
Discrete Applied Mathematics 158 (2010) 1624–1632

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Finding monotone paths in edge-ordered graphs
J. Katrenič ∗, G. Semanišin
Institute of Computer Science, P.J. Šafárik University, Faculty of Science, Jesenná 5, 041 54 Košice, Slovak Republic

a r t i c l e i n f o

Article history:
Received 21 February 2009
Received in revised form 17 May 2010
Accepted 28 May 2010
Available online 25 June 2010

Keywords:
Ascent
Monotone path
NP-completeness
Complexity
Edge-ordering
k-path

a b s t r a c t

An edge-ordering of a graph G = (V , E) is a one-to-one function f from E to a subset of
the set of positive integers. A path P in G is called an f -ascent if f increases along the edge
sequence of P . The height h(f) of f is the maximum length of an f -ascent in G.
In this paper we deal with computational problems concerning finding ascents in

graphs. We prove that for a given edge-ordering f of a graph G the problem of determin-
ing the value of h(f) is NP-hard. In particular, the problem of deciding whether there is an
f -ascent containing all the vertices of G is NP-complete. We also study several variants of
this problem, discuss randomized and deterministic approaches and provide an algorithm
for the finding of ascents of order at least k in graphs of order n in running time O(4knO(1)).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction and motivation

In this paperwe consider only finite non-oriented graphswithout loops andmultiple edges. If there is no danger of confu-
sion we use n andm for the order and the size of a graph, respectively. In general, we use standard graph and computational
complexity terminology and notation.
A one-to-one mapping f from E to the set of positive integers is called an edge-ordering of a graph G = (V , E). For e ∈ E,

we call f (e) the label of e. A simple path of G for which f increases along the edge sequence is called an f -ascent of G, and a
(k, f)-ascent if it has length k. The height h(f) of f is the maximum length of an f -ascent.
Denote the set of all edge-orderings ofG byF . A graph theoretical invariant altitude of a graphG is defined in the following

way:

α(G) = min
f∈F
h(f).

This invariant was first studied by Chvátal and Komlós in [6]. Some general bounds of α(G) were obtained by Graham and
Kleitman in [12]. A survey of some known results on α(G) can be found e.g. in [3,4,8]. Burger et al. [3] presented an algorithm
that was used for determining the altitude of the complete graphs of order 7 and 8. On the other hand, α(Kn) is still unknown
for n ≥ 9.
Later on, the concept of the depression of a graph was studied in [7,11,18]. An f -ascent is called maximal if it is not

contained in a longer f -ascent. The depression ε(G) of G is the least integer k such that every edge-ordering of G has a
maximal ascent of length at most k.
Behind the theoretical applications, a monotone path may appear in many practical situations like the following: Let

the vertices represent business executives and the edges their mutual communication concerning a given commodity. An

∗ Corresponding author. Tel.: +421 904 393 104; fax: +421 55 6220949.
E-mail addresses: jan.katrenic@upjs.sk (J. Katrenič), gabriel.semanisin@upjs.sk (G. Semanišin).

0166-218X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2010.05.018

http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:jan.katrenic@upjs.sk
mailto:gabriel.semanisin@upjs.sk
http://dx.doi.org/10.1016/j.dam.2010.05.018

J. Katrenič, G. Semanišin / Discrete Applied Mathematics 158 (2010) 1624–1632 1625

Fig. 1. A structure that is joined to a vertex vi of the original graph.

owner of the commodity wants to sell it if he or she obtains more money than was paid for the commodity to its previous
owner. In such a case the trajectory of the commodity forms a monotone path.
In this paper we deal with several variants of the problem of finding monotone paths under some edge-ordering. In the

first section, we show that the problem of determining the value h(f) for a given graph G and an edge-ordering f is NP-hard.
Furthermore, we prove NP-completeness of finding ascents in complete graphs, finding an ascent containing all n vertices,
or finding an ascent of length nε , for an arbitrary fixed positive ε < 1.Moreover, we prove that no constant factor polynomial
time approximation algorithm is possible for the longest monotone path problem unless P = NP .
In the last section, we apply randomized methods used for the k-path problem, defined in the following way: Given a

