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ABSTRACT 

The coefficients in the expansion of adj( hl - A) are expressed as gradients, and 
some new representations are given for the Drazin inverse of a matrix over an 
arbitrary field. These results are then combined to express the Drazin inverse as a 
gradient of a function of the entries of the matrix. 

1. INTRODUCTION 

If X=[X,~] isan rn~n matrixoverafieldlF,and f(X)= f(xll ,..., x ,,,,,) 

is a function from IF,,, Xn into IF, depending on the entries of X, then the 
gradient v_x f(X) is defined to be the m X n matrix ( vs f )ij = (a/ax,,)f. 

For example, if x is a column, x = [xi, x2 ,..., r,,]r, then v,f(x)= 

[af/ax,,..., af/b’x,]“. Suppose that A E [F,,,, has determinant (Al and 
cofactors Aij. Then, considering the entries aij as independent variables, we 
may write (a/b’a,j)lAl = Aij. That is, 

adj( A)?‘ = v,,lAl. (1.1) 
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For an invertible matrix A, this may be used to rewrite Cayley’s formula 
A-’ = adj(A)/]A( in gradient form: 

1 
(A-‘)‘=Jrl/adj(A)‘= [v,xln]X]],x=,l. (1.2) 

In this, the potential function In 1x1 is formally defined by 

Our aim will be to generalize this result to singular n X n matrices, by finding 
a potential function w for the Drazin inverse. That is, we shall construct a 
function w = w(x,,,..., x,,,~) in the form of lndet W(X), so that 

for some suitable matrix W(X). 
Our strategy will be to obtain a suitable representation for X” in terms of 

coefficients Xi in the expansion of adj(hZ - X), and then to derive the 
potential function for these coefficients. As always, we shall denote the set of 
m x n matrices over lF by IF,,, Xn, and use rank( .), (.)r, and det( .) or 1.1 to 
denote the rank, transpose, and determinant respectively. We shall further use 
e, for the unit vector [0 ,..., 1,0 ,..., OIT and shall write IID, to denote formal 
differentiation with respect to X. Some knowledge of the elementary proper- 
ties of the Drazin inverse X” of a matrix X [l] will be assumed, and we shall 
shorten the term “generalized inverse” to g-inverse. 

2. THE ADJOINT EXPANSION 

Let X E IF,,.., and suppose that its characteristic and minimal polynomi- 
als are given by 

A(X,h)=]hZ-X]=V(x,+r,+,h+ ... +x”-“)=h”a,(X), 

#(X,h)=X’(q+i,+,h+ ... +X,,r-0, 
(2.1) 

where xk # 0 # gr and k 2 la 0. 
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The integer k is sometimes called the zero order of X, while the integer 
p = n - k is usually called the core rank of X. In addition the exponent 
1 = Z(X) is often referred to as the index of X. Now if 

u 0 
X=Q o .,, Q-' 

[ 1 (2.2) 

is Fitting’s decomposition of X, with U invertible and 71 nilpotent, in IF, xk, 
then the core C, of X is given by 

while the nilpotent part Nx is equal to 

0 0 
Nx=Q o 17 Q-l. 

[ 1 

Clearly A,(h)= A(U, h), p = n-k = rank(C,x)= rank(U), and 1(q)= E(X). 
We shall show that in terms of these coefficients, the potential matrix W(X) 
of (1.3) can be expressed as 

w(x)=: 
xkxk-1 “’ ‘kXO 

‘k+l xk 

. . . 0 

‘2k X2k-1 ‘.’ xk 
L 

For algebraic purposes, 
polynomial of X in 
( - l)“-‘a,_,A’. Indeed, 
0, 1,. . . , n as 

(2.3) 

(k+l)x(k+l) 

it is often convenient to write the characteristic 
the form A(X, h) = X” - uiXn_i + u2AnP2 ... 
the coefficients a, can be expressed for all r = 

a, = ( - l)%,_, = clx:l, cL=(QI1,...,“JT, (2.4) 
(I 

which represents the sum of all r x r principal minors of X. Here Xt denotes 
thesubmatrixof Xgeneratedbyrows(a,,...,a,)andcolumns(P1,P2,...,P,). 
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Suppose further that the h-adjoint has been expanded as 

adj(XZ-X)=X,+X,A+ ... +ZA”-‘, (2.5) 

where the X, are the so called “adjoint coefficients” [4]. It is easily seen from 
(2.1) and (2.5) that 

x,=x,= ... =X,_,_,=O#Xk_/, (2.6) 

and that 

xx, = xi_1 - xiz, i=1,2 ,..., n-l, 

x_,=o=x,. (2.7) 

