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Helicoverpa armigera is a major pest of agricultural crops and has developed resistance to various
insecticides. A P-glycoprotein (Pgp) with ATPase activity likely to be involved in insecticide resistance was
purified and characterized from insecticide-resistant H. armigera. The purification was 18-fold with 3% yield.
The optimum pH and temperature were found to be 7.4 and 30–40 °C, respectively. Kinetic studies indicated
that this enzyme had a Km value of 1.2 mM for ATP. Pgp from H. armigera was partially sequenced and found
to be homologous to conserved sequences of mammalian Pgps. Pesticides stimulated H. armigera Pgp ATPase
activity with a maximum stimulation of up to 40%. Quenching of the intrinsic tryptophan fluorescence of
purified Pgp was used to quantitate insecticide binding. Using the high-affinity fluorescent substrate,
tetramethylrosamine, transport was monitored in real time in proteoliposomes containing H. armigera Pgp.
The presence of Pgp could be one of the reasons for insecticide resistance in this pest.
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1. Introduction

Helicoverpa armigera (Hübner) (Lepidoptera: Noctüidae) is a
worldwide agricultural pest affecting more than 182 species of crop
plants. In the Indian subcontinent, Australia, China and Africa, H.
armigera is arguably the most important agricultural pest and has a
long history of insecticide resistance [1,2]. It was demonstrated
that a population of Australian H. armigera has developed resistance
(275-fold) to B. thuringiensis Cry1Ac toxins in transgenic cotton [3]. In
India, crop losses are commonly more than half the yield, and
annual losses of cotton and pulses alone have been estimated at US
$ 300–500 million. Insects that show resistance to one insecticide
generally develop resistance to other classes of insecticides, a
phenomenon often referred to as cross-resistance. This phenomenon
resembles multidrug resistance (MDR), whereby resistance to one
drug is accompanied by simultaneous resistance to a variety of
structurally unrelated compounds [4].

MDR in mammalian organisms has been associated with the over-
expression of plasma membrane proteins that belong to the ATP-
binding cassette (ABC) family [5]. The ABC superfamily of proteins
contains a number of membrane-bound, ATP-driven transporters that
pump drugs, drug metabolites, and endogenous metabolites out of
cells. In general, they comprise two transmembrane domains (TMDs)
and two cytoplasmic nucleotide-binding domains (NBDs) that
function to hydrolyze ATP. The NBDs are highly conserved throughout
this protein family, and contain the Walker A and B motifs commonly
found in other proteins that hydrolyze ATP or GTP, and also the
Signature C motif that is unique to ABC proteins [6]. Human P-
glycoprotein (Pgp; ABCB1; product of the MDR1 gene) is a 170 kDa
ABC protein, and its expression confers cellular resistance to a wide
spectrum of drugs. Pgp functions in ATP-driven efflux of drugs from
the cell, and Pgp-mediated MDR is thought to be an important cause
of failure of cancer chemotherapy [7]. Another group of compounds
known as Pgp modulators blocks drug efflux by competing with
transport substrates in a complex fashion [8]. Pgp displays high levels
of constitutive ATPase activity, which may be stimulated or inhibited
by the addition of drug substrates [9,10]. Similar ABC proteins have
been implicated in the resistance of many organisms to a vast and
chemically diverse range of toxic molecules, and this type of
resistance has occurred throughout the course of evolution [11,12].

The role of Pgp-like proteins in insects merits study because such
transporters may contribute to insecticide resistance. Organochlorine
and organophosphorus pesticides such as chlorpyrifos have been
reported to bind to Pgp, and exposure to such compounds increases
MDR1 gene expression [13,14]. Exposure to the Pgp modulator
verapamil increases the toxicity of ivermectin in chironomids [15] and
the toxicity of three insecticide classes (cypermethrin, ivermectin, and
endosulfan) in mosquitoes [16]. A few studies have examined the
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possible role of Pgp-like proteins in the malpighian tubules of insects
[17–19]. A Pgp homolog was identified as a nicotine pump in the blood
brain barrier of tobacco budworm [18] and shown to maintain a
decreased level of nicotine in the brain, thereby protecting the tobacco
hornworm from central nervous system toxicity. Severalmechanisms of
insecticide resistance have been identified in the insect pest,H. armigera
[2], including insecticide insensitivity of acetylcholinesterase and
esterase-mediated organophosphorus resistance [2]. The presence of
Pgp and its involvement in insecticide resistance have also been
reported in tobaccobudworm,Heliothis virescens [4], andH.armigera [2].
Earlier we have shown that various insecticides stimulated the ATPase
activity of partially purified H. armigera Pgp (Ha-Pgp) which was
reconstituted into proteoliposomes [20]. There have been several
reports of purification and characterization of Pgp from MDR human
and other mammalian cells, but no reports using insects as a source. In
thepresent study,we report thepurificationand characterization of Ha-
Pgp from insecticide-resistant pests, and its interaction with various
insecticides as assessed by their effects on its transport function.