graph G and an integer k, either construct a simple path of k vertices in G or report that no such path exists.
The k-path problem has been studied rather intensively. Earlier algorithms [2,17] for the k-path problem have running

time bounded by O(2kk!nO(1)). Papadimitriou and Yannakakis [20] studied a restricted version of the problem, the (log n)-
path problem, and conjectured that the (log n)-path problem can be solved in polynomial time. This conjecture was
confirmed by Alon et al. [1], who presented a new technique of color-coding that provides a randomized algorithm for the
k-path problem in running timeO(5.44knO(1)). We show how to improve this technique to reach running timeO(4.31knO(1)).
Recently, a new randomized divide and conquer algorithm for the k-path problemwas introduced [13,15], that solves the

k-path problem in running time O(4knO(1)). In the last section, we apply this technique for the k-ascent problem to obtain a
randomized algorithm with running time O(4knO(1)).

2. NP-completeness of the ascent finding problem

In this section we deal with the following problem:

Problem 1 (k-ascent Problem). Consider a graph G, a positive integer k and an edge-ordering f of G. Is there any (k, f)-ascent
in G?

It is easy to see that this problem belongs to the class NP , because there exists a non-deterministic algorithm that can
choose k edges in a non-deterministic way and then polynomially check whether they form an ascent of G.
In what follows we shall prove that the k-path problem (a well known NP-hard problem) can be polynomially reduced

to Problem 1. More precisely, we shall show that for a given graph G and number k one can construct a new graph G′ with
an edge-ordering f and a number k′ such that G contains a simple path of k vertices if and only if G′ has a (k′, f)-ascent.
In order to simplify our considerations we use the following notation that was already introduced in [3,5,10,12,21,22].

Definition 1. Let P = (E1, . . . , Et) be an ordered partition of the edge set E ofG and let f be any edge-ordering ofG satisfying

e1 ∈ Ei and e2 ∈ Ej, where i < j, implies f (e1) < f (e2).

Such an edge-ordering is called P-consistent.

For i = 1, . . . , t we denote by fi the restriction of the mapping f to Ei and by Gi the subgraph of G induced by the edge
set Ei. It is obvious that in such a case fi is an edge-ordering of Gi. Moreover, if P = (E1, . . . , Et) is an ordered partition of E,
then in the edge sequence X of an f -ascent of G the edges from Ei precede the edges from Ej, for each pair (i, j) with i < j.
Hence an ascent X can be written as X = X1, . . . , Xt , where Xi (possibly empty) is an fi-ascent of Gi.
Nowwe describe the construction that will be used in the proof of themain result of this section. Denote by n the number

of vertices in a given graph G. Let V (G) = {v1, . . . , vn}. Let us put k′ = 2k. We shall construct a P-consistent edge-ordering

P = (C0, Ca1 , C
b
1 , C

a
2 , C

b
2 , . . . , C

a
n−1, C

b
n−1, Cn).

We begin by describing how to construct the new graph G′ and the edge-ordering f from G. Firstly, we join two new
vertices dai and d

b
i to each vertex vi of G, for each i ∈ {1, . . . , n} (see Fig. 1). This means that we add 2n new vertices of degree

1.
Now we have to assign suitable labels to the new edges. We shall use the labels from some sets C0, Ca1 , C

b
1 , C

a
2 , C

b
2 , . . . ,

Can−1, C
b
n−1, Cn. One can easily see that we can make them sufficiently large in order to obtain the labeling described as

follows. For the new edges vidai and vid
b
i we choose labels such that vid

a
i ∈ C0 and vid

b
i ∈ Cn, respectively.

Secondly, we remove the original edges vivj, for i < j, and add 2n−2 new vertices hi,j,l, hj,i,l, for l = 1, . . . , n−1, together
with 4n− 4 new edges of the form vihi,j,l, vihj,i,l, vjhi,j,l, vjhj,i,l, for l = 1, . . . , n− 1 (see Fig. 2). The new edges receive labels
according to the following scheme:

vihi,j,l ∈ Cal vihj,i,l ∈ Cbl
vjhi,j,l ∈ Cbl vjhj,i,l ∈ Cal .

