal supersymmetric SO(10) GUT” (NMSGUT)—see Ref. [8] and the references 
therein.2

It has turned out that the NMSGUT, which contains three 16-plets of fermionic fields and 
one multiplet of scalars for each of the irreps in the right-hand sides of equations (1), is quite a 
successful theory and is capable of accommodating all the available data on the fermion masses 
and mixings, including the recent neutrino oscillation data [11,12]; this has been demonstrated by 
numerical fits [13].3 However, adding a 120-plet to the 10-plet and the 126-plet of scalars leads 
to a proliferation of parameters in the Yukawa couplings; one might want to restrict the number 
of parameters in order to obtain potentially predictive scenarios. Attempts in this direction have 
been made: in Ref. [15], texture zeros were placed in the mass matrices; in Ref. [16], a Z2 flavour 
symmetry has been imposed together with a CP symmetry; in Ref. [17], real Yukawa couplings 
were assumed and CP was broken solely by the imaginary vacuum expectation values (VEVs) 
of the 120.

In the present paper we pursue the approach of Ref. [16] by investigating all the possible 
flavour symmetries acting on the Yukawa couplings in the NMSGUT. We firstly perform a com-
plete discussion by using only minimal assumptions; we thereby identify all the possible cases 
and their symmetry groups. Thereafter, all the cases are subjected to a numerical analysis in order 
to identify the viable ones. Partially anticipating our results, no non-Abelian flavour symmetry 
groups are permitted and there are 14 inequivalent cases, out of which 13 pertain to one-generator 
Abelian groups and only one case has a two-generator symmetry group Z2 × Z2. However, the 
numerical analysis rules out almost all the cases, leaving only two viable ones which are com-
patible with the data on the fermion masses and mixings.

In section 2 we fix the notation, display the basic formulas needed for our investigation, and set 
forth our assumptions. In section 3 we list all the 14 cases. The results of the numerical analysis 
are presented in section 4. The conclusions of our work are given in section 5. The analysis of two 
specific problems that arise in family symmetry-furnished GUTs is deferred to Appendix A. The 

1 The representations 10 and 120 are self-conjugate.
2 A completely different approach is SO(10) GUT models in extra dimensions—see for instance Ref. [9] and the 

references therein—or with a hidden sector [10].
3 Note that skipping the 126 of scalars does not allow for a good fit of even the charged-fermion sector alone [14].



P.M. Ferreira et al. / Nuclear Physics B 906 (2016) 289–320 291
discussion of the possibility of one further group generator is left to Appendix B. Appendix C
focuses on the derivation of some inequalities among the VEVs of the various SO(10) scalar 
representations.

2. Notation, framework, and assumptions

The relevant fermion mass matrices are given by (see for instance Refs. [2,18])

Md = kd H + κd G + vd F, (2a)

Mu = ku H + κu G + vu F, (2b)

M� = kd H + κ� G − 3vd F, (2c)

MD = ku H + κD G − 3vu F, (2d)

where Md , Mu, and M� are the mass matrices of the down-type quarks, the up-type quarks, and 
the charged leptons, respectively, while MD is the neutrino Dirac mass matrix. The Yukawa-
coupling matrices H , G, and F are associated with the scalar irreps 10, 120, and 126, respec-
tively. Those matrices have the (anti)symmetry properties

HT = H, (3a)

GT = −G, (3b)

FT = F. (3c)

The coefficients kd , vd , κd , and κ� are the VEVs of the Higgs doublet components in the 
respective SO(10) scalar irreps which contribute to the Higgs doublet Hd of the Minimal Su-
persymmetric Standard Model (MSSM). The remaining coefficients—ku, vu, κu, and κD—refer 
to Hu. The light-neutrino mass matrix is obtained as

Mν = ML − MDM−1
R MT

D (4)

with

ML = wL F, (5a)

MR = wR F, (5b)

where wL and wR are the VEVs of scalar triplets of the Pati–Salam [19] group SU(4)c ×
SU(2)L × SU(2)R , which are part of the scalar 126-plet of SO(10). The first term in the right-
hand side of equation (4) corresponds to the contribution of the type II seesaw mechanism [20]
and the second term to the contribution of the type I seesaw mechanism [21]. Thus,

wR

vd

Mν = wLwR

v2
d

MF
d − MD

(
MF

d

)−1
MT

D, (6)

where MF
d ≡ vdF is the component of the down-type-quark mass matrix arising from the 

Yukawa coupling to the 126 of scalars. One sees that

• a complex factor wLwR

/
v2
d parameterizes the strength of the type II seesaw contribution 

relative to the strength of the type I seesaw contribution; and
• the overall magnitude of the neutrino masses relative to the charged-fermion masses is pa-

rameterized by a dimensionless factor |wR/vd |.
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The mass Lagrangian of the “light” fermions reads

Lmass = −d̄LMddR − ūLMuuR − �̄LM��R − 1

2
ν̄LMν (νL)c + H.c., (7)

with (νL)c = Cν̄T
L being the charge-conjugate of νL. One diagonalizes the “Hermitian mass 

matrices” as

U
†
d

(
MdM

†
d

)
Ud = diag

(
m2

d , m2
s , m2

b

)
, (8a)

U†
u

(
MuM

†
u

)
Uu = diag

(
m2

u, m2
c, m2

t

)
, (8b)

U
†
�

(
M�M

†
�

)
U� = diag

(
m2

e, m2
μ, m2

τ

)
, (8c)

U†
ν

(
MνM†

ν

)
Uν = diag

(
m2

1, m2
2, m2

3

)
, (8d)

where the matrices Ud,u,�,ν are unitary and 
∣∣m2

3 − m2
1

∣∣ � m2
2 − m2

1 > 0. The fermion mixing 
matrices are then

V ≡ UCKM = U†
uUd, (9a)

UPMNS = U
†
� Uν. (9b)

The neutrino mass spectrum is dubbed “normal” if m2
3 > m2

1 and “inverted” otherwise.
We make the following assumptions:

• All three matrices H , F , and G are non-zero.
• detF �= 0.
• No generation decouples.

The second assumption is necessary for the type I seesaw mechanism. The third assumption is 
an experimental fact.

If the Lagrangian is invariant under a flavour symmetry S0, then, due to the SO(10) structure 
of the Yukawa couplings we obtain the following relations:

S0 :
⎧⎨
⎩

WT HWeiα = H,

WT GWeiβ = G,

WT FWeiγ = F,

(10)

where W is the 3 × 3 unitary matrix which acts on the three matter 16-plets under S0. Without 
loss of generality we take W to be diagonal. The scalar multiplets 10, 120, and 126 transform 
under S0 with the phase factors eiα , eiβ , and eiγ , respectively. (One of the phase factors may be 
absorbed into W .)

3. The 14 cases

3.1. A single flavour symmetry

A single symmetry transformation S0 leads to 13 inequivalent cases. We refrain from going 
through the tedious arguments leading to these cases; we merely list them instead. In the follow-
ing, generic non-zero entries in the Yukawa coupling matrices are denoted “×”. For each case, 
we also give the Abelian group through which the Yukawa-coupling matrices can be enforced.
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Case A

Z2 : W = diag (+1, +1, −1) , eiα = +1, eiβ = −1, eiγ = +1, (11a)

H ∼
⎛
⎝× × 0

× × 0
0 0 ×

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 ×
× × 0

⎞
⎠ , F ∼

⎛
⎝× × 0

× × 0
0 0 ×

⎞
⎠ . (11b)

Case B

Z2 : W = diag (+1, +1, −1) , eiα = −1, eiβ = −1, eiγ = +1, (12a)

H ∼
⎛
⎝ 0 0 ×

0 0 ×
× × 0

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 ×
× × 0

⎞
⎠ , F ∼

⎛
⎝× × 0

× × 0
0 0 ×

⎞
⎠ . (12b)

Case C

Z2 : W = diag (+1, −1, +1) , eiα = −1, eiβ = +1, eiγ = +1, (13a)

H ∼
⎛
⎝ 0 × 0

× 0 ×
0 × 0

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , F ∼

⎛
⎝× 0 ×

0 × 0
× 0 ×

⎞
⎠ . (13b)

Case A1

Z4 : W = diag (+1, −1, ±i) , eiα = +1, eiβ = ∓i, eiγ = −1, (14a)

H ∼
⎛
⎝× 0 0

0 × 0
0 0 0

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , F ∼

⎛
⎝ 0 × 0

× 0 0
0 0 ×

⎞
⎠ . (14b)

Case A′
1

U(1) : W = diag
(

1, e2iσ , eiσ
)

, eiα = 1, eiβ = e−iσ , eiγ = e−2iσ , (15a)

H ∼
⎛
⎝× 0 0

0 0 0
0 0 0

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , F ∼

⎛
⎝ 0 × 0

× 0 0
0 0 ×

⎞
⎠ . (15b)

Case A′′
1

U(1) : W = diag
(
e2iσ , 1, eiσ

)
, eiα = 1, eiβ = e−3iσ , eiγ = e−2iσ , (16a)

H ∼
⎛
⎝ 0 0 0

0 × 0
0 0 0

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , F ∼

⎛
⎝ 0 × 0

× 0 0
0 0 ×

⎞
⎠ . (16b)

Case A2

U(1) : W = diag
(
eiσ , e−iσ , 1

)
, eiα = 1, eiβ = e−iσ , eiγ = 1, (17a)

H ∼
⎛
⎝ 0 × 0

× 0 0
0 0 ×

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , F ∼

⎛
⎝ 0 × 0

× 0 0
0 0 ×

⎞
⎠ . (17b)
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Case D1

Z3 : W = diag
(
ω2, ω, 1

)
, eiα = 1, eiβ = ω, eiγ = ω, (18a)