Hence XiXk_i = Xk_i_l, i = O,l,..., I- 1, from which we see that 
(X&,,..., Xk_i) are linearly independent, even if X is nilpotent. It is well 
known that the recurrence relation (2.7) may be solved to yield 

‘1 = Pi('), i= -l,O,l,..., n-l, (2.8) 

where the “adjoint polynomials” are given by 

Pi(h) = xi+1 + X,+J + . . . + XJ--‘, (2.9) 

i= -l,O,l ,...,n-1. In particular P-r(X)=A(X,A), pk_r(X)=A(U,X), 
&(h) = xk+r + xk+sx + . . . + X”-k-‘, and r)&,(h) = A’P’p,_,(x), i = 
1,2,..., 2. From this it is easily seen that if Y = QP’XQ then Y, = Q-‘X,Q. 
Moreover, using the Fitting decomposition, it follows that 

(2.10) 

forms a basis for the polynomial space spanned by (I, X, X”, . . .). It should 
further be noted that while the matrices (X,-,,. . . , Xkp,) are all nilpotent, 
the matrix Xk- I = pk_ ,( X ) = A( U, X ) has a group inverse [4]. By analogy to 
(2.4) we may rewrite the X-adjoint as 

adj(hZ - X) = Z,h”-’ - Z,h”-” + . . . +( - l)‘l-lZ,l, (2.11) 
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where the signed coefficients are given by 

z, = ( - l)T-lX”_r, r=O,l,*.., n. (2.12) 

The dual notation of (2.4) and (2.12) is necessary if one wants to avoid 
cumbersome and often unwieldy minus signs. In theoretical considerations it 
will usually be easier to use x, and X,, while when dealing with adjoints and 
principal minors, it will be more convenient to use a, and 2,. For example, 
Z, = ( - l)“-‘X, = adj(X). 

It will be demonstrated shortly that the entries in Z, are in fact represent- 
able as sums of algebraic complements of aij in the r x r principal minors 
of A. 

From (2.4) we see that the coefficients xi are fixed multinomial functions 
(that is, sums of products) of the entries xri, . . . , x,,. Likewise the coefficients 
Xi in (2.5) are fixed matrix valued functions of the entries xii,..., x,,,,. The 
spectral indices k and I, in turn, are unique functions of the xii, via 

k=min{x,#O} 
i 

I = min { X1X,_ I = O}. 
I 

For a particular matrix A, we may calculate the coefficients a, and A, in 
the characteristic and adjoint expansions (2.1) and (2.5), respectively, from 
a, = xi(A) and A, = Xj( A). 

3. ANALYTIC INVERSES 

A fundamental problem in the theory of generalized inverses is to find 
coefficients Si = Zi(X) so that the polynomial 

represents a generalized inverse of X. That is, {(X ) = X i, whenever XP ’ 
exists. One obvious way of solving this problem is via the Cayley-Hamilton 
theorem, which says that if X-i exists then k = 0, and one may take 

{(A)= -~[x,+x2x+ ... +P]. (3.1) 
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For singular X, with A(X, X) as in (2.1), it is clear that we may construct 
the polynomial 

{(A)= -$xk+l+x,+J+ ... +Yk-l] 

= _;pk(“)=; l-a(u,] 
[ xk I’ 

with the associated generalized inverse 

A= -k”“(x)= - 

This matrix has the block form 

x, 
‘k 

(3.2) 

(3.3) 

and was called the principal analytic inverse in [2]. It will be invertible 
precisely when xii+ r # 0. 

More generally we may consider the family of analytic spectral inverses 

PI 

l(X)= - 2 $ h liXk_i 
i=l 

(3.4) 

for some li. These g-inverses not only commute with X, but also satisfy the 
range condition 

x’+ y = x’. (3.5) 

Indeed, since 0 = X’X,_, = X’(x,Z + XX,), it follows that X solves (3.5) 
after which the identities X/X,_, = 0, i = 1,2,. . . , 1, ensure that the l(X) 
have the same property. We shall now show that the Drazin inverse X” is also 
a member of this family of analytic inverses (3.4). To do this we shall have to 
introduce the following notation. If 9(h) = 9. + 9,h + . . . + Xv:, 90 + 0, is a 
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polynomial in lF[X], then we may define the coefficients ri by the determi- 
nants 

41 40 

q2 91 . . . 
Ol 

, i=1,2 ).... 
. . 40 

These coefficients satisfy the matrix equation [4] 

forall i=1,2,3 ,.... 
Consequently we may think of the coefficients 1; as being those of the 

formal power series 

r(h)= -& = i: I;A’. 
i = 0 

Moreover, q(h)[r,+r,X+ ... + rrX’] = 1 - A” ‘s(h) for some polynomial 
s(X). 