2. Materials and methods

2.1. Chemicals

Dimyristoyl-L-α-phosphatidylcholine (DMPC) was obtained from
Avanti Polar Lipids (Alabaster, AL, USA). ATP, CHAPS, ethylparaoxon
and cypermethrin were obtained from Sigma-Aldrich (Oakville, ON,
Canada), and tetramethylrosamine (TMR) from Molecular Probes
(Eugene, OR, USA). Creatine kinase and creatine phosphate were
purchased from Roche Diagnostics (Laval, QC, Canada). Verapamil and
doxorubicin were purchased from Sigma-Aldrich. All other chemicals
used were of analytical grade. Methylparathion (99.3%) was procured
from the Pesticide Analysis Laboratory, Gulbarga, India. Endosulfan
(99%) and fenvalerate (99.4%), from Bayer Crop Science and Dow
Agroscience, respectively, were obtained from the Department of
Environmental Biology, University of Guelph (Guelph, ON, Canada).

2.2. Insects

H. armigera pests which have developed resistance to various
insecticides [2] and are broadly referred to as the resistant population
were supplied by Dr. S.S. Udikeri (Agriculture Research Station,
Gulbarga, India).

2.3. Purification of Ha-Pgp ATPase

Fourth instar larvae were washed in cold 50 mM Tris–HCl buffer
(pH 7.4) and dissected to remove the gut contents. The whole bodies
(100 g) were then homogenized in 100 ml of 50 mM Tris–HCl (pH 7.4)
containing 1 mMphenylmethanesulfonyl fluoride (PMSF), 1 mMEDTA,
and 1 mM phenylthiourea. The homogenate was filtered through four
layers ofmuslin cloth and centrifuged at 10,000 g for 10 min at 4 °C. The
supernatant was then subjected to ultracentrifugation at 100,000 g for
1 h. The pelletwas resuspended in the above buffer containing 20 mM3
[(3-cholamidopropyl) dimethylammonio]-propanesulfonic acid
(CHAPS) and solubilized for 2 h at 4 °C. After re-centrifuging the
suspension at 100,000 g for 30 min, the supernatant was treated with
ammonium sulfate to attain 60% saturation and allowed to stand for 2 h
at 4 °C. The precipitate was collected by centrifugation at 15,000 g for
20 min and dissolved in 50 mM Tris–HCl buffer (pH 7.4) containing
2 mM CHAPS, 1 mM PMSF, and 1 mM EDTA. The above fraction was
loaded on to a Concanavalin A Sepharose-4B column (2.5×10 cm)
equilibrated with 50 mM Tris–HCl buffer at pH 7.4 containing 2 mM
CHAPS, 1 mMdithiothreitol (DTT) and5 mMMgCl2 and the columnwas
washed with the same buffer. The column was further washed with
20 ml of 10 mM D-methylmannopyranoside containing 0.2 mM CHAPS
until no absorbance at 280 nmwas detected in the eluate. The adsorbed
proteins were then eluted with 20 ml of 0.5 M D-methylmannopyrano-
side containing 0.2 mM CHAPS and 2 ml fractions were collected. The
five fractions containing maximum activity were pooled, concentrated,
dialyzed against 50 mM Tris–HCl buffer pH 7.4 containing 0.2 mM
CHAPS and loaded onto a hydroxylapatite column (2×10 cm) which
was previously equilibrated with the above buffer. After washing with
40 ml of the above buffer, the adsorbed proteins were then eluted in a
stepwise manner with 20 ml of increasing concentrations (10, 50, 100
and 200 mM) of phosphate buffer at pH 7.4 containing 0.2 mM CHAPS,
and 3 ml fractions were collected. The active fractions were pooled and
concentrated using a Viva cell 250 (MWCO50,000) and dialyzed against
50 mM Tris–HCl buffer of pH 7.4 containing 0.2 mM CHAPS for 18 h by
changing the buffer at every 6 h interval. This step removed phosphate
completely from the sample.

Gel filtration chromatography was performed using a G-200
(1×60 cm) column equilibrated with 50 mM Tris–HCl buffer 7.4
containing 0.2 mM CHAPS. The above concentrated sample was loaded
on to the column followed by elutionwith the same buffer at a flow rate
of 0.1 ml/min with a fraction size of 1 ml. The Ha-Pgp ATPase fractions
were pooled and concentrated as above. Protein concentration was
determined by the method of Lowry [21]. The presence of a Pgp-like
protein in the purified preparation, reconstituted proteoliposomes,
cuticle, fat body and midgut preparation was confirmed as described
previously [2], using Western blotting with C219 antibodies, which are
directed at the C-terminal NBD of mammalian Pgp.