H ∼
⎛
⎝ 0 × 0

× 0 0
0 0 ×

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , F ∼

⎛
⎝ 0 0 ×

0 × 0
× 0 0

⎞
⎠ . (18b)

Case D2

Z3 : W = diag
(
ω, ω2, 1

)
, eiα = 1, eiβ = ω2, eiγ = ω, (19a)

H ∼
⎛
⎝ 0 × 0

× 0 0
0 0 ×

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , F ∼

⎛
⎝× 0 0

0 0 ×
0 × 0

⎞
⎠ . (19b)

Case D3

Z3 : W = diag
(
ω, 1, ω2

)
, eiα = 1, eiβ = 1, eiγ = ω, (20a)

H ∼
⎛
⎝ 0 0 ×

0 × 0
× 0 0

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , F ∼

⎛
⎝× 0 0

0 0 ×
0 × 0

⎞
⎠ . (20b)

Case D′
1

U(1) : W = diag
(
e−iσ , eiσ , e3iσ

)
, eiα = 1, eiβ = e−2iσ , eiγ = e−2iσ , (21a)

H ∼
⎛
⎝ 0 × 0

× 0 0
0 0 0

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , F ∼

⎛
⎝ 0 0 ×

0 × 0
× 0 0

⎞
⎠ . (21b)

Case D′
2

U(1) : W = diag
(
eiσ , e−iσ , e3iσ

)
, eiα = 1, eiβ = e−4iσ , eiγ = e−2iσ , (22a)

H ∼
⎛
⎝ 0 × 0

× 0 0
0 0 0

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , F ∼

⎛
⎝× 0 0

0 0 ×
0 × 0

⎞
⎠ . (22b)

Case D′
3

U(1) : W = diag
(
eiσ , e3iσ , e−iσ

)
, eiα = 1, eiβ = 1, eiγ = e−2iσ , (23a)

H ∼
⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , F ∼

⎛
⎝× 0 0

0 0 ×
0 × 0

⎞
⎠ . (23b)

In equations (18a), (19a), and (20a) ω ≡ exp (±i2π/3).
We note that only case A had been discussed earlier, in Ref. [16]. Cases A1 and A2 have 

Yukawa-coupling matrices which are restrictions (i.e. they contain extra zero matrix elements) 
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of those of case A; cases A′
1 and A′′

1 have Yukawa-coupling matrices which are more restrictive 
than those of case A1.

We demonstrate in Appendix A that the scalar potential of the NMSGUT can consistently be 
modified in order to incorporate the Z2 symmetries present in cases A, B and C.

3.2. A second flavour symmetry

The list of 13 cases in the previous subsection does not necessarily comprise all the Yukawa-
coupling matrices obtainable through flavour symmetries, because in each of those 13 cases either 
one or more further symmetry transformations might be operative and lead to more restrictive 
Yukawa-coupling matrices and thus to new cases. Let us denote a generic further symmetry 
transformation, different from S0 of equation (10), by S1:

S1 :
⎧⎨
⎩

XT HXeiα1 = H,

XT GXeiβ1 = G,

XT FXeiγ1 = F.

(24)

In principle, the symmetry S1 might either commute or not commute with S0. However, as 
shown in Appendix B, by using our assumptions of section 2 one may demonstrate that X always 
commutes with W , i.e. that S1 commutes with S0. Even more surprisingly, only one new case 
ensues, which we denote by the letter E and is a subcase of both case A and case C4:

Case E

Z
(1)
2 : W = diag (+1, +1, −1) , eiα = +1, eiβ = −1, eiγ = +1, (25a)

Z
(2)
2 : X = diag (+1, −1, +1) , eiα1 = −1, eiβ1 = +1, eiγ1 = +1, (25b)

H ∼
⎛
⎝ 0 × 0

× 0 0
0 0 0

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , F ∼

⎛
⎝× 0 0

0 × 0
0 0 ×

⎞
⎠ . (25c)

Note that Z(1)
2 is the symmetry (11a) of case A while Z(2)

2 is the symmetry (13a) of case C.
There are no possible cases for a flavour group with three or more generators.

3.3. Summary

From the assumptions stated in section 2 we have obtained the following results:

• There are 14 inequivalent cases.
• All the cases except E can be obtained from a single flavour symmetry transformation.
• The flavour groups with one generator are the cyclic groups Z2 (in the cases A, B, and C), 
Z3 (in the cases Dk with k = 1, 2, 3), and Z4 (in case A1). The remaining cases have a U(1)

symmetry.5

4 It is also a subcase of case B, as can be seen when one interchanges the first and third generations in the matrices of 
equations (12).

5 This U(1) must be broken explicitly by the scalar potential, which we did not consider here, lest a Goldstone boson 
arises. Therefore, a full model will have a suitable cyclic symmetry group instead of U(1).
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Table 1
The number of parameters in the Hermitian mass matrices for each case.

Cases A B C A1, Dk

# parameters in the 
MxM

†
x for x = d, �, u

13 moduli 
and 10 phases

11 moduli 
and 7 phases

10 moduli 
and 6 phases

9 moduli and 
5 phases

# extra parameters in 
MνM†

ν

3 moduli and 
2 phases

3 moduli and 
2 phases

3 moduli and 
2 phases

3 moduli and 
2 phases

• In case E there are two symmetry transformations which commute with each other; the 
flavour group is Z2 ×Z2.

• Our scenario does not admit non-Abelian flavour groups.

4. Fitting the cases to the data

In this section we report on our numerical study of cases A, B, C, A1, and Dk (k = 1, 2, 3). We 
have not studied the cases A′

1 and A′′
1 because they are restrictions of case A1 and we have found 

that case is unable to fit the data well (details will be given later). Analogously, the cases D′
k are 

restrictions of the cases Dk ; since we have found that the cases Dk do not work well, we did not 
need to bother with the cases D′

k . Finally, case E is a restriction of case C (and also of cases A 
and B); since case C is unable even to correctly fit the charged-fermion masses, case E can be 
discarded outright.

We did not attempt to fit case A2 because we knew beforehand that such an attempt would be 
unsuccessful. Indeed, case A2 yields Md and Mu of the Fritzsch form [22], which has long been 
known to be unable to simultaneously fit the quark masses and the CKM matrix.

4.1. Parameter counting

In order to get a feeling for the ability for fitting the data that each case ought to have, it is 
instructive to count the number of parameters in each of the cases—see Table 1. For instance, in 
case A1 the charged-fermion mass matrices may be written, after adequate rephasings,

Md =
⎛
⎝ a 0 f eiθ2

0 ceiθ1 b

−f eiθ2 b d

⎞
⎠ , (26a)

M� =
⎛
⎝ 3a 0 geiθ5

0 ceiθ1 3b

−geiθ5 3b d

⎞
⎠ , (26b)

Mu =
⎛
⎝ ta 0 leiθ4

0 rcei(θ1+θ3) tb

−leiθ4 tb rdeiθ3

⎞
⎠ , (26c)

with five phases θ1,2,3,4,5 and nine real and non-negative parameters (“moduli”) a, b, c, d , f , g, 
l, t ≡ |vu/vd |, and r ≡ |ku/kd |. Moreover, the neutrino mass matrix is

Mν =
∣∣∣∣ vd

wR

∣∣∣∣
⎛
⎜⎝

Ca − (rch/b) ei(θ1+θ3) 0

− (rch/b) ei(θ1+θ3) 6rctei(θ1+θ3) Cb −
(
r2cd/b

)
ei(θ1+2θ3)

0 Cb −
(
r2cd/b

)
ei(θ1+2θ3) 6rtdeiθ3 − h2/a

⎞
⎟⎠ ,

(27)
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viz. it contains two extra complex parameters C and h, plus the real parameter |vd/wR|, making 
an extra three moduli and two phases.

One sees in Table 1 that MνM†
ν always contains three moduli and two phases beyond the 

parameters which appear in the charged-fermion Hermitian mass matrices. It is easy to under-
stand the reasons for that: one extra complex parameter originates in κD of equation (2d); another 
complex parameter originates in wLwR

/
v2
d in the right-hand side of equation (6); and there is 

an extra modulus |wR/vd | in the left-hand side of equation (6).6

Case A is the one that has most parameters, hence most degrees of freedom, in the mass 
matrices. In Ref. [16] that case has been numerically studied under some restrictive assumptions; 
we have repeated that study under the same restrictive assumptions, but using the updated values 
for the charged-fermion masses given in Ref. [23].

The restriction of case A analyzed in Ref. [16] contains 13 moduli and 6 phases in the MxM
†
x

(x = d, �, u), plus an extra two moduli and one phase in MνM†
ν . The original “minimal super-

symmetric SO(10) GUT” [3] has 11 moduli and 8 phases in the MxM
†
x , plus an extra two moduli 

and one phase in MνM†
ν . We see that both those models are comparable to our case B in their 

numbers of parameters.
The MxM

†
x are supposed to be able to fit 13 observables: the nine charged-fermion masses 

and the four observables in the CKM matrix. One must take into account that phases usually 
do not help much in fitting observables; the moduli are most relevant. Additionally, if one also 
takes into account MνM†

ν , then we have to fit five parameters more—the three lepton mixing 
angles, the ratio r2

solar ≡ (
m2

2 − m2
1

)/ ∣∣m2
3 − m2

1

∣∣ , and 
∣∣m2

3 − m2
1

∣∣ itself. We have used the fixed 
value 

∣∣m2
3 − m2

1

∣∣ = 2.5 × 10−15 MeV2, which just allows us to determine the overall scale of 
Mν , viz. |vd/wR|.