1626 J. Katrenič, G. Semanišin / Discrete Applied Mathematics 158 (2010) 1624–1632

Fig. 2. A structure that is inserted instead of the original edge vivj .

Fig. 3. Structures added in the construction.

The new graph G′ contains n+ 2n+m(2n− 2) = 3n+ 2nm− 2m vertices {v1, . . . , vn, da1, . . . , d
a
n, d

b
1, . . . , d

b
n} ∪ {hi,j,l :

vivj ∈ E(G), l ∈ {1, . . . , n− 1}} and the edge set of G′ hasm(4n− 4)+ 2n edges.
We shall see that each vertex hi,j,l has a strong influence on the existence of ascents running through vi and vj and

containing edges from Cal ∪ C
b
l .

Now we verify the correctness of our construction.

Theorem 1. The graph G contains a simple path of k vertices if and only if G′ has a (2k, f)-ascent.

Proof. ⇒ LetW = (vi1 , vi2 , . . . , vik) be a simple path in G. Then it is easy to verify that

λ = (dai1 , vi1 , hi1,i2,1, vi2 , hi2,i3,2, vi3 , . . . , vik−1 , hik−1,ik,k−1, vik , d
b
ik)

is a (2k, f)-ascent in G′.
⇐ Observe first that the graph G′ is a bipartite graph such that the first partition consists of the original vertices of the type
‘‘v’’ and the second partition consists of the new vertices of the types ‘‘d’’ and ‘‘h’’.
Since all vertices of the type ‘‘d’’ are of degree 1, we know that all internal vertices of any path in the graph G′ are either

of type ‘‘v’’ or of type ‘‘h’’ and moreover they alternate within the vertex sequence of the path.
Consider now any (2k, f)-ascent λ in the graph G′. Clearly, λ contains at least k vertices of type ‘‘v’’. Denote those vertices

along λ as vi1 , vi2 , . . . , vik . Now, λ can be written in the form λ = {. . . , vi1 , ‘‘h’’, vi2 , ‘‘h’’, vi3 , . . ., ‘‘h’’, vik−1 , ‘‘h’’, vik , . . .}. Then
one can easily see that vertices vi1 , vi2 , . . . , vik form a simple path of k vertices in the original graph G. �

Furthermore, besides the decision form of the problem, we shall see that our construction of G′ from the original graph
G has the following property.

Theorem 2. There is a polynomial time algorithm, which takes a path of k vertices in G and constructs an (2k, f)-ascent in G′
and vice versa.

3. The problem of finding complete ascents

Now we shall deal with a related problem:

Problem 2 (Complete Ascent Finding Problem). Given a graph G and an edge-ordering f of G, determine whether there is an
f -ascent containing all vertices of G.

Clearly, this problem is a special case of Problem1; hence it belongs to the classNP . In order to prove itsNP-completeness,
we provide a reduction from the original Problem 1 to this one. From a given triple (G, f , k) we produce a graph G′ and
an edge-ordering f ′ such that G contains a (k, f)-ascent if and only if G′ contains a (|V (G′)|, f ′)-ascent. Graph G′ will be
constructed from the graph G by using the structures presented in Fig. 3.
The resulting graphG′ containsG as a subgraph. The labels of the edges of this subgraph remain the same as in the original

edge-ordering f of G.

J. Katrenič, G. Semanišin / Discrete Applied Mathematics 158 (2010) 1624–1632 1627

We shall construct a P-consistent edge-ordering f ′:
P = (EG, E1a, E1b, E1c, E1d, E2a, E2b, E2c, E2d, . . . , E(n−k−1)d)

where EG contains exactly the edges from the original graph G. The other sets will contain new edges of G′ that will be
described below.
Besides the original vertices of G,G′ will contain 3(n − k − 1) new vertices a1, a2, . . . , an−k−1, d1, d2, . . . , dn−k−1 and

x1, x2, . . . , xn−k−1.
Moreover, for each i ∈ {1, . . . , n− k− 1} and for each vertex u of V (G)we add new edges of the following form:
• aiu—these edges will belong to the set Eia of P;
• diu—these edges will belong to the set Eid of P;
• aixi—these edges will belong to the set Eib of P;
• dixi—these edges will belong to the set Eic of P.
Now we can prove the following result:

Theorem 3. A graph G contains a (k, f)-ascent if and only if there is an f ′-ascent in the graph G′ containing all its vertices.
Proof. ⇒ Let λ be a (k, f)-ascent in the given graph G. Let us label the vertices of G that do not belong to λ by
vi1 , vi2 , . . . , vi(n−k−1) . Then

λ′ = (λ, a1, x1, d1, vi1 , . . . , aj, xj, dj, vij , . . . , a(n−k−1), x(n−k−1), d(n−k−1), vi(n−k−1))

is an f ′-ascent containing all the vertices of G′.
⇐ Assume now that λ′ is an f ′-ascent in the graph G′ containing all its vertices. Since EG is the first set in P, the ascent λ′
can be written in the form λ′ = λ1, λ2, where λ1 contains only the edges from the original graph G and λ2 contains only the
added edges. Moreover note that λ1 is an f -ascent in the original graph G.
Now we need to prove that λ2 does not contain more than n − k vertices from the original graph G (in such a case λ1

must contain at least k+ 1 vertices of G). The ascent λ2 must contain all the new vertices, and in particular all the vertices
from the set {x1, x2, . . . , x(n−k−1)}. According to the edge-ordering f ′, it is not difficult to see that the order of these vertices
must be the same in λ2, i.e.

λ2 = . . . , x1, . . . , x2, . . . , x(n−k−1),

Since λ2must contain all new vertices from the graphs presented in the Fig. 3, no vertex xi can be the last vertex of λ2. Hence
each vertex xi is an internal vertex and the vertices ai and di must directly precede and succeed the vertex xi in the sequence
of vertices of λ2 respectively. Therefore

λ2 = . . . , a1, x1, d1, . . . , a2, x2, d2, . . . , a(n−k−1), x(n−k−1), d(n−k−1),

As λ2 does not contain any edge of type vivj, λ2 contains at most n− k vertices from the original graph. This completes the
proof. �

Problem 2, which concerns the existence of ascents containing all vertices, is a special case of Problem 1, where k = n−1.
Similarly, according to the NP-completeness of Problem 2 it is easy to formulate new NP-complete problems, for any fixed
positive integer k:

Problem 3. Given a graph Gwith n vertices and an edge-ordering f of G, determine whether there is an f -ascent containing
n− k vertices.

Problem 4. Given a graph Gwith n vertices and an edge-ordering f of G, determine whether there is an f ascent containing
k
√
n vertices.

In both cases, a proof of the NP-completeness lies in the reduction of Problem 2 to Problem 3 or Problem 4, respectively,
by adding an appropriate number of new isolated vertices to the original graph. Consequently, for an arbitrary fixed positive
ε < 1 the following problem is NP-complete, as well:

Problem 5. Given a graph G of n vertices and an edge-ordering f of G, determine whether there is an f -ascent containing
n1−ε vertices.

Some negative results for the related k-path problem can be applied to the k-ascent problem, as well. Karger et al. [14]
proved that, for any ε < 1, the problem of finding a path of length n− nε in an n-vertex Hamiltonian graph is NP-hard. This
implies that no constant factor approximation algorithm is possible for the longest path problem unless P = NP .
In order to prove a similar result for the k-ascent problem, one can easily use the reduction described in the proofs of

Theorems 1 and 2 and the result of [14]:

Theorem 4. For any ε < 1, the problem of finding an ascent of length n− nε for a given edge-ordering f and an n-vertex graph
containing an (n− 1, f)-ascent is NP-hard.

This also directly implies that there exists no constant factor approximation algorithm for the longest ascent problem
unless P = NP .

1628 J. Katrenič, G. Semanišin / Discrete Applied Mathematics 158 (2010) 1624–1632

Fig. 4. A reduction of Problem 2 to Problem 6.