2.4. The reconstitution of purified Ha-Pgp into the proteoliposomes

The reconstitution of purified Ha-Pgp into proteoliposomes was
carried out as described in our earlier report [20]. In brief, lipids (25 mg
egg yolk L-α-phosphatidylcholine and 2.5 mg egg yolk L-α-phosphatidic
acid)weredissolved inchloroformanddriedunder a streamofnitrogen.A
1.375 mlbuffer sample (containing20 mMTris–HCl, pH7.4; 75 mMNaCl;
1 mM DTT; and 0.5 mM EDTA) was added to the lipid film. The mixture
was sonicated on ice until the milky suspension become transparent
(about 15–20 min). To a 100 µl aliquot of this preparation, 610 µl of buffer
and 40 µl of 180 mM CHAPS solution were sequentially added under
constant stirring at room temperature. After 15 min, 250 µl of 0.2 mg/ml
purified Pgp were slowly added, and the mixture was incubated under
constant agitation for another30 min. To remove thedetergent, thewhole
sample was applied to a Sephadex G-50 column (1 cm×25 cm) that had
been preequilibrated with 20 mM Tris–HCl (pH 7.4), 75 mMNaCl, 1 mM
DTT, and 0.5 mM EDTA. The proteoliposomes were collected as a single
fraction with the same buffer content as that of the elution buffer. They
were assayed for ATPase activity.

2.5. ATPase activity

ATPase activity was determined by quantitating the release of
inorganic phosphate from ATP [22]. In brief, an aliquot of enzyme was
incubated in 1 ml of ATPase assay medium (containing 2.5 mM ATP;
75 mMKCl; 5 mMMgCl2; 0.5 mM EGTA; 2 mM ouabain; 3 mM sodium
azide; 50 mM Tris–HCl pH 7.4) for 30 min at 37 °C. The reaction was
terminated by the addition of 2 ml ice-cold stopping medium 0.2% (w/
v) ammonium molybdate, 0.9% SDS, 2.3% trichloroacetic acid, 1.3% (w/
v) sulfuric acid, and freshly prepared 1% (w/v) ascorbic acid. After
30 min incubation at room temperature, the released phosphate was
quantitated colorimetrically at 660 nm. To study the effect of various
insecticides, drugs,metal ions and inhibitors, different concentrations of
these compounds were included in the reaction mixture.

2.6. Electrophoresis

SDS-PAGE was carried out on 7.5% polyacrylamide gels according
to Laemmli [23]. Glycoprotein staining was carried out with periodic
acid-Schiff reagent using a procedure described previously [24].



Table 1
Purification steps of Pgp ATPase from Helicoverpa armigera.

Purification steps Total
protein

Total ATPase
activity

Specific ATPase
activity

Yield Fold-
purity

(mg) (nmol/min) (nmol/min/mg) (%)

Crude 1200 20,000 16.6 100 1
CHAPS 400 17,000 42.5 85 2.5
Ammonium sulfate
precipitation

20 4000 200 20 12

Concanavalin A
followed by dialysis

8 2000 250 10 15

Hydroxylapatite
followed by dialysis

4 1200 300 6 18

Sephadex G-200 2 600 300 3 18
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2.7. Effect of pesticides on Pgp-ATPase activity

The ATPase activity of Pgp in the purified preparation was estimated
by measuring the liberation of inorganic phosphate using an ATP
concentration of 2.5 mM and an assay time of 30 min [9]. The purified
fraction was used directly with no exogenous phospholipids added.
Pesticideswere added toPgpasDMSOsolutions5 minbefore initiationof
the ATPase assay. The final DMSO concentration did not exceed 1% (v/v)
and had no effect on Pgp ATPase activity. The insecticide concentrations
that gave rise to half-maximal and maximal ATPase stimulation were
estimated from the plots of ATPase activity vs. insecticide concentration.
The kinetic parameters Km and Vmax were determined graphically by
Lineweaver-Burk plot [25].

2.8. Effect of pH and temperature

To determine optimal pH and temperature, the purified protein
was incubated with different pH Tris–HCl buffer (pH 7.0 to 9.0),
glycine–NaOH buffer (pH 9.5 to 11.5), and temperature 10–80 °C, for
10 min and the enzyme activity was assayed as described above.

2.9. Effect of metal ions and inhibitors

To study the effect of metal ions, chelators, detergents and
inhibitors, purified Ha-Pgp was incubated at various concentrations
for 10 min at 37 °C and then assayed for enzyme activity as above.

2.10. MALDI-TOF LC–MS of Ha-Pgp

A Coomassie Blue-stained spot was cored from a 1.5-mm-thick 1-D
SDS-PAGE gel digested with trypsin. The gel piece was collected in a
sterile, siliconized microcentrifuge tube and submitted to the Center
for Genomic Application, New Delhi, India, for LC–MS/MS analysis.
The MALDI-MS mass spectra of the tryptic peptide mixture were
searched for among all entries in the database. The partial peptide
sequences were compared with those of the proteins from a MASCOT
or BLAST similarity search (http://www.ncbi.nlm.nih.gov/BLAST) to
obtain homology with higher confidence.