4.2. χ2 function

In order to test the viability of each case, and to find adequate numerical values for its param-
eters, we construct a χ2 function

χ2 (x) =
n∑

i=1

{
H
[
fi (x) − Ōi

](fi (x) − Ōi

δ+Oi

)2

+ H
[
Ōi − fi (x)

]( Ōi − fi (x)

δ−Oi

)2}
,

(28)

where n is the total number of observables (masses and mixing parameters) to be fitted. In equa-
tion (28), H is the Heaviside step function, Ōi is the central value of each observable Oi , δ±Oi

are the upper and lower errors of that observable, and fi (x) is the value of that observable, in 
any given case, when the parameters of that case have the values x = {xα}. The data are fitted by 
minimizing χ2 (x) with respect to the xα .

We have used the mean values Ō and the errors δ±O given in Tables 2–4. We have taken the 
charged-fermion masses in Table 2, which are renormalized at MGUT = 2 × 1016 GeV, from the 
last column of Table V of Ref. [23].7 These are values computed using the renormalization-group 
equations of the MSSM with tanβ = 10; we leave it for some later, more detailed study the task 

6 Note that the overall phase of Mν is unphysical.
7 For other determinations of the values of the running quark and lepton masses, evolved from the electroweak scale to 

the GUT scale through the renormalization group of the MSSM, see Ref. [24].
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Table 2
The values of the charged-fermion masses used in our fits.

observable md/MeV ms/MeV mb/MeV

Ō
+δ+O
−δ−O

0.70+0.31
−0.30 13+4

−4 790+40
−40

observable me/MeV mμ/MeV mτ /MeV

Ō
+δ+O
−δ−O

0.283755495+2.4×10−8

−2.5×10−8 59.9033617+5.4×10−6

−5.4×10−6 1021.95+0.11
−0.12

observable mu/MeV mc/MeV mt/MeV

Ō
+δ+O
−δ−O

0.49+0.20
−0.17 236+37

−36 92200+9600
−7800

Table 3
The values of the CKM-matrix observables used in our fits.

observable |V12| |V13| |V23| 105 J

Ō
+δ+O
−δ−O

0.22536+0.00183
−0.00183 0.00355+0.00045

−0.00045 0.0414+0.0036
−0.0036 3.06+0.63

−0.60

Table 4
The values of the neutrino and lepton-mixing observables used in our fits. “NH”refers to a normal neutrino mass spectrum 
and “IH” to an inverted one.

observable r2
solar (NH) sin2 θ12 (NH) sin2 θ13 (NH) sin2 θ23 (NH)

Ō
+δ+O
−δ−O

0.0306+0.0050
−0.0038 0.323+0.052

−0.045 0.0234+0.0060
−0.0057 0.567+0.076

−0.175

observable r2
solar (IH) sin2 θ12 (IH) sin2 θ13 (IH) sin2 θ23 (IH)

Ō
+δ+O
−δ−O

0.0319+0.0053
−0.0039 0.323+0.052

−0.045 0.0240+0.0057
−0.0057 0.573+0.067

−0.172

of fitting the data for other values of tanβ . The values of the CKM mixing angles in Table 3 are 
low-energy values and were taken from equation (12.27) of Ref. [25]; we have multiplied the 
error bars given in that equation by a factor of three in order to obtain adequately large intervals. 
The values in Table 4 are the 3σ intervals given for each observable in Ref. [11].

In order to assess the fitting ability of each case, we have firstly attempted to fit only the 
charged-fermion masses (nine observables, given in Table 2), secondly the charged-fermion 
masses together with the CKM matrix (four more observables, given in Table 3), and, finally, 
all that together with the neutrino masses and the PMNS matrix (four observables more, given in 
Table 4). The total χ2 function is thus the sum of three terms:

χ2
total = χ2

masses + χ2
CKM + χ2

ν . (29)

For the neutrino masses, we have analysed both possibilities of a normal or inverted neutrino 
mass spectrum; indeed, for each set of values for the parameters x, we have computed the eigen-
values of MνM∗

ν and thereby determined the type of neutrino mass spectrum; we have then 
chosen accordingly the input values in the computation of the function χ2

ν .
In some cases we have not been able to find a reasonably small value of χ2

masses alone; in 
those cases, further analysis by considering χ2

CKM and χ2
ν made no sense. Similarly, in some 

other cases a sufficiently low value of χ2
masses + χ2

CKM could not be achieved, so we did not have 
to consider χ2

ν . Finally, even when χ2
total could be correctly fitted, we still had to check whether 

|wR/vd | turned out in the right range. Indeed, since vd must be of order the Fermi scale 100 GeV
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and wR must be of order the grand-unification scale 1016 GeV, we must require |wR/vd | to be 
1014 or even larger. We had to check some other inequalities, the exposition of which we defer 
to section 4.4.

4.3. Numerical method

The minimization of χ2 (x) is a difficult task because the various parameters xα may differ 
by several orders of magnitude and because there always is a large number of local minima. We 
have spent much time in the numerical analysis trying to find absolute minima; this has involved 
various fitting options and restrictions of the parameters for each particular case. Still, we cannot 
be 100% sure that we have found the absolute minimum for all cases—the possibility remains 
that a better solution exists somewhere in parameter space.

For the numerical minimization of the χ2 functions we have employed the Differential Evolu-
tion (DE) algorithm. This is a stochastic algorithm that exploits a population of potential solutions 
in order to effectively probe the parameter space. It was first introduced in Ref. [26] and it has 
been modified several times since then.

The effectiveness of the DE algorithm strongly depends on control parameters. We have per-
formed preliminary tests in order to hand-tune the appropriate ranges for the control parameters 
in each case. Also, in the χ2 function of equation (28), we have modified the errors δ±Oi ran-
domly (within the range of magnitude of the true errors) according to the behaviour of the fits; 
we have thus been able to test, for each case, more local minima—defined as the points where 
the minimization algorithm converges—and to find the minima closer to the global minimum.

All the numerical calculations were implemented by using the programming language 
Fortran.

4.4. Case B

4.4.1. Theoretical treatment
We choose a weak basis in which the Yukawa-coupling matrix F is diagonal. After an inter-

change of the first and third generations,

kdH =
⎛
⎝ 0 d h

d 0 0
h 0 0

⎞
⎠ , κdG =

⎛
⎝ 0 f g

−f 0 0
−g 0 0

⎞
⎠ , vdF =

⎛
⎝ a 0 0

0 b 0
0 0 c

⎞
⎠ . (30)

Without loss of generality, we assume the parameters a, b, and c to be non-negative real. Then 
the mass matrices are given by

Md =
⎛
⎝ a d + f h + g

d − f b 0
h − g 0 c

⎞
⎠ , (31a)

M� =
⎛
⎝ −3a d + (κ�/κd)f h + (κ�/κd) g

d − (κ�/κd)f −3b 0
h − (κ�/κd) g 0 −3c

⎞
⎠ , (31b)

Mu =
⎛
⎝ (vu/vd) a (ku/kd) d + (κu/κd)f (ku/kd)h + (κu/κd) g

(ku/kd) d − (κu/κd)f (vu/vd) b 0
(ku/kd)h − (κu/κd) g 0 (vu/vd) c

⎞
⎠ ,

(31c)
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MD =
⎛
⎝ −3 (vu/vd) a (ku/kd) d + (κD/κd)f (ku/kd)h + (κD/κd) g

(ku/kd) d − (κD/κd)f −3 (vu/vd) b 0
(ku/kd)h − (κD/κd) g 0 −3 (vu/vd) c

⎞
⎠ .

(31d)

We rewrite the mass matrices (31) as

Md =
⎛
⎝ a k1 k3

k2 b 0
k4 0 c

⎞
⎠ , (32a)

M� =
⎛
⎝−3a k5 k7

k6 −3b 0
k8 0 −3c

⎞
⎠ , (32b)

Mu =
⎛
⎝ ta k9 k11

k10 tb 0
k12 0 tc

⎞
⎠ , (32c)

MD =
⎛
⎝−3ta k13 k15

k14 −3tb 0
k16 0 −3tc

⎞
⎠ , (32d)

where t ≡ vu/vd . The k1,2,...,16 are not all independent. We choose k1,2,3,4,5,9,10,13 as parameters, 
while

k6 = k1 + k2 − k5, (33a)

k7 = k1k4 + k3k5 − k2k3 − k4k5

k1 − k2
, (33b)

k8 = k1k3 + k4k5 − k2k4 − k3k5

k1 − k2
, (33c)

k11 = (k1k3 − k2k4) k9 + (k1k4 − k2k3) k10

k2
1 − k2

2

, (33d)

k12 = (k1k3 − k2k4) k10 + (k1k4 − k2k3) k9

k2
1 − k2

2

, (33e)

k14 = k9 + k10 − k13, (33f)

k15 = k13 (k3 − k4)

k1 − k2
+ (k9 + k10) (k1k4 − k2k3)

k2
1 − k2

2

, (33g)

k16 = k13 (k4 − k3)

k1 − k2
+ (k9 + k10) (k1k3 − k2k4)

k2
1 − k2

2

. (33h)

From equations (6), (30), and (32d) it is easy to compute

wR

vd

Mν =
(

wLwR

v2
d

− 9t2

)⎛
⎝ a 0 0

0 b 0
0 0 c

⎞
⎠

−
⎛
⎝ k2

13/b + k2
15/c −3t (k13 + k14) −3t (k15 + k16)

−3t (k13 + k14) k2
14/a k14k16/a

−3t (k + k ) k k /a k2 /a

⎞
⎠ . (34)
15 16 14 16 16
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Next, we multiply Mu and Mν by phase factors exp (−i arg t), defining

M ′
u ≡ exp (−i arg t)Mu, (35a)

M′
ν ≡ exp (−2i arg t)Mν. (35b)

This phase change leads to the redefinitions

k′
p ≡ kp exp (−i arg t) for p = 9, . . . ,16. (36)

Crucially, equations (33) remain valid when using the k′
p instead of the kp for p = 9, . . . , 16. 