Consider now the formal differentiation operator D,. If char[f = 0, then 
(l/i!)[!Di(p, 4 p,x + . . . pkP)lXzO = pi. In other words the operator 
(l/i!)Di( .)] h=O extracts the coefficient of x’ from the polynomial p(h). For 
chartF f 0, we shall use the same notation for this operation. 

Moreover we may define 

to mean the coefficient of A’ in the formal product of 

&+q= r(~)dV* 
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Of course, when char IF = 0, this is precisely what one would obtain by using 
the quotient rule on the rational function p( h)/q( A). 

Now consider the formal expansion A(u, h)-’ = CrXih’, where the Xi = 
(l/i!)[D~(l/A(U, X))lxzO are explicitly given by 

Ix 'k k+l 

Xo=X;l, ( -lJi xk+2 xk+l 0 
Xi= i+l . ) i=1,2 ).... 

xk 
. . 

xk 

xk+i Xk+i_1 “’ xk+l 

(3.7) 

Also let A-(U,X)=XO+XIX+ ... + XJ’. Then A(U, x)A-(U, X)= l- 
X”‘s(X) for some polynomial s(X), or more formally A-(u, X)= A-‘(u, X) 
mod A’+‘. Now set d(h)= [l - A(u, X)A-(V, X)]/h =X’s(h). Then we have 

THEOREM 1. Let X E IF, Xn have characteristic polynomial as in (2.1), 
and let d(h) be defined as above. Then 

X”=d(X). (3.8) 

Proof Using (2.2) we see that d(U)= U-‘.[I - A(tJ, LJ)A-(fJ, LT)] = 
UP’, while d(q)= q’s(q)= 0, as desired. n 

We may rewrite d(h) in a form from which its spectral inverse character 
is more obvious. We have 

= pk@) --- 

XL 
A(U,X)[Xl+Xah+ ... +xxlkP1] 

and hence 

d(h) = - [XOPk(h)+Xl~k-l(X)+ ‘. . + X,Pkdh)]~ (3.9) 

Consequently 

X”= - ~ xiXk_i=~- C x;xk_i, 
i=O i=l 

(3.10) 
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It should be remarked here that we may in A- (CT, X) and in (3.9) replace I by 
any t such that 16 t < k. This does not affect (3.10), since the Xkpi vanish 
for i > 1, and the coefficients Xi only depend on k. 

Let us now proceed and develop the potential function for the adjoint 
coefficients X,. This will subsequently be combined with (3.10) to give the 
potential function for Ad. 

4. THE POTENTIAL FUNCTIONS 

THEOREM 2 

Let xi and Xi be the coefficients of X in A(X, X) and adj(h1 - X). Then 

XT = - v,yxr, r=O,l ,...,n-1. (4.1) 

Proof. Consider hl - X, where h is an indeterminate independent of 

the entries xii. Then from (1.1) we see that 

adj(hl-X)r=v,,_,A(X,h)= -v,~A(X,A), (4.2) 

since 8(Mij - xij)/&ij = - 1. Hence Cy:,‘X,A’ = - C::i~,~x~x’. Equating 
powers of h’ yields the desired results. n 

Dually this result may be written as 

When r = 0, it is easily seen that (4.1) reduces to (l.l), since X,, = 
( - 1),-i adj (X). Similarly, for r = 1 we obtain Z = V, Tr (X). 

Our first consequence of Theorem 1, is the following nontrivial characteri- 
zation of the entries in the signed adjoint coefficient matrices 2,. 

COROLLARY 1. 

(4.3) 

Proof First of all, it should be noted that (a/&,,)lXzl is the algebraic 
complement of a, j in the principal minors 1x11. Consequently its value is zero 
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when i or j do not appear in {(or,. . . , a, ). Now on using (2.4) we see that 

which by Theorem 1 reduces to ( - l)‘-‘(X,_,)jj ~(2,)~~. n 

We are thus justified in calling Z, the “rth adjoint” of X, and we write 

Z, = adj,(X). (4.4) 

In particular Z, = Z = Z, and J3’, = adj(X). 
The “rth adjoint” may also be expressed as 

Z, = c U, adj( U,‘XU,)U$, 
Q 

(4.5) 

where (Y = (a,, . . . , a,) and U, = [e,,, . . . ,ecx,]. Indeed, 
two facts that 

this follows from the 

eyUa = 
i 

eT 

0” 

if j=a,, 

if j@{a,,...,a,} 

and that if i = ap, j = aq, then (~Y/&r,,)]x:] =(adj(X,*))(,,,,. We may in 

fact go one step further, and expand adj(pZ - (XI - X)) to show that 

adj~(X-hl)=r~l(-l)‘(*lRI:‘)adj~_~(X)X. 
t = 0 

(4.6) 

A second application of Theorem 2 is the fact that 

COROLLARY 2. 