2.11. Measurement of pesticide and drug binding affinity by tryptophan
fluorescence quenching

The affinity of binding of doxorubicin, verapamil and different
insecticides, such as cypermethrin, endosulfan, parathion and para-
oxon, to purified Ha-Pgp was determined using Trp fluorescence
quenching titrations as described previously [26]. Briefly, Ha-Pgp
(50 μg in 1 ml) was titrated in 2 mM CHAPS buffer with increasing
concentrations of insecticides, while quenching of Trp fluorescence
was monitored at 322 nm following excitation at 280 nm (slit width
for both, 5 nm). Kd and ΔFmax values were extracted following fitting
of the data to an equation describing binding to a single affinity site,

ΔF = F0 × 100 =
ΔF = Fmax × 100ð Þ × S½ �

Kd + S½ �

Where (ΔF/F0×100) represents the percent change in fluores-
cence intensity relative to the initial value after addition of pesticide at
a concentration [S], and (ΔFmax/F0×100) is the maximum percent
quenching of the fluorescence intensity that occurs upon saturation of
the substrate-binding site.

2.12. Effect of pesticides on TMR transport by Ha-Pgp in reconstituted
proteoliposomes

The effect of paraoxon, parathion, endosulfan and cypermethrin on
TMR transportwas assayed byfluorescencemeasurements as described
previously [27], using a Cary Varian Eclipse fluorescence spectropho-
tometer. Excitation was carried out at 550 nm (slit width, 5 nm) and
fluorescence emission was monitored continuously at 575 nm (slit
width, 5 nm). A 450-μl aliquot of proteoliposomes containing 10–20 μg
of reconstituted Ha-Pgp was preincubated with the appropriate
concentration of TMR in transport buffer at room temperature. The
sample was transferred to a quartz cuvette, and allowed to equilibrate
for about 300 s to stabilize the fluorescence intensity. Transport of
TMRwas initiated by the addition of a 25-μl aliquot of buffer containing
ATP (final concentration 1 mM) and an ATP-regenerating system
(30 μg/ml creatine kinase, 3.5 mM creatine phosphate) followed by
mixing for 5–10 s. Fluorescence intensity data were collected for a
further 150–200 s. Fluorescence intensity vs. time was normalized to
the intensity measured immediately before addition of ATP, which was
taken as 100%. The relative rate of TMR transport was estimated from
the slope of the fluorescence traces for the first 20 s after the addition of
ATP. Different concentrations of pesticides were added at various time
points during the transport process, either before addition of ATP, or
after the establishment of a new steady-state fluorescence value. In
the latter case, fluorescence intensity data were collected for a further
150–200 s. Pesticideswerepreparedas stock solutions inDMSO, and the
final concentration never exceeded 0.1% (v/v).

3. Results

3.1. Enzyme purification

The results of the purification procedure are summarized in Table 1.
The highest ATPase activity was found in the 60% ammonium sulfate
fraction. Most of the enzyme activity, along with other glycoproteins,
was eluted by 0.5 M D-methylmannopyranoside from the Concanavalin
A column. This preparation showed low specific activity as D-
methylmannopyranoside suppresses the ATPase activity at higher
concentration (0.5 M) (date not shown). Upon dialysis, purification
was increased to 15-fold. Following the hydroxylapatite column, pure
enzyme with high specific activity was eluted with 100 mM phosphate
buffer. The recovery of Ha-Pgp-ATPase was 3% and 18-fold purification
was achieved. The purified enzyme was homogeneous as judged by
SDS-PAGE (Fig. 1A) with a molecular mass of 150 kDa when compared
with authentic standards. The presence of Ha-Pgp in the purified
preparation, reconstituted proteoliposomes, cuticle, fat body and
midgut preparationwas further confirmed bywestern immunoblotting
using C219 antibodies (Fig. 1C and E). This protein gave a violet band
when stained with periodic acid-Schiff reagent, indicating that it is
glycosylated (Fig. 1D). The ATPase activity of the reconstituted Ha-Pag
ATPase was found to be 400±4.5 nmol/min/mg.