One obtains

M ′
u =

⎛
⎝ |t |a k′

9 k′
11

k′
10 |t |b 0

k′
12 0 |t | c

⎞
⎠ , (37a)

wR

vd

M′
ν =

(
Ĉ − 9 |t |2

)⎛⎝ a 0 0
0 b 0
0 0 c

⎞
⎠

−
⎛
⎜⎝

k′
13

2
/ |b| + k′

15
2
/ |c| −3 |t | (k′

13 + k′
14

) −3 |t | (k′
15 + k′

16

)
−3 |t | (k′

13 + k′
14

)
k′

14
2
/ |a| k′

14k
′
16/ |a|

−3 |t | (k′
15 + k′

16

)
k′

14k
′
16/ |a| k′

16
2
/ |a|

⎞
⎟⎠ , (37b)

where Ĉ ≡ (
wLwR/v2

d

)
exp (−2i arg t).

In equations (32a), (32b), and (37) one observes that the mass matrices of case B may be 
parameterized through five real quantities a, b, c, |t |, and |wR/vd |, plus nine complex parameters 
k1,2,3,4,5, k′

9,10,13, and Ĉ. This justifies the third column of Table 1.

4.4.2. Inequalities
We fix the scale |wR/vd | in the left-hand side of equation (37b) by requiring the differ-

ence of the squared neutrino masses 
∣∣m2

3 − m2
1

∣∣ to be equal to the atmospheric mass scale 
2.5 × 10−3 eV2. Afterwards, we compute |vd | by identifying |wR| with the unification scale 
MGUT = 2 × 1016 GeV. Finally, we calculate |vu| = |tvd | from the value of the parameter |t | of 
the fit.

In the supersymmetric GUT that we envisage there is only one scalar doublet with hypercharge 
+1/2, viz. Hd , at the Fermi mass scale; there is also only one scalar doublet with hypercharge 
−1/2, viz. Hu, at that scale. Those two doublets have VEVs

〈
H 0

d

〉
0 = 174 GeV√

1 + tan2 β
and

〈
H 0

u

〉
0 = (174 GeV) tanβ√

1 + tan2 β
, (38)

respectively, where tanβ = 10 in our fit. According to the inequalities (C.11),

(〈
H 0

d

〉
0

)2 ≥ |vd |2 + |kd |2 + |κd |2 + 1

3
|κ�|2 , (39a)

(〈
H 0

u

〉
0

)2 ≥ |vu|2 + |ku|2 + |κu|2 + 1

3
|κD|2 . (39b)

Therefore, we have first of all to enforce the inequalities
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(
2 × 1016 GeV

)2

|wR/vd |2 <
(174 GeV)2

1 + tan2 β
, (40a)

|t |2
(
2 × 1016 GeV

)2

|wR/vd |2 <
(174 GeV)2 tan2 β

1 + tan2 β
, (40b)

on our fits. The inequality (40a) reads |wR/vd | > 1.155 × 1015, which is a quite useful lower 
bound.

Our fit fixes

κ�

κd

= k5 − k6

k1 − k2
, (41a)

κu

κd

= k9 − k10

k1 − k2
, (41b)

κD

κd

= k13 − k14

k1 − k2
, (41c)

ku

kd

= k9 + k10

k1 + k2
. (41d)

Therefore, from the inequalities (39),

|kd |2 +
(

1 + 1

3

∣∣∣∣k5 − k6

k1 − k2

∣∣∣∣
2
)

|κd |2 ≤
(〈

H 0
d

〉
0

)2 − |vd |2 , (42a)

∣∣∣∣k′
9 + k′

10

k1 + k2

∣∣∣∣
2

|kd |2 +
∣∣k′

9 − k′
10

∣∣2 + (1/3)
∣∣k′

13 − k′
14

∣∣2
|k1 − k2|2

|κd |2 ≤
(〈

H 0
u

〉
0

)2 − |vu|2 . (42b)

We must now face the additional fact that the Yukawa couplings cannot be too large, lest the 
theory ceases to be perturbative and/or Landau poles arise in the Yukawa couplings. Let y > 0
denote the maximum value that we accept for the absolute value of the Yukawa couplings; we 
may take y somewhere between 1 and 10. From equations (30),

max (|d| , |h|) < |kd |y, (43a)

max (|f | , |g|) < |κd |y, (43b)

max (a, b, c) < |vd |y. (43c)

We have directly enforced the inequality (43c) on our fits. The other two inequalities (43) may 
be put together with the inequalities (42) to derive

max
(
|k1 + k2|2 , |k3 + k4|2

)

+
(

1 + 1

3

∣∣∣∣k5 − k6

k1 − k2

∣∣∣∣
2
)

max
(
|k1 − k2|2 , |k3 − k4|2

)
≤ 4

[(〈
H 0

d

〉
0

)2 − |vd |2
]

y2, (44a)

∣∣∣∣k′
9 + k′

10

k1 + k2

∣∣∣∣
2

max
(
|k1 + k2|2 , |k3 + k4|2

)
+
(∣∣k′

9 − k′
10

∣∣2 + 1

3

∣∣k′
13 − k′

14

∣∣2)

× max
(|k1 − k2|2 , |k3 − k4|2

)
|k1 − k2|2

≤ 4

[(〈
H 0

u

〉
0

)2 − |vu|2
]

y2. (44b)

To summarize, we have enforced on our fits the inequalities (40), (43c), and (44).
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Table 5
The values of the parameters for out best fit of case B.

Parameter Value

a/MeV 219.850545793720272

b/MeV 0.561919252512016

c/MeV 28.64031991278612

|t | 1.558686846443802

k1/MeV 106.613768172192835 exp (i 2.726661945096518)

k2/MeV 3.214360308597388 exp (i 5.73665831290545)

k3/MeV 750.563494049026872 exp (i 4.735747016077402)

k4/MeV 20.603622366818627 exp (i 1.445003798120007)

k5/MeV 10.49565466331894 exp (i 4.813783368633092)

k′
9/MeV 12964.825027004273579 exp (i 3.963802982387908)

k′
10/MeV 19.353350623796356 exp (i 5.971066682817606)

k′
13/MeV 22682.297777225823666 exp (i 5.075844560968867)

Ĉ 3291007.008905897848 exp (i 2.868704037387841)

|wR/vd | 1.67257 × 1015

4.4.3. Fit
We have found that case B is able to fit perfectly all the observables. This is true irrespective 

of whether the neutrino mass spectrum is normal or inverted. However, when the neutrino mass 
spectrum is inverted some of the inequalities in the previous subsection always turn out to be 
violated; this happens because either |wR/vd | < 1015 is too small or |t | > 300 is so large that the 
inequality (44b) ends up being violated.

For a normal neutrino mass spectrum, on the other hand, there are fits in which all the inequal-
ities are observed. In Table 5 we give the values of the mass-matrix parameters that lead to the 
best fit which we have been able to achieve. The value of χ2

total for this fit is smaller than 10−3, 
i.e., for all practical purposes, it is zero. The smallest neutrino mass for this fit is m1 ≈ 0.006 eV, 
while m1 + m2 + m3 ≈ 0.07 eV.

It is interesting to observe in Table 5 that the best fit is achieved for a very large value of ∣∣∣Ĉ∣∣∣ ∼ 106, meaning that the type-II seesaw mechanism dominates over the type-I. For this fit, 
the matrices Ud and Uu are almost diagonal, with Ud mostly identical with UCKM. On the other 
hand, Uν is almost completely a rotation between the first two generations, while U� is largely, 
but not exclusively, a rotation between the second and third generations; both rotations are almost 
maximal.

Since very perfect fits can be obtained in case B, we suspect that this case has too many 
degrees of freedom and has little or no predictive power. However, since such a study is very 
time-consuming, we leave it for later investigation.

4.5. Non-viable cases

We have found that all the cases except cases A and B either fail to fit the observables ade-
quately or give a much too low value for |wR/vd |. (For us, an acceptable fit is one in which all 
the observables simultaneously are within their ranges in Tables 2–4.) Indeed, case C even fails 
to adequately fit the charged-fermion masses alone, while cases A1, D2, and D3 are unable to 
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Table 6
Description of the minimization results for the cases that fail. The pull is defined as 
H
[
fi (x) − Ōi

] [
fi (x) − Ōi

]/
δ+Oi + H

[
Ōi − fi (x)

] [
fi (x) − Ōi

]/
δ−Oi .

Case χ2 of best fit Pulls larger than one in absolute value Remarks

A1 χ2
masses ∼ 10−6

χ2
masses + χ2

CKM = 11.57 md : −1.83

ms : −1.49

mb : +2.17

χ2
total = 19.26 md : −1.79 normal hierarchy

ms : −1.44

mb : +2.27

sin2 θ23 : −2.28

D2 χ2
masses = 3.21 md : −1.74

χ2
masses + χ2

CKM = 12.75 md : −2.09

mb : +2.54

D3 χ2
masses ∼ 10−6

χ2
masses + χ2

CKM = 11.86 md : −1.42

ms : −3.14

C χ2
masses = 107.59 ms : +1.03

mb : −10.32

acceptably fit the charged-fermion masses together with the CKM matrix. The best results that 
we were able to find for all the cases are given in Table 6.