4. Finding ascents in complete graphs

In this sectionwe shall consider the following problem that provides amodification of the previous ones. In contrast with
the case for the previous problems we shall restrict our attention to a particular class of graphs.

Problem 6 (Problem of Finding Ascents with a Prescribed Edge in Complete Graphs). Given an edge-ordering f of a complete
graph G and one edge e, determine whether there is an f -ascent containing the edge e and all vertices of G.

Fig. 4 shows the principle of a reduction of Problem 2 to this problem.
In the reduction we shall construct an (E1, E2, E3, E4)-consistent edge-ordering. The new graph is constructed from the

original one by adding two new vertices and all possible edges in such a way that the resulting graph is complete. The labels
of the original edges remain unchanged and these edges belong to the set E1. The new edges that are added between original
vertices belong to the set E3. The edge that connects two new vertices belongs to E4. Finally, all the remaining edges (that
were added between original vertices and new vertices) belong to E2. The edge belonging to E4 will be chosen to be the edge
e from the problem formulation.
Let us denote by λ an ascent containing all the vertices and the edge e in E4. Clearly, the edge e ∈ E4 must appear as the

last edge in λ. Thus only one edge of E2 can be used in λ, and it must precede the last edge. Since we have used a consistent
edge-ordering, λ can contain no edge of E3. Summarizing these facts we have that λ can contain only edges of E1 belonging
to the original graph followed by one edge of E2 and the edge from E4.

Theorem 5. The problem of finding ascents with a prescribed edge in complete graphs belongs to the class NP-complete problems.

5. An estimation of the complexity of a brute-force like algorithm

Let us denote by∆(f) the number of all f -ascents in the graph G. It is easy to construct an algorithm for solving Problem 2
or Problem 3 with the time complexity O(n∆(f)). Now we shall establish an upper bound for the value of ∆(f). We shall
assume that f is a function from E to the set {1, 2, . . . ,m} only. Denote the set of all such edge-orderings of G byFG. Clearly,
the number of such edge-orderings ism!. One can rather easily see that all other edge-orderings of G can be transformed to
this form.

Lemma 1. Let λ = {vi1 , vi2 , . . . , vik} be a simple path of k vertices in a graph G. Then there are
m!
k! edge-orderings such that λ

is an ascent in G.

The following result provides an upper bound for the total number of ascents among allm! edge-orderings.

Lemma 2. Let G be a graph with n vertices and m edges. Then∑
f∈FG

∆(f) ≤ m!n2n.

Proof. Observe first that the number of paths of length k in G is at most(
n
k+ 1

)
(k+ 1)!.

According to the previous lemma, there are at most(
n
k+ 1

)
(k+ 1)!

m!
k!
=

(
n
k+ 1

)
(k+ 1)m!

ascents of length k among all edge-orderings of G. Using this expression we get that in the graph G there are at most
n−1∑
k=0

(
n
k+ 1

)
(k+ 1)m! = m!

n∑
k=1

(n
k

)
k ≤ m!n2n

different ascents among all edge-orderings of FG. �

J. Katrenič, G. Semanišin / Discrete Applied Mathematics 158 (2010) 1624–1632 1629

According to Lemma 2, in the average case there are at most n2n ascents in a graph G of order n. So the average time (if
the edge-ordering is chosen arbitrarily), the time complexity for an algorithm that searches for all ascents in G, is O(2nn2),
while the space complexity is polynomial. This improves the space complexity of a straightforward dynamic programming
approach based on the consideration of each subset of vertices, which works in time and space O(2nn2).

6. A color-coding scheme for the ascent problem

In the rest of this paper, we study algorithms for finding a k-ascent in a graph of order n, for relatively small values of
k. As we have already proved, the problem is NP-hard if we are looking for an ascent consisting of n vertices, or if we are
looking for an ascent with k