3.2. Effects of pH, temperature and different substrates

The optimumpH and temperature of Ha-Pgp ATPasewere found to
be 7.5 and 35–40 °C, respectively. The substrate specificity of the
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Fig. 1. A. SDS-PAGE (7.5%) profile at different stages of purification of Ha-Pgp ATPase.
Lane1, molecular weight markers myosin (205 kDa), phosphorylase b (97.4 kDa),
bovine serum albumin (66 kDa), ovalbumin (43 kDa); lane 2, CHAPS extract (100 µg);
lane 3, ammonium sulfate precipitation (100 µg); lane 4, Concanavalin A fraction
(40 µg); lane 5, hydroxylapatite fraction (20 µg); lane 6, gel filtration fraction (10 µg).
The gel was stained with Coomassie blue. (B) Silver stained gel and (C) detection of
Ha-Pgp in the purified sample, and (E) cuticle, fat body andmid gut by C219 antibodies.
(D) Detection of glycosylation of Ha-Pgp. In brief, the purified protein was resolved by
7.5% SDS-PAGE and the gel was dried at 100 °C followed by treatment with ethanol and
periodic acid-Schiff reagent for 20 min.
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purified Ha-Pgp ATPase was investigated using various phosphory-
lated compounds. The enzyme could cleave phosphoester bonds
effectively from a broad range of substrates such as ATP, AMP, p-
nitrophenylphosphate (p-NPP) and β-glycerophosphate. However, at
higher concentrations, ADP acts as an inhibitor. The Km for ATP was
found to be 1.2 mM and the maximumATPase activity was 250 nmol/
min/mg. For ADP, AMP, and p-NPP the maximum ATPase activity was
4–20 nmol/min/mg.
Table 2
3.3. The effect of ATP concentration on Ha-Pgp ATPase

The effect of ATP concentration on the Ha-Pgp ATPase in the
presence or absence of different stimulators is shown in Fig. 2.
Ethylparaoxon and fenvalerate at 30 µM enhanced ATPase activity. For
Fig. 2. The effect of paraoxon and fenvalerate on Km and Vmax of purified Ha-Pgp ATPase.
The specific ATPase activity of purified Ha-Pgp was measured at different concentra-
tions of ATP, in the (♦) absence and presence of (■) ethylparaoxon (30 µM), and
(▲) fenvalerate (30 µM).
basal ATPase the Km is 1.2 mM, whereas in the presence of paraoxon
and fenvalerate the Km values are 0.5 mM and 0.5 mM, respectively.

3.4. Effect of vanadate on stimulated ATPase activity

Verapamil and fenvalerate stimulated the basal ATPase activity by
2-fold and 0.15-fold, respectively. Verapamil-stimulated ATPase
activity was enhanced by fenvalerate, indicating that verapamil and
fenvalerate may bind to different sites on Ha-Pgp. The basal and
fenvalerate or verapamil-stimulated ATPase activities were inhibited
by vanadate at 10 µM, but were not affected by agents that inhibit
other ATPases and phosphatases (Table 2).

3.5. Effect of insecticides on purified Ha-Pgp ATPase activity

In the previous study we reported the effect of insecticides on
reconstituted proteoliposomes containing partially purified Ha-Pgp
[20]. In this study, we examined the effect of various insecticides at
different concentrations on purified Ha-Pgp ATPase activity (Fig. 3).
ATPase activity was stimulated by all the tested insecticides, ranging
from 20% (for ethylparaoxon) to 40% (for cypermethrin) at an
insecticide concentration of 100 µM. Endosulfan and monocrotophos
at a concentration of 100 µM stimulatedATPase activity by 30% and 25%,
respectively. Methylparathion at a concentration of 50 µM stimulated
ATPase activity by 30% and inhibited at higher concentrations.

3.6. Inhibition

We examined the effect of metal ions, chelators and inhibitors on
purified Ha-Pgp ATPase (Table 2). NaCl and MnCl2 were found to
increase the activity by 20 and 10%, respectively. Ba2+, Pb2+, sodium
vanadate, probenecid, and N-ethylmaleimide strongly inhibited
ATPase activity, whereas SDS, Triton X-100, urea, EGTA, EDTA, DTT
and 1,10-phenanthroline had no significant effect.

3.7. Amino-acid sequence analysis

The pure protein was subjected to digestion with trypsin and the
peptides were separated and sequenced by LC–MS. Some of the
fragments showed high homology to human Pgp, which is involved in
Effect of metal ions, chelators, detergents, inhibitors andmodulators on purified Ha-Pgp
ATPase activity.

Compounds Concentrations ATPase activity
(%)

Control 0 100
Nacl 5 mM 120
Mncl 1 mM 110
Ba 1 mM 10
Pb 3 mM 23
EGTA 1 mM 90
EDTA 1 mM 90
SDS 1% 50
Triton X-100 1% 90
Urea 5 mM 100
DTT 1 mM 100
1,10-Phenanthroline 1 mM 100
Sodium vanadate 10 µM 10
Probenicid 100 µM 20
N-ethylmaleimide 100 µM 30
Verapamil 30 µM 200
Verapamil+vanadate 30+10 µM 50
Fenvalerate 30 µM 115
Fenvalerate+vanadate 30+10 µM 30
Verapamil+fenvalerate 30+30 µM 210
Verapamil+ouabain 30+1000 µM 200



Fig. 3. Effect of various insecticides on purified Ha-Pgp ATPase activity. The graph shows
the percent stimulation compared with a control (100%, in the absence of pesticides).
(♦) Paraoxon; (■) cypermethrin; (▲) endosulfan; (Δ) monocrotophos; (○) parathion.
All insecticides were stimulated at lower concentrations and inhibited at higher
concentrations. Data points represent the mean of at least three determinations.
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MDR (Fig. 4A). Conserved motifs such as the Walker A and B motifs,
the Signature C motif, and the Q, D and H loops were present, and
homologous to other Pgps (Fig. 4B). These results indicate that the
isolated enzyme from H. armigera is likely to be a Pgp homolog, as it
shows many similarities with known sequences of other Pgps.