Only case D1 is able to fit all the observables, but all those good fits yield |wR/vd | < 3 ×1013. 
This is unacceptable since, with tanβ = 10, |vd | = 〈

H 0
d

〉
0 ≈ 17.3 GeV then leads to |wR| �

5 × 1014 GeV, which is almost two orders of magnitude below the unification scale MGUT =
2 × 1016 GeV. If we enforce a more realistic |wR/vd | > 1015 on case D1, then we are only able 
to obtain poor fits with χ2

total � 60.

4.6. Case A

Case A has much too many degrees of freedom, so it is adequate to try and constrain it some-
what. We follow Ref. [16], in which real Yukawa-coupling matrices (due to an additional CP
symmetry) F , G, and H were enforced and, moreover, wL = 0 has been assumed, thereby dis-
carding the type-II seesaw mechanism. Under these assumptions, the authors of Ref. [16] have 
parameterized

Md =
⎛
⎝ x + eiζd a eiξd f eiξd g

−eiξd f y + eiζd b eiζd d

−eiξd g eiζd d z + eiζd c

⎞
⎠ , (45a)

M� =
⎛
⎝ x − 3eiζd a r�e

iξ�f r�e
iξ�g

−r�e
iξ�f y − 3eiζd b −3eiζd d

−r eiξ�g −3eiζd d z − 3eiζd c

⎞
⎠ , (45b)
�
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Mu =
⎛
⎝ rH x + rF eiζua rue

iξuf rue
iξug

−rue
iξuf rH y + rF eiζub rF eiζud

−rue
iξug rF eiζud rH z + rF eiζuc

⎞
⎠ , (45c)

MD =
⎛
⎝ rH x − 3rF eiζua rDeiξDf rDeiξDg

−rDeiξDf rH y − 3rF eiζub −3rF eiζud

−rDeiξDg −3rF eiζud rH z − 3rF eiζuc

⎞
⎠ , (45d)

∣∣∣∣wR

vd

∣∣∣∣Mν = 1

a
(
bc − d2

) MD

⎛
⎝ bc − d2 0 0

0 ac −ad

0 −ad ab

⎞
⎠MT

D, (45e)

where

r�e
iξ� ≡ κ�

|κd | , (46a)

rue
iξu ≡ κu

|κd | , (46b)

rDeiξD ≡ κD

|κd | . (46c)

rH ≡
∣∣∣∣ku

kd

∣∣∣∣ , (46d)

rF eiζu ≡ vu

|vd | . (46e)

In this parameterization, there are six phases (ξ�, ξu, ξD , ζu, ξd , and ζd ) and 15 moduli (x, y, z, 
a, b, c, d , f , g, r�, rH , ru, rF , rD , and |wR/vd |).

As usual, we firstly fit the charged-fermion masses, the mixing angles, and r2
solar. Secondly we 

adjust the factor |wR/vd | in the left-hand side of equation (45e) in such a way that 
∣∣m2

3 − m2
1

∣∣=
2.5 ×10−3 eV2. Thirdly we compute |vd | = |vd/wR| (2 × 1016 GeV

)
and |vu| = rF |vd |. Finally, 

we check that

|vd |2 <
(〈

H 0
d

〉
0

)2 ≈ (17.3 GeV)2 , (47a)

|vu|2 <
(〈

H 0
u

〉
0

)2 ≈ (173 GeV)2 . (47b)

We also check that

max
(
a2, b2, c2, d2)< y2 |vd |2 (48)

for some 1 < y < 10; we also require

max
(
x2, y2, z2)+

(
1 + r2

�

3

)
max

(
f 2, g2)< y2[(〈H 0

d

〉
0

)2 − |vd |2], (49a)

r2
H max

(
x2, y2, z2)+

(
r2
u + r2

D

3

)
max

(
f 2, g2)< y2[(〈H 0

u

〉
0

)2 − |vu|2
]
. (49b)

In Ref. [16] an explicit fit of case A—under the above restrictions wL = 0 and real Yukawa-
coupling matrices—to some data was presented. However, the authors of Ref. [16] have used 
the charged-fermion masses give in Ref. [24] and have used the upper bound on sin2 θ13 that 
existed at the time. We have attempted to fit case A both to the updated charged-fermion masses 
of Ref. [23] and to the now extant value of sin2 θ13. We could achieve an excellent fit when the 
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Table 7
The values of the parameters for out best fit of case A with a normal 
neutrino mass spectrum. The fit has χ2

total ≈ 0.005.

Parameter Value

x/MeV −0.476561625448

y/MeV −63.004302166872

z/MeV 410.084319821441

a/MeV −0.372645355981

b/MeV −91.581208223942

c/MeV −342.559232981562

d/MeV −172.410208448655

f/MeV −3.322328858814

g/MeV −0.261790479555

r�e
iξ� 4.197350155392 exp (i 3.160952468)

rueiξu 6.938241672636 exp (i 2.800761399333)

rDeiξD 5682.169770871835 exp (i 4.151626745)

rF eiζu 131.838888425156 exp (i 3.114060300)

rH 100.325400021876

ξd/rad 1.736825028772

ζd/rad 2.935971894656

|wR/vd | 1.90053716 × 1016

neutrino mass spectrum is normal and a passable one when the mass spectrum is inverted; those 
fits are presented in Tables 7 and 8, respectively.

For the fit of Table 7 one has m1 +m2 +m3 ≈ 0.06 eV. The fit of Table 8 has m1 +m2 +m3 ≈
0.1 eV.

5. Conclusions

In this paper we have considered a supersymmetric SO(10) GUT in which the fermion masses 
are generated by renormalizable Yukawa couplings. Consequently, the scalar multiplets under 
consideration belong to the irreps 10, 126, and 120 of SO(10). We have assumed that there 
is a single scalar multiplet belonging to each of these three irreps; some further mild assump-
tions are listed in section 2. We have analysed the prospects of imposing flavour symmetries in 
this scenario, potentially making it predictive. An exhaustive discussion has revealed 14 cases 
compatible with our scenario. For the numerical examination of those cases we have used the 
charged-fermion masses evaluated at the GUT scale through renormalization-group running in 
the context of the Minimal Supersymmetric Standard Model. Interestingly, the numerical anal-
ysis ruled out all 14 cases except case A—see equation (11)—and case B—see equation (12). 
We have demonstrated that both cases A and B allow excellent fits to the data when the neutrino 
mass spectrum is normal; when that spectrum is inverted, case A can still fit the data but we were 
unable to find a fit for case B.

Thus, we have come to the conclusion that within the NMSGUT [7], which has renormalizable 
Yukawa couplings just as the ones considered here, there are at most two possibilities to reduce 
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Table 8
The values of the parameters for out best fit of case A with an inverted 
neutrino mass spectrum. This fit has χ2

total ≈ 0.8.

Parameter Value

x/MeV 0.980345675289

y/MeV 13.317045360098

z/MeV 834.100031282343

a/MeV 1.230521136698

b/MeV 18.085613337982

c/MeV 82.58146771928

d/MeV 36.879698307221

f/MeV −2.572520483121

g/MeV 3.267046126672

r�e
iξ� 5.389802407484 exp (i 5.291743244393)

rueiξu 9.506621363405 exp (i 6.456544563269)

rDeiξD 19058.47748201563 exp (i 4.698412501341)

rF eiζu 93.384741884164 exp (i 3.1289172068552067)

rH 119.091394096965

ξd/rad 6.182757601569

ζd/rad 4.027845889022

|wR/vd | 9.0899658664 × 1016

the number of Yukawa couplings through flavour symmetries, while remaining in agreement with 
the data.
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Appendix A. The scalar potential with an additional 45

This appendix addresses two problems that may in general arise in a renormalizable super-
symmetric SO(10) GUT furnished with additional symmetries:

• How to promote the full mixing among the Higgs doublets residing in the 10, 120, and 126
of SO(10).

• How to achieve the full breaking of SO(10) to the SM gauge group by using only renormal-
izable interactions.
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Both these problems can be solved in the NMSGUT, but they are non-trivial in the context of our 
symmetry-furnished cases, especially when the symmetry is larger than Z2.

According to Refs. [4,27,28], in the NMSGUT there are five scalar irreps: the 10, the 120, the 
126, the 126, and the 210. The 10, the 120, and the 126 have Yukawa couplings; the 126 and the 
210 do not. The 210 is needed, together with the 126 and 126, in order to break SO(10) down to 
the SM gauge group.

In our models, we propose to add to the NMSGUT one further scalar irrep—the 45, which is 
the adjoint of SO(10). The full superpotential is then8

Vsuper = λ1 10 10 + λ2 45 45 + λ3 120 120 + λ4 210 210 + λ5 126 126

+ λ6 210 210 210 + λ7 45 45 210 + λ8 126 126 210

+ λ9 10 126 210 + λ10 10 126 210 + λ11 120 120 210 + λ12 10 120 210

+ λ13 120 126 210 + λ14 120 126 210 + λ15 126 126 45

+ λ16 10 120 45 + λ17 120 126 45 + λ18 120 126 45. (A.1)

In order to go from the superpotential to the scalar potential one must square the partial derivative 
relative to each superfield. Thus, the scalar potential is of the form

V =
∣∣∣λ1 10 + λ9 126 210 + λ10 126 210 + λ12 120 210 + λ16 120 45

∣∣∣2
+
∣∣∣λ2 45 + λ7 45 210 + λ15 126 126

+ λ16 10 120 + λ17 120 126 + λ18 120 126
∣∣∣2

+
∣∣∣λ3 120 + λ11 120 210 + λ12 10 210 + λ13 126 210 + λ14 126 210

+ λ16 10 45 + λ17 126 45 + λ18 126 45
∣∣∣2

+
∣∣∣λ4 210 + λ6 210 210 + λ7 45 45 + λ8 126 126 + λ9 10 126

+ λ10 10 126 + λ11 120 120 + λ12 10 120 + λ13 120 126 + λ14 120 126
∣∣∣2

+
∣∣∣λ5 126 + λ8 126 210 + λ9 10 210 + λ13 120 210

+ λ15 126 45 + λ17 120 45
∣∣∣2

+ |λ5 126 + λ8 126 210 + λ10 10 210 + λ14 120 210

+ λ15 126 45 + λ18 120 45|2 . (A.2)