(4.7) 

This says that the potential function of the g-inverse of XT is [In x,], which is 
similar to the case of a two dimensional Green’s function. 
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It should be remarked here that there are two “limiting” processes that 
have to be carried out, namely V,( .) and lim, _A. Moreover, these limits 
cannot be interchanged. For example, we are not allowed to conclude that 
[v,A(X, X>IxmA = v,(X’A(U, x))]xzA = Xk[vX(A(U, A))].=,. In fact if 
A is a matrix with k(A) = k,, Z(A) = Z,, then VxA(X, h)],=, = 
- (A~,_l,Xk”-l~ + ... + ATPih”-i) = - adj (XI - A)r, while 
Xk[VXA(U,X)]x=Abecomes - XkOIAI,,+ A;,+ih+ ... +AtPIXnPkO]. 

Combining Theorems 1 and 2, we may now obtain the potential function 
for X”. 

THEOREM 3. Let A E [F, x n have zero order k(A) = k, and index Z(A) = 
1,. Let a, = x,(A), Ai = X,(A), and ai = Xi(A) denote the coefficients of x’ 
in the expansions of IXZ - A], adj(XZ - A), and A(U,, X)-l respectively. 
Also let 

t(x) 

gk,, = iFoXixk-i and fk,t = ‘kgk,tT 

where t = t(X) is an integer valued function of X such that Z(X) < t(X) < 
k(X) for all X E IF,,,. Then 

(AftIT= [vxlnh,tlx=,4. (4.8) 

proof. First of all, V ln(x,g,, ,) = V ln xk + V ln g,, , in which V ln zk = 
(I/r,&%, = - X,T/x, = X. Next consider V In gk,, = c:=O(Vx,)xkP, 
+EizOxi( vxkpi). In the first sum we separate off (Vxe)xk = V(I/x,)‘rk = 
- vxli/xk = - X. This approaches - A as X + A. The remaining terms 
C:=i(VXi)xkPi will all vanish as X --+ A, k + k,, and 1 + I,, since ak,,_i = 0 
for all i > 1. The second sum reduces with the aid of Theorem 2 to 
[ - x0X:- C:=lXiXkT_i]x=A= A - Ci’~iqAr&~, because Ak,,Pi = 0 for i > 
I,. Collecting terms yields V In xkg/i,r = A - C’,oa,A;,,_,, which by (3.10) 
reduces to ( A”)r, completing the proof. n 

REMARKS. 

(1) The most convenient choices for the potential function fk., = xkgk., 
are obtained by selecting t(X) = Z(X) or t(X) = k(X), giving for example 

fk,, = Xk(xOXk + xlxk-1 + “. + xfxk-,)* (4.9) 
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Alternatively we could for example take t(X) = [{Z(X)+ k(X)}/2], even 
though this looks a little artificial. 

(2) By analogy to (1.2) we may rewrite the potential function for (A”) as 
the logarithm of a suitable determinant. We shall need the following auxiliary 
result. 

LEMMA 1. If My = e,, where 

M= 

is n X n and invertible. then 

T 
ml 

M2 1 

Proof. Use Cramer’s rule. 

We may apply this to the case where 

r xk 

0 . . . . . 
'k 1 y Y= 

Then by Lemma 1, 

gk,t = X”Xk + . . . + xtxk_t = bTy 

1 Ez- 
t-C1 

xk 

xk I xk-l 
----r-------- 

xk+l I xk 
I 

. I xk+ 1 

.I. 
I 

.I. 

xk+t I Xk+t-l 

(4.10) 

‘k-t 
-----____________ 

0 

Xkil xk 



THE DRAZIN INVERSE AS A GRADIENT 249 

Hence the potential function fk, f can be written as ) W 1, where 

xk” 

I----,--------------:-----1-- 

1 xkXk-l ’ ‘k’k-1 

Xk+l I ‘k 

0 

xk+ I xk (/+1)x( 

(4.11) 

For t = k, this yields (2.3). 