3.8. Affinity of binding of insecticides and drugs to Ha-Pgp

Tryptophan quenching experiments were carried out in the
presence and absence of ATP using four different pesticides and two
drugs, and the Kd values for binding were estimated by fitting the
fluorescence quenching data to an equation describing a single
binding site (Fig. 5A–C). Addition of ATP to Ha-Pgp resulted in a large
quenching of the fluorescence (Fig. 5D), suggesting interaction of ATP
to Ha-Pgp. Ha-Pgp in the presence of insecticides also show a large
quenching but with a shift on the λmax of Trp residues fluorescence
emission. A small 3-nm red shift on emission maximumwas observed
with parathion, while 8-nm red shift was found for monocrotophos.
These results suggest the formation of an association between the
macromolecule and the insecticides with a change of Trp environ-
ment. All the pesticides and drugs displayed substantial levels of Trp
quenching. Fitting of the experimental data showed that all the
pesticides and drugs interacted with Ha-Pgp with relatively high
affinity with Kd values for binding in the 0.8–50 µM range.
Doxorubicin and verapamil Kd values were 0.8 and 1.5 µM respec-
tively, whereas for cypermethrin, endosulfan, parathion and para-
oxon, Kd values were 9 µM, 25 µM, 25 µM and 50 µM, respectively
(Fig. 5A–C).

3.9. Ability of pesticides to compete for drug transport by Ha-Pgp in
proteoliposomes

In previous studies, TMR was chosen as a substrate for measuring
Pgp-mediated transport into reconstituted proteoliposomes in vitro,
and the kinetics of the transport process were characterized [27]. The
rhodamine derivative TMRwas found to be a much superior substrate
to rhodamine 123, which has been widely used in dye exclusion
studies in intact cells [28]. We have employed TMR to measure the
rates of transport by reconstituted Ha-Pgp in real time. The addition of
1 mM ATP and an ATP-regenerating system to reconstituted DMPC
proteoliposomes containing Ha-Pgp in the presence of 1 μM TMR led
to a rapid drop in TMR fluorescence until a new lower steady-state
level was established (Fig. 6, trace c). The decrease in fluorescence
intensity arises from transport of TMR into the proteoliposomes,
where its fluorescence is lower, likely as a result of self-quenching as it
accumulates in the lumen. Intensity measurements were made (after
mixing) every 1 s for about 20 s to allow for estimation of the rate of
fluorescence decrease, which is proportional to the initial rate of TMR
transport. No decrease in TMR fluorescence was observed in the
presence of non-hydrolysable ATP analogs, and heat denaturation of
Pgp abolished the change in TMR fluorescence (data not shown). Thus
the process of TMR transport into proteoliposomes is dependent on
ATP hydrolysis and requires functionally active Ha-Pgp. Pesticides at
concentrations that completely block transport of TMR into the
proteoliposome interior would be predicted to prevent the decrease
of rapid fluorescence when added prior to ATP. This was indeed
observed for all four insecticides and is shown for paraoxon in Fig. 6,
trace a. Addition of pesticide to the proteoliposomes after prior
establishment of the TMR concentration gradient resulted in
immediate collapse of the gradient, as indicated by a rapid increase
in TMR fluorescence. Experimental results obtained with paraoxon
are shown in Fig. 6, trace c, and are representative of similar data
obtained for the other three insecticides. When TMR transport was
measured in the presence of different insecticide concentrations, both
the rate of the fluorescence decrease and the magnitude of the total
decrease seen at a steady state were changed in a concentration-
dependent fashion. For example, Fig. 6, trace b, shows the rate of TMR
transport in the presence of 10 μM paraoxon. The initial rate of TMR
transport declined in a saturable fashion with increasing concentra-
tions of insecticide (Fig. 7), with 50–70% inhibition observed at 60 μM
for all the compounds. Thus, insecticides inhibited the net rate of trans-
port of TMR, and prevented the generation of a substrate concentration
gradient at high concentrations. All the insecticides were able to
compete effectively with TMR for transport via Pgp.