The 10 and the 120 do not have any component which is invariant under the SM gauge group, 
therefore they are not allowed to acquire a VEV at the GUT scale. Thus, at the GUT scale the 
relevant potential is just

8 One may check that no term is missing in equation (A.1) by studying Table 820 of Ref. [29].
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VGUT =
∣∣∣λ9 126 210 + λ10 126 210

∣∣∣2 +
∣∣∣λ2 45 + λ7 45 210 + λ15 126 126

∣∣∣2
+
∣∣∣λ13 126 210 + λ14 126 210 + λ17 126 45 + λ18 126 45

∣∣∣2
+
∣∣∣λ4 210 + λ6 210 210 + λ7 45 45 + λ8 126 126

∣∣∣2
+
∣∣∣λ5 126 + λ8 126 210 + λ15 126 45

∣∣∣2
+ |λ5 126 + λ8 126 210 + λ15 126 45|2 . (A.3)

In our case A there is a symmetry 120 → −120. We must extend it and make 45 → −45 too. 
Then the symmetry implies λ12 = λ13 = λ14 = λ15 = 0. Equation (A.2) becomes

V (case A) =
∣∣∣λ1 10 + λ9 126 210 + λ10 126 210 + λ16 120 45

∣∣∣2
+
∣∣∣λ2 45 + λ7 45 210 + λ16 10 120 + λ17 120 126 + λ18 120 126

∣∣∣2
+
∣∣∣λ3 120 + λ11 120 210 + λ16 10 45 + λ17 126 45 + λ18 126 45

∣∣∣2
+
∣∣∣λ4 210 + λ6 210 210 + λ7 45 45 + λ8 126 126 + λ9 10 126

+ λ10 10 126 + λ11 120 120
∣∣∣2

+
∣∣∣λ5 126 + λ8 126 210 + λ9 10 210 + λ17 120 45

∣∣∣2
+ |λ5 126 + λ8 126 210 + λ10 10 210 + λ18 120 45|2 (A.4)

and equation (A.3) becomes

V
(case A)
GUT =

∣∣∣λ9 126 210 + λ10 126 210
∣∣∣2 + |λ2 45 + λ7 45 210|2

+
∣∣∣λ17 126 45 + λ18 126 45

∣∣∣2
+
∣∣∣λ4 210 + λ6 210 210 + λ7 45 45 + λ8 126 126

∣∣∣2
+
∣∣∣λ5 126 + λ8 126 210

∣∣∣2 + |λ5 126 + λ8 126 210|2 . (A.5)

The third line of equation (A.4) indicates that the 120 fully mixes with both the 10 and the 126. 
The first and last lines of equation (A.5) indicate that the potential for the 45, 126, 126, and 210
allows all of them to acquire VEVs.

In our case B there is a symmetry 10 → −10, 120 → −120, 45 → −45. This implies λ9 =
λ10 = λ13 = λ14 = λ15 = λ16 = 0. Equation (A.2) becomes

V (case B) = |λ1 10 + λ12 120 210|2

+
∣∣∣λ2 45 + λ7 45 210 + λ17 120 126 + λ18 120 126

∣∣∣2
+
∣∣∣λ3 120 + λ11 120 210 + λ12 10 210 + λ17 126 45 + λ18 126 45

∣∣∣2
+ |λ4 210 + λ6 210 210 + λ7 45 45
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+ λ8 126 126 + λ11 120 120 + λ12 10 120
∣∣∣2

+
∣∣∣λ5 126 + λ8 126 210 + λ17 120 45

∣∣∣2
+ |λ5 126 + λ8 126 210 + λ18 120 45|2 (A.6)

and equation (A.3) becomes

V
(case B)
GUT = |λ2 45 + λ7 45 210|2 +

∣∣∣λ17 126 45 + λ18 126 45
∣∣∣2

+
∣∣∣λ4 210 + λ6 210 210 + λ7 45 45 + λ8 126 126

∣∣∣2
+
∣∣∣λ5 126 + λ8 126 210

∣∣∣2 + |λ5 126 + λ8 126 210|2 . (A.7)

The third line of equation (A.6) indicates that the 120 fully mixes with both the 10 and the 126. 
Equation (A.7) demonstrates that the potential for the 45, 126, 126, and 210 allows all of them 
to acquire VEVs.

Case C may be treated in a similar fashion. Our remaining cases have symmetries Zn with 
n > 2 and are much more problematic. Anyway, we do not need to worry about those cases since 
we already know that they are unable to fit the phenomenological data.

Appendix B. Investigation of a second symmetry

In this appendix we take all 13 cases of subsection 3.1 and consider, for each of them, the 
possibility of a second flavour symmetry defined in equation (24). Without loss of generality we 
set eiβ1 = 1 in that equation.

The conclusion of this appendix is that, beyond those 13 cases, only one new case arises which 
does not contradict our assumptions—case E in equation (25).

B.1. Cases A1, A′
1, A′′

1, and A2

In all these four cases,

G =
⎛
⎝ 0 0 d

0 0 0
−d 0 0

⎞
⎠ (B.1)

with d �= 0. Since

XT GX = G ⇔ GX = X∗G, (B.2)

we find

x12 = x21 = x23 = x32 = 0, X =
⎛
⎝ x11 0 x13

0 x22 0
−x∗

13 0 x∗
11

⎞
⎠ . (B.3)

In these four cases the matrix F has the form

F = F1 ≡
⎛
⎝ 0 a 0

a 0 0
0 0 b

⎞
⎠ . (B.4)
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We require detF �= 0, hence a �= 0 and b �= 0. Using

eiγ1FX = X∗F (B.5)

with the matrix X of equation (B.3), we obtain that X must be diagonal:

X = diag
(
eiγ1/2, e−3iγ1/2, e−iγ1/2

)
. (B.6)

Now we look for the consequences of

eiα1HX = X∗H. (B.7)

With a diagonal X, equation (B.7) can only force either one or more matrix elements of H to 
be zero. In the case A1, if one sets one matrix element of H to zero then one simply recovers 
the cases A′

1 and A′′
1. In the cases A′

1 and A′′
1, the number of non-vanishing elements of H is 

already minimal. In the case A2 we have XT HX = e−iγ1H , therefore either α1 = γ1 and H is 
not restricted by S1 or α1 �= γ1 and H = 0, which is excluded by our assumptions.

In summary, departing from cases A1, A′
1, A′′

1, or A2 no new cases can ensue from a second 
symmetry.

B.2. Cases D2, D3, D′
2, and D′

3

In these cases equation (B.1) is still valid, therefore equation (B.3) also holds. In all four cases

F = F2 ≡
⎛
⎝ b 0 0

0 0 a

0 a 0

⎞
⎠ , (B.8)

with a �= 0 and b �= 0. Using equation (B.5) then yields

X = diag
(
e−iγ1/2, e−3iγ1/2, eiγ1/2

)
, (B.9)

i.e. X is once again diagonal.
We next consider equation (B.7). In case D3 we obtain

H =
⎛
⎝ 0 0 r

0 s 0
r 0 0

⎞
⎠= eiα1XT HX = eiα1

⎛
⎝ 0 0 r

0 e−3iγ1s 0
r 0 0

⎞
⎠ . (B.10)

In case D2 we have

H =
⎛
⎝ 0 r 0

r 0 0
0 0 s

⎞
⎠= eiα1XT HX = eiα1

⎛
⎝ 0 e−2iγ1r 0

e−2iγ1r 0 0
0 0 eiγ1s

⎞
⎠ . (B.11)

Thus, equation (B.7) can at most set either r = 0 or s = 0. If s = 0 then one recovers case D′
2

from case D2 and case D′
3 from case D3. If r = 0 then, through an interchange of the first and 

third generations, one recovers case A′
1 from case D2 and case A′′

1 from case D3. Therefore, no 
new cases arise from the enforcement of the symmetry S1 on any of these four cases.
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B.3. Cases D1 and D′
1

Equations (B.1) and (B.3) once again hold. Now

F = F3 ≡
⎛
⎝ 0 0 a

0 b 0
a 0 0

⎞
⎠ , (B.12)

with a �= 0 and b �= 0. Equation (B.5) then yields that either eiγ1 = +1 and

X = diag
(
eiψ , ±1, e−iψ

)
(B.13)

or eiγ1 = −1 and

X =
⎛
⎝ 0 0 eiϕ

0 ±i 0
−e−iϕ 0 0

⎞
⎠ . (B.14)

In case D1 and with equation (B.13) one obtains

H =
⎛
⎝ 0 r 0

r 0 0
0 0 s

⎞
⎠= eiα1XT HX = eiα1

⎛
⎝ 0 ±eiψr 0

±eiψr 0 0
0 0 e−2iψ s

⎞
⎠ . (B.15)

With equation (B.14) one arrives instead at

H =
⎛
⎝ 0 r 0

r 0 0
0 0 s

⎞
⎠= eiα1XT HX = eiα1

⎛
⎝ e−2iϕs 0 0

0 0 ±ieiϕr

0 ±ieiϕr 0

⎞
⎠ . (B.16)

Thus, the possibility (B.14) implies H = 0, which contradicts our assumptions. With equa-
tion (B.15) then either s = 0 and one recovers case D′

1 or r = 0 and the second generation 
decouples. We conclude that the enforcement of the symmetry S1 on cases D1 and D′

1 cannot 
lead to new cases.