5. FURTHER REPRESENTATIONS FOR A” 

The expression for the Drazin inverse in (3.10) has the form of a 

convolution. Indeed it is easily seen that the sum cl =0Xi Xk_ i equals the 
coefficient of Ak in 

G(h)=adj(hZ-X)A-(U,h) 

= (A”-‘x,_, + . . . + An-q&j +x,x + . . . + x[Aqz. (5.1) 

It is instructive to derive this in a more direct way, which not only allows us 
to compute the potential functions for E = I - XX” and N = X(Z - XX”), 
but also allows us to draw a close parallel with the complex matrix case. 

Using the Fitting representation (2.2), we have 

G(X)=Q 
Xkadj(hZ - U) 0 

0 A(U, h)adj(XZ - 77) 1 Q-‘.A-@, X). 

Now adj(AZ-U)=U,+U,X+ ... +Un_k_lp-k-i, where xoUO= 
while adj(hZ - q)= (qk-r + qks2h + . . . + ZAkp’). Since A(U, x)A 
= 1 - h”ls(h), we see that the coefficient of Xk in G(A) is precisely 

x0% 0 p[ o ,,1Q’= -X”. 

(5.2) 

-w-r, 

(U, A) 
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Similarly the coefficients of hk- ’ and XkP2 become E = I - XX” and N = 
X(Z - XX”) respectively. 

Using the extended definition of the operator (l/r!)Di [ *] x=o, we may 
replace A-(U, A) by l/A(U, A) in (5.1). This gives the following: 

THEOREM 3. Let X E IF, *,, and suppose its characteristic and adjoint 
polynomials are given as in (2.1) and (2.5). Further let G(A) = adj(XZ - 
X)/A(U, X). Then 

-Xd=$Df\[G(X)]h=o, (5.3a) 

E=Z-XX”= ~kl,$D-l[G(x)l~_o, (5.3b) 

N= X(Z- XX”)= (5.3c) 

where k = k(X) is the zero order of X. 

In particular if k, = k(A), I, = Z(A), then 

E = Z - AA”= c LY~A~,,_,_~, 
i=o 

1” - 2 

N = A(Z - AA”) = c (YiAko_i_2, 
i=O 

(5.4) 

which may also be obtained from the spectral theorem [4]. 
Analogous representations can be given for all members of the Drazin 

chain [6] 

(N”, N!-~ ,..., N, E, -Xl’, -XC’” ,,,. ). (5.5) 

This comes as no surprise if one recalls the complex Laurent expansion 
[7, Theorem 2.11 for the resolvent: 

(Xz_X)-l=y+F+ . . . +;-X”-XC”& . . . . (5.6) 
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where N = (I - XX”)X, E = Z - XX”, and A is small. Hence 

adj(XZ - x) = N”hk-/ + 

G(X)= A(v, h) 
. . . + Nhk-2 + EAk-1 

from which the coefficients of x’ may be extracted by differentiation, which is 
precisely what (5.3) does formally. For complex matrices, the representation 
(5.3a) can also be obtained from the contour integral representation for X” as 
given in [S]: 

where the contour I encloses the spectrum of X except for the origin. Using 
the residue theorem, this equals - Resh,a[G(h)/hk], which by the differ- 
entiation formula for the residue at a pole of order k yields the desired result. 

A little-known fact is that the X” can actually be calculated from a 
knowledge of E = Z - XX” and the g-inverse X = - X,/x/;. Indeed, from 
(3.5) we obtain 

X” = x’(X)‘+’ = (X%‘)X = (I - E)it, (5.8) 

which in turn will yield (3.10) if we substitute the expression (5.4) for E. 
Let us conclude with several pertinent remarks. 

REMARKS. 

(1) The potential functions for each member of the Drazin chain (5.5) can 
be computed as in Theorem 3. For example, it is easily verified that 

hgk-,,tl,Y=,.$ = -N:> 
hgk&l,, S=.4 = - E,i, 1 

(5.9) 

where 1, < t(A) d k,. 
(2) For small values of 1, the potential function fk,, = xkg,,, of X” can 

be expressed as a small determinant. For example, if 1 = 0, then k = 0, 
g,,,=l and -(A”)r=vS1nro, which becomes (1.2). On the other hand, if 
1 = 1, then 
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Lastly, if I = 2, then 

*k xk-l xk-2 

x,2=’ Xktl xk o ’ 

xk” xk-2 xk+l xk 

(3) Using (2.4), the potential function fk,t can dually be expressed in 
terms of a, and the core rank p = n - k. This gives 

(4) In [3] the same problem is considered for the Moore-Penrose gener- 
alized inverse. 
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