4. Discussion

This study is the first to purify a Pgp homolog from the pest H.
armigera and investigate the interaction of insecticides with the
purified protein in detergent solution and proteoliposomes, rather
than intact cell systems. This approach allows the application of
several novel fluorescence-based tools, so that the interaction of these
chemicals with the transporter can be characterized at the molecular
level. There are several reports of the isolation of highly purified Pgp
from mammalian cells, insect cells or a yeast expression system. Pgp
has been purified from Chinese hamster ovary cells by several groups
[9,29]. The expression of Pgp in Saccharomyces cerevisiae [30], and
insect cells [31], also led to high yields of catalytically active protein.

Several independent lines of evidence indicate that the ATPase
activity of our purified preparation arises from Ha-Pgp itself and not a
contaminating ATPase. Fig. 3 shows that Ha-Pgp ATPase activity is
stimulated by the addition of various insecticides. Themaximal levels of
ATPase stimulation observedwerehigh (20–40%) for all the insecticides,
compared to those observed for mammalian Pgp with other drug
substrates [32]. Several pesticides were shown to stimulate the ATPase
activity of Pgp from the MDR Chinese hamster ovary cell line, CHRB30
[33]. The stimulation of ATP hydrolysis by the substrate vinblastine was
due to an increase in the maximal velocity of ATP hydrolytic activity
without affecting the apparent Km for ATP, whereas several drugs and
modulators behaved asmixed activators, producing changes in both the
Vmax of the ATPase and the Km for ATP [9]. Several studies have shown
that proteoliposomes containing reconstituted Pgp can carry out ATP-
dependent transport of drugs and peptides [27,32,34].

The ATPase activity of purified Ha-Pgp was characterized with
respect to its ionic requirements and inhibitor sensitivity. The
presence of Na+, K+, and Cl− at 150 mM had no effect on basal
activity. Various agents that are known to inhibit F, P, and V-type
ATPases and phosphatases were tested; except for vanadate, all other
agents were found to be without any effect [20]. It is clear that
common ATPases (e.g., Na+K+, Ca2+ and F0F1-ATPases) and
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phosphatases do not contribute significantly to the activity. ATP
protects the Pgp ATPase from inactivation by these compounds at two
sites per molecule [35]. A conserved Cys residue is found in the
Fig. 4. (A) Partial amino-acid sequence alignment of Ha-Pgp with human Pgp (MDR1/ABCB1
acids in two of the NBD sequences. The conserved motifs, Walker A, Walker B and Sign
(B) Alignment of the amino acid sequence of Ha-Pgp with the ATP-binding cassette of Anoph
and human MDR1/ABCB1 Pgp (GI:238054374). The Walker A, Walker B and Signature C m
Walker A motif of all Pgp gene classes, and it is known that this
residue is the target of attack by sulfhydryl reagents [36]. The inhibitor
profile of Ha-Pgp is thus very similar to that of the mammalian Pgps.
). The ATP-binding sites are underlined and the shaded boxes represent identical amino
ature C, are labeled and underlined. The Q, D, and H loops are labeled and shaded.
eles gambiae protein (XM 315658), Drosophila melanogaster proteins mdr49 (M59076),
otifs are labeled and underlined.



Fig. 4 (continued).

Fig. 5. Binding of insecticides and drugs to purified Ha-Pgp as assessed by Trp fluorescence quenching at increasing concentrations of insecticides and drugs. (A) (♦) Doxorubicin,
(■) Verapamil; (B), (▲) cypermethrin, (■) endosulfan; (C), (●) parathion, and (■) paraoxon. (D) Fluorescence emission spectra of Ha-Pgp Trp residues in the absence (a) and
presence of 1 mMATP (b); 10 µM parathion (c); 10 µMmonocrotophos (d), titrated with 50 µg/ml purified Ha-Pgp at room temperature (23 °C). Trp fluorescence was monitored at
322 nm following excitation at 280 nm. The percent quenching of fluorescence (ΔF/F0×100) was calculated relative to Ha-Pgp in the absence of insecticide. The continuous line
represents the best computer-generated fit of the data points (shown by symbols) to an equation describing interaction of the pesticide with a single type of binding site
(see Materials and methods). Kd and ΔFmax values were estimated by the fitting process. Data points represent the mean±standard error for triplicate determinations.
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Fig. 6. Real-time fluorescence measurements of TMR transport into reconstituted
proteoliposomes containingHa-Pgp. (a) 100 µMparaoxonwas added to theproteoliposomes
before the addition of 1 mM ATP. (b) 10 µM paraoxon was added to the proteoliposome
before the addition of ATP. (c) ATP was added to the proteoliposomes to initiate TMR
transport and lower fluorescence intensity was reached after 250 s as a result of inward
pumpingof TMR. 100 µMparaoxonwas thenadded, collapsing the inwardflowand restoring
the fluorescence to close to its original value.
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Sequence alignment shows that some of the fragments of Ha-Pgp
are aligned with human MDR1 (ABCB1). Characteristic NBD motifs
such as the Walker A, Walker B, and Signature C motifs, and the Q, D
and H loops, were found in the sequenced fragments (Fig. 4A and B)
indicating that the Pgp homolog isolated from H. armigerawas similar
to other known Pgps. ABC family members share 30–50% sequence
similarity. The regions of highest homology include the two NBDs that
are located on the cytoplasmic side of the membrane [37]. The TMDs
are thought to contain the substrate-binding site, and it has been
suggested that differences in substrate specificities are a consequence
of structurally divergent TMDs [38,39]. The NBDs are the sites of
binding and hydrolysis of cytoplasmic ATP. All ABC transporters
contain within each NBD at least three highly conserved sequence
motifs; the Signature C sequence, and the Walker A and B motifs. All
three motifs are directly involved in binding of nucleotide [37].
Specific amino acids are important in the Walker A and B motifs.
Indeed, mutation of the lysine and aspartate residues in the Walker A
and B motifs, respectively, in either NBD, resulted in loss of the ATP
hydrolysis activity of Pgp [40–42]. Sequence comparisons of cloned
mammalian Pgp genes divided the family into three classes, I, II and III.
Only class I (human mdr1/ABCB1, rodent pgp1, mouse mdr3) and
class II (rodent pgp2, mouse mdr1) genes confer MDR [43].