B.4. Cases A and B, step 1: X may be chosen to be diagonal

In cases A and B we may perform a weak-basis transformation such that G acquires the 
form (B.1) while the forms of H and F are kept unchanged:

case A : H ∼
⎛
⎝× × 0

× × 0
0 0 ×

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , F ∼

⎛
⎝× × 0

× × 0
0 0 ×

⎞
⎠ ; (B.17a)

case B : H ∼
⎛
⎝ 0 0 ×

0 0 ×
× × 0

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , F ∼

⎛
⎝× × 0

× × 0
0 0 ×

⎞
⎠ . (B.17b)

This is achieved through a unitary rotation of the first and second generations, which does not 
alter the matrix W = diag (+1, +1, −1) for these cases. In the new basis (B.17), equation (B.3)
holds.

Next we consider equation (B.5). With F ≡ (
fij

)
, it reads
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eiγ1

⎛
⎝ f11x11 f12x22 f11x13

f12x11 f22x22 f12x13
−f33x

∗
13 0 f33x

∗
11

⎞
⎠=

⎛
⎝ f11x

∗
11 f12x

∗
11 f33x

∗
13

f12x
∗
22 f22x

∗
22 0

−f11x13 −f12x13 f33x11

⎞
⎠ . (B.18)

Let us suppose that X is not diagonal, i.e. that x13 is non-zero. Then equation (B.18) tells us 
that f12 = 0, i.e. that F is diagonal. Now we invoke eiα1HX = X∗H . In case A the matrix 
H ≡ (

hij

)
has the same form as the matrix F , hence we may conclude, from the analogue 

of equation (B.18), that h12 = 0 just as f12 = 0, i.e. H is diagonal too. But then the second 
generation decouples, which runs against our assumptions. For case B the equation eiα1HX =
X∗H reads

eiα1

⎛
⎝−h13x

∗
13 0 h13x

∗
11−h23x

∗
13 0 h23x

∗
11

h13x11 h23x22 h13x13

⎞
⎠=

⎛
⎝ h13x

∗
13 h23x

∗
13 h13x

∗
11

0 0 h23x
∗
22

h13x11 h23x11 −h13x13

⎞
⎠ , (B.19)

hence h23 = 0 and the second generation decouples.
We conclude that the hypothesis x13 �= 0 leads to a contradiction with our assumptions. Thus, 

cases A and B do not admit a non-diagonal X.

B.5. Cases A and B, step 2: the forms of F and X

With a diagonal matrix X, the equation XT FXeiγ1 = F yields

x2
11f11e

iγ1 = f11, (B.20a)

x2
22f22e

iγ1 = f22, (B.20b)

x11x22f12e
iγ1 = f12, (B.20c)

x2
33f33e

iγ1 = f33. (B.20d)

Since detF �= 0, f33 cannot vanish. Therefore, equation (B.20d) gives x33 = εe−iγ1/2, where 
ε = ±1.

Let us firstly suppose that x11 = x22. In this case we must have x2
11 = e−iγ1 , else f11 = f22 =

f12 = 0 and detF = 0. Consequently, x11 = ηe−iγ1/2, where η = ±1. In this case the matrix F
cannot be restricted any further by S1.

Since X = e−iγ1/2 diag (η, η, ε), XT HX = e−iγ1H in case A and XT HX = εηe−iγ1H in 
case B. This means that the equation eiα1XT HX = H either does not restrict H any further, or 
it enforces H = 0 (depending on the choice for eiα1 ). Since H = 0 runs against our assump-
tions, we conclude that, with x11 = x22, the symmetry S1 does not restrict the Yukawa-coupling 
matrices any further, i.e. it does not lead to any new cases.

So we are lead to consider x11 �= x22. Then, only two possibilities for X remain, which are 
compatible with detF �= 0: either

X = Xa ≡ e−iγ1/2 diag (η, −η, ε) , (B.21a)

F = Fa ≡ diag (f11, f22, f33) , (B.21b)

or

X = Xb ≡ e−iγ1/2 diag
(
eiρ, e−iρ, ε

)
, (B.22a)

F = F1, (B.22b)

with F1 given by equation (B.4) and e2iρ �= 1.
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We must remember that X must be of the form (B.3), viz. that x33 = x∗
11. Therefore,

eiγ1 = e−iγ1 = ηε if X = Xa, (B.23a)

ei(γ1−ρ) = ei(ρ−γ1) = ε if X = Xb. (B.23b)

B.6. Cases A and B, step 3: the form of H

Case A, X = Xa , F = Fa : In this case the equation eiα1XT HX = H gives

ei(α1−γ1)

⎛
⎝ h11 −h12 0

−h12 h22 0
0 0 h33

⎞
⎠=

⎛
⎝ h11 h12 0

h12 h22 0
0 0 h33

⎞
⎠ . (B.24)

If ei(α1−γ1) �= ±1, then H = 0 contradicts our assumptions. If ei(α1−γ1) = 1, then h12 = 0 and the 
second generation decouples. If ei(α1−γ1) = −1, then we get case E—see equations (25), because 
the choice eiγ1 = eiγ1/2 = η = ε = 1 indeed leads to the symmetry Z(2)

2 of that equation.

Case B, X = Xa , F = Fa : In this case the equation eiα1XT HX = H gives

ei(α1−γ1)ηε

⎛
⎝ 0 0 h13

0 0 −h23
h13 −h23 0

⎞
⎠=

⎛
⎝ 0 0 h13

0 0 h23
h13 h23 0

⎞
⎠ . (B.25)

In order to avoid decoupling of the second generation, we must choose ei(α1−γ1)ηε = −1 and 
h13 = 0. We then obtain a case which is equivalent to case E after the interchange of the first and 
third generations.

Case A, X = Xb, F = F1: In this case the equation eiα1XT HX = H gives

ei(α1−γ1)

⎛
⎝ e2iρh11 h12 0

h12 e−2iρh22 0
0 0 h33

⎞
⎠=

⎛
⎝ h11 h12 0

h12 h22 0
0 0 h33

⎞
⎠ . (B.26)

Since e2iρ �= 1, through a choice of the phases we may achieve either case A1 or case A′
1 or case 

A′′
1 or case A2; no new case arises.

Case B, X = Xb , F = F1: In this case the equation eiα1XT HX = H gives

ei(α1−γ1) ε

⎛
⎝ 0 0 eiρh13

0 0 e−iρh23

eiρh13 e−iρh23 0

⎞
⎠=

⎛
⎝ 0 0 h13

0 0 h23
h13 h23 0

⎞
⎠ . (B.27)

In order to avoid decoupling of the second generation we must choose ei(α1−γ1−ρ) ε = 1 and 
h13 = 0; this case is equivalent to D′

2 through the interchange of the first and third generations.

B.7. Case C

In case C, it is convenient to choose a weak basis where

H ∼
⎛
⎝ 0 × 0

× 0 0
0 0 0

⎞
⎠ , G ∼

⎛
⎝ 0 0 ×

0 0 0
× 0 0

⎞
⎠ , F ∼

⎛
⎝× 0 ×

0 × 0
× 0 ×

⎞
⎠ . (B.28)
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This weak basis is achieved, starting from the form (13b) of the matrices H , G, and F , through 
a unitary rotation mixing the first and third generations; such a rotation does not alter the matrix 
W in equation (13a).

With G of equation (B.28) we know that X has to obey equation (B.3). It is then easy to 
see that HXeiα1 = X∗H requires X to be diagonal with eiα1x11 = x∗

22. Therefore, X can be 
parameterized as

X = diag
(
eiψ , e−i(α1+ψ), e−iψ

)
. (B.29)

With this X, the equation XT FXeiγ1 = F can only force one or more matrix elements of F to 
be zero.

If eiγ1 �= 1, one obtains f13 = f31 = 0 and, therefore, case E. Then, because of detF �= 0, all 
fii must be non-zero and it is easy to show that this leads to eiγ1 = −1, eiψ = iη, and eiα1 = ε

with η2 = ε2 = 1. Summarizing, we have

X = iη (1,−ε,−1) , eiα1 = ε, eiβ1 = +1, eiγ1 = −1. (B.30)

By choosing ε = −1 and absorbing (iη)2 = −1 into the phase factors, we arrive at Z(1)
2 of equa-

tion (25). Note that in this subsection the symmetry S0 is given by Z(2)
2 and S1 by Z(1)

2 , since we 

started from case C. Thus, in the present subsection, the notation for Z(1)
2 and Z(2)

2 is exchanged 
compared to equation (25).

Moving to eiγ1 = 1 and taking again into account detF �= 0, we have f22 �= 0. However, it is 
neither possible to enforce f11 = 0 while keeping f33 �= 0 nor to enforce f33 = 0 while keeping 
f11 �= 0; with f11 = f33 = 0 one recovers case D′

1.
One thus concludes that enforcing an extra symmetry on case C can only lead to cases E 

or D′
1, or else to a violation of our assumptions.

Appendix C. Precise definition of the matrices F , G, H

The aim of this appendix is to precisely define the matrices F , G, and H through equa-
tions (C.5) and thereby to extract the useful inequalities (C.11), which we employ in subsec-
tion 4.4.2.