Trp fluorescence quenching confirmed that four insecticides and
two drugs interacted directly with purified Ha-Pgp, and allowed
Fig. 7. Rate ofHa-Pgp-mediated TMR transport into reconstitutedproteoliposomes and its
inhibition by increasing concentrations of insecticides; (■) fenvalerate; (◊) cypermethrin;
(♦) ethylparaoxon; and (▲) methylparathion.
estimation of their binding affinity. All of them bound to the
transporter with relatively high affinity. Binding of various drugs
and modulators to the substrate-binding site of mammalian Pgp
results in saturable concentration-dependent quenching of the
intrinsic Trp fluorescence of the protein [26]. This approach can be
used to quantitate the affinity of binding of many different Pgp
substrates and modulators [44]. As Trp residues are quite sensitive to
the surrounding medium, changes in accessibility to solvent can be
used to detect conformational changes upon binding of compounds to
the protein and in the presence of all insecticides an association
conformational change on Ha-Pgp seems to occur detected by red
shift on the maximum wavelength on the emission spectrum and
showing a change of the Trp to a more polar environment [26]. To
determine whether the isolated Ha-Pgp is involved in insecticide
transport, it was necessary to first demonstrate that it was functional.
To do this, Ha-Pgp was reconstituted into proteoliposomes and the
transport of a fluorescent compound was examined. Transport was
abolished, and the TMR gradient collapsed, by the addition of high
concentrations of pesticides. The binding affinities of the pesticides
cover a narrow range, perhaps reflecting the fact that binding
represents only the first step in the ATP-driven transport process,
whereas both ATPase stimulation and transport inhibition involve
additional steps of the catalytic cycle. Taken together, these results
indicate that the four insecticides used in this study interact with Ha-
Pgp with high affinity, and suggest that they may be transported by
the protein. Similar studies were carried out onmammalian Pgp and it
was found that different insecticides inhibited Pgp-mediated trans-
port of TMR [33]. The data showing that the pesticides bind to Pgp and
block Pgp-mediated transport suggests that they may be Pgp
inhibitors (also known as modulators or chemosensitizers). Modula-
tors interact with Pgp and are often transported, but a concentration
gradient is not built up across the membrane, probably because these
compounds repartition rapidly into the bilayer, cross to the inner
leaflet, and interact with Pgp once more [10]. Thus, Pgp may operate
in a futile cycle in the presence of a modulator. A recent study of 14
structurally diverse pesticides also suggested that several of them
were Pgp modulators [45].

ABC drug efflux pumps are widely recognized to play a central role
in tissue defence [5]. Expression of Pgp-like transporters has been
correlated with resistance to xenobiotics and environmental pollu-
tants in many different species of insects and marine organisms, and
Pgp appears to play an important role in environmental toxicology
[46–48]. The distribution of Pgp in the different tissues suggests that
the accumulation of insecticides could be prevented at every level,
thereby achieving the decreased intracellular level of insecticides
which is the hallmark of MDR. From the above studies and an earlier
report [2], we conclude that the Pgp ATPase of H. armigera parallels
manymammalian Pgps in terms of its functions, and could participate
in insecticide resistance by actively excreting these compounds from
the membrane, thus preventing their accumulation in target cells. The
details of kinetics, structure and function of Ha-Pgp ATPase will be
important in order to develop new strategies for overcoming
insecticide resistance in these pests.

5. Dedication

This paper is dedicated to Prof. V. H. Mulimani, Department of
Biochemistry, Gulbarga University, Gulbarga, on the occasion of his
60th birth anniversary.
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