The MSSM contains two Higgs doublets, Hd and Hu, with hypercharges +1/2 and −1/2, re-
spectively. Their corresponding VEVs are v cosβ and v sinβ , respectively, where v = 174 GeV. 
When one neglects the effects of the electroweak scale, these two doublets are, by assumption, 
the only scalar zero-modes extant at the GUT scale; this requires a minimal finetuning con-
dition [30,27]. Each of the scalar irreps 10, 126, 126, and 210 contains one doublet with the 
quantum numbers of Hd ; the 120 contains two such doublets. The doublet Hd is a superposition 
of these six doublets with amplitudes ᾱj (j = 1, . . . , 6). Let αj denote the analogous coefficients 
for Hu. The normalization conditions are

6∑
j=1

∣∣ᾱj

∣∣2 =
6∑

j=1

∣∣αj

∣∣2 = 1. (C.1)

It follows from equations (C.1) that

|ᾱ1|2 + |ᾱ2|2 + |ᾱ5|2 + |ᾱ6|2 ≤ 1, (C.2a)

|α1|2 + |α2|2 + |α5|2 + |α6|2 ≤ 1. (C.2b)
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The inequalities (C.2) only involve the amplitudes of the doublets contained in the 10, 126, 
and 120.

Taking into account that the 126 and the 210 have no Yukawa couplings, the Dirac mass 
matrices are given by

Ma = v cosβ
[
ca

1 ᾱ1Y10 + ca
2 ᾱ2Y126 + (

ca
5 ᾱ5 + ca

6 ᾱ6
)
Y120

]
(a = d, �), (C.3a)

Mb = v sinβ
[
cb

1α1Y10 + cb
2α2Y126 +

(
cb

5α5 + cb
6α6

)
Y120

]
(b = u, D), (C.3b)

with Yukawa-coupling matrices Y10, Y126, and Y120 and Clebsch–Gordan coefficients ca,b
j ; the 

latter derive from the SO(10)-invariant Yukawa couplings [5,31]. The absolute values of the 
Clebsch–Gordan coefficients have no physical meaning and some of their phases are convention 
dependent. With our conventions,9 the required information reads

cd
1 = cu

1 = c�
1 = cD

1 , (C.4a)

3cd
2 = −3cu

2 = −c�
2 = cD

2 , (C.4b)√
3 cd

5 = −√
3 cu

5 = √
3 c�

5 = −√
3 cD

5 = 3cd
6 = 3cu

6 = −c�
6 = −cD

6 . (C.4c)

In order to make contact with the mass formulas, we define

H ≡ cd
1 Y10, (C.5a)

F ≡ cd
2 Y126, (C.5b)

G ≡
√(

cd
5

)2 + (
cd

6

)2
Y120. (C.5c)

Then, by using equations (C.4) and (C.5c) we derive

(
cd

5 ᾱ5 + cd
6 ᾱ6

)
Y120 = cd

5 ᾱ5 + cd
6 ᾱ6√(

cd
5

)2 + (
cd

6

)2
G

=
(√

3

2
ᾱ5 + 1

2
ᾱ6

)
G, (C.6a)

(
c�

5ᾱ5 + c�
6ᾱ6

)
Y120 = c�

5ᾱ5 + c�
6ᾱ6√(

c�
5

)2 + (
c�

6

)2

√√√√(
c�

5

)2 + (
c�

6

)2

(
cd

5

)2 + (
cd

6

)2
G

=
(

1

2
ᾱ5 −

√
3

2
ᾱ6

)√
3G, (C.6b)

(
cu

5α5 + cu
6α6

)
Y120 = cu

5α5 + cu
6α6√(

cu
5

)2 + (
cu

6

)2

√√√√(
cu

5

)2 + (
cu

6

)2

(
cd

5

)2 + (
cd

6

)2
G

=
(

−
√

3

2
α5 + 1

2
α6

)
G, (C.6c)

9 See the appendix of Ref. [16].
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(
cD

5 α5 + cD
6 α6

)
Y120 = cD

5 α5 + cD
6 α6√(

cD
5

)2 + (
cD

6

)2

√√√√(
cD

5

)2 + (
cD

6

)2

(
cd

5

)2 + (
cd

6

)2
G

=
(

−1

2
α5 −

√
3

2
α6

)√
3G. (C.6d)

Equations (C.5a), (C.5b), and (C.6) may now be plugged into the mass formulas (C.3). The result 
is

Md = v cosβ

[
ᾱ1H + ᾱ2F +

(√
3

2
ᾱ5 + 1

2
ᾱ6

)
G

]
, (C.7a)

M� = v cosβ

[
ᾱ1H − 3ᾱ2F +

(
1

2
ᾱ5 −

√
3

2
ᾱ6

)√
3G

]
, (C.7b)

Mu = v sinβ

[
α1H − α2F +

(
−

√
3

2
α5 + 1

2
α6

)
G

]
, (C.7c)

MD = v sinβ

[
α1H + 3α2F +

(
−1

2
α5 −

√
3

2
α6

)√
3G

]
. (C.7d)

By comparing equations (C.7) and (2) we obtain the identifications

kd = v cosβ ᾱ1, (C.8a)

ku = v sinβ α1, (C.8b)

vd = v cosβ ᾱ2, (C.8c)

vu = −v sinβ α2, (C.8d)

κd = v cosβ

(√
3

2
ᾱ5 + 1

2
ᾱ6

)
, (C.8e)

κ� = v cosβ

(
1

2
ᾱ5 −

√
3

2
ᾱ6

)√
3, (C.8f)

κu = v sinβ

(
−

√
3

2
α5 + 1

2
α6

)
, (C.8g)

κD = v sinβ

(
−1

2
α5 −

√
3

2
α6

)√
3. (C.8h)

Computing ᾱ5 and ᾱ6 from equations (C.8e) and (C.8f) gives

|ᾱ5|2 + |ᾱ6|2 = 1

v2 cos2 β

(
|κd |2 + 1

3
|κ�|2

)
, (C.9)

while computing α5 and α6 from equations (C.8g) and (C.8h) leads to

|α5|2 + |α6|2 = 1
2 2

(
|κu|2 + 1 |κD|2

)
. (C.10)
v sin β 3
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Finally, the consistency conditions (C.2) may be translated into the following conditions for the 
VEVs:

|kd |2 + |vd |2 + |κd |2 + 1

3
|κ�|2 ≤ v2 cos2 β, (C.11a)

|ku|2 + |vu|2 + |κu|2 + 1

3
|κD|2 ≤ v2 sin2 β. (C.11b)
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R.N. Mohapatra, G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912.

[22] H. Fritzsch, Weak-interaction mixing in the six-quark theory, Phys. Lett. B 73 (1978) 317;
H. Fritzsch, Quark masses and flavor mixing, Nucl. Phys. B 155 (1979) 189;
L.F. Li, Comments on the derivation of the mixing angles, Phys. Lett. B 84 (1979) 461.

[23] Z.z. Xing, H. Zhang, S. Zhou, Updated values of running quark and lepton masses, Phys. Rev. D 77 (2008) 113016, 
arXiv:0712.1419 [hep-ph].

http://refhub.elsevier.com/S0550-3213(16)00093-6/bib66657275676C696Fs1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib66657275676C696Fs1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib6C75646Cs1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib6C75646Cs1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib746F72746F6C61s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib746F72746F6C61s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7363687765747As1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7363687765747As1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7363687765747As2
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7363687765747As2
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7363687765747As3
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7363687765747As3
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib616C746172656C6C69s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib616C746172656C6C69s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib616C746172656C6C69s2
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib616C746172656C6C69s2
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib616C746172656C6C69s3
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib4C4B4732303036s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib4C4B4732303036s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib6D617473756461s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib6D617473756461s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib6D617473756461s2
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib6D617473756461s2
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib6D617473756461s3
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib6D617473756461s3
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib474B32303036s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib474B32303036s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib474B32303037s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib474B32303037s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib474B32303037s2
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib474B32303037s2
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib73656E6A616E6F766963s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib70617469s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7365657361774949s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7365657361774949s2
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7365657361774949s2
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7365657361774949s3
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7365657361774949s3
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7365657361774949s4
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7365657361774949s5
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7365657361774949s5
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib736565736177s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib736565736177s2
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib736565736177s2
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib736565736177s2
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib736565736177s3
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib736565736177s3
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib736565736177s4
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib736565736177s4
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib736565736177s5
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib667269747A736368s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib667269747A736368s2
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib667269747A736368s3
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7A686F75s1
http://refhub.elsevier.com/S0550-3213(16)00093-6/bib7A686F75s1


320 P.M. Ferreira et al. / Nuclear Physics B 906 (2016) 289–320
[24] C.R. Das, M.K. Parida, New formulas and predictions for running fermion masses at higher scales in SM, 2HDM, 
and MSSM, Eur. Phys. J. C 20 (2001) 121, arXiv:hep-ph/0010004;
S. Antusch, M. Spinrath, Quark and lepton masses at the GUT scale including SUSY threshold corrections, Phys. 
Rev. D 78 (2008) 075020, arXiv:0804.0717 [hep-ph].

[25] K.A. Olive, et al., Particle Data Group Collaboration, Review of particle physics, Chin. Phys. C 38 (2014) 090001.
[26] R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for global optimization over continuous 

spaces, J. Glob. Optim. 11 (1997) 341.
[27] C.S. Aulakh, A. Girdhar, SO(10) à la Pati–Salam, Int. J. Mod. Phys. A 20 (2005) 865, arXiv:hep-ph/0204097.
[28] I. Garg, New minimal supersymmetric SO(10) GUT phenomenology and its cosmological implications, Ph.D. the-

sis, University of Panjab, 2014, arXiv:1506.05204 [hep-ph];
I. Garg, S. Mohanty, No scale SUGRA SO(10) derived Starobinsky model of inflation, Phys. Lett. B 751 (2015) 7, 
arXiv:1504.07725 [hep-ph].

[29] N. Yamatsu, Finite-dimensional Lie algebras and their representations for unified model building, arXiv:1511.08771 
[hep-ph].
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