√
n vertices. In what follows, we introduce and apply some techniques designed for the k-path

problem.
A well known randomized algorithm for the k-path problem (see e.g. [1,16]) is based on the fact that the problem can

be solved effectively (in linear time) if the input graph is directed acyclic graph (DAG). A polynomial method for solving the
k-path problem in a DAG uses topological sorting and linear dynamic programming [9]. The probabilistic algorithm based on
this idea consists of two steps. Firstly, we randomly sort vertices by choosing a random permutation π : V → {1, . . . , |V |}
and directing an edge (u, v) ∈ E from u to v iff π(u) < π(v). Secondly, we find a longest path in the DAG created. The
probability of success is equal to the probability that vertices of a path of length kwill stay in the same order after the random
sorting, which is 1/k!. Finally, after k! repetitions of this algorithm, we will obtain a randomized Monte Carlo algorithm for
the k-path problem in running time O(k!nO(1)), which is polynomial for k = log n/ log log n. It is easy to see how to exploit
the approach described above for the k-ascent problem as well.
Alon et al. [1] presented a randomized and deterministic algorithm in running timeO(2O(k)nO(1)) that proved a conjecture

that a log n-path problem has a polynomial solution [20]. The technique of color-coding introduced in [1] solves the k-path
problem as follows. We say that a path in a graph G is properly colored under a coloring of the vertices in G if no two vertices
on the path are colored with the same color. Now suppose that there is a path λ of k vertices. To find a k-path, we firstly
color the vertices of the graph G using k colors so that λ is properly colored. Then we can use a (deterministic) dynamic
programming algorithm, which finds a longest properly colored path (in running time O(2knO(1))).
The critical step of this algorithm is how one constructs a coloring for the graph G so that the path λ is properly colored.

Alon et al. [1] proposed two approaches to this problem. The first is a randomized algorithm of running time O(ek). The idea
is to produce a random k-coloring, i.e. to choose a random color for each vertex of G. The probability p that a given path of k
vertices will remain properly colored is

p =
k
k
·
k− 1
k
·
k− 2
k
· · · · ·

1
k
=
k!
kk
≈

(
1
e

)k
.

After repeating this step ek times, the probability of success is greater than 1/2, which leads to a probabilistic algorithm
in running time O(5.44knO(1)). The second deterministic approach for the k-path problem described in [1] runs in time
O((2c)knO(1)), where the constant c is over 4000.
Recently, this color-coding scheme has been derandomized via the following theorem [13]:

Theorem 6. For any integers n and k, where n ≥ k, an (n, k)-family of perfect hashing functions of size O(6.4k log2 n) can be
constructed in time O(6.4kn log2 n).

In other words, [13] provides a method for creating a set of k-colorings of size O(6.4k log2 n) such that for each subset
of k vertices there is at least one coloring where the k vertices are colored properly. This plus the dynamic programming
algorithm for finding a longest properly colored path gives a deterministic algorithm for the k-path problem in running time
O(6.4k2knO(1)) = O(12.8knO(1)).
The same approach can be adopted for a k-ascent problem aswell. One can produce a random k-coloring for a given graph

G and follow the same idea as in [1]. The only difference is that one has to implement a dynamic programming algorithm to
find a longest properly colored ascent instead of a simple path, but it is still possible in running time O(2knO(1)).
It is worthy of note that the randomized concept of color-coding can be improved by using more that k colors in the first

stage of the algorithm. We propose the following algorithm in order to find a k-path (or k-ascent) in a given graph G:
1. Create a random d1.3ke-coloring, i.e. assign a random color from the set {1, 2, . . . , d1.3ke} to each vertex of the given
graph G.

2. Find the longest properly colored path in G.

The probability p that a given path of k vertices will remain properly colored is

p =
d1.3ke
k
·
d1.3ke − 1

k
· · ·
d0.3ke
k
=
d1.3ke!
kk · d0.3ke!

≈

(
1
e

(
1.3
0.3

)0.3)k
≈ 0.571k.

Therefore, after repeating this algorithm 1.751k times, the probability of success will be over 1/2. A dynamic programming
algorithm for finding the longest properly colored path in a 1.3k-coloring works in running time O(21.3knO(1)). This gives
us a new probabilistic algorithm in running time O(1.751k · 21.3k · nO(1)) = O(4.312knO(1)), which directly improves on the
original algorithm in running time O(5.44knO(1))mentioned in previous papers.

1630 J. Katrenič, G. Semanišin / Discrete Applied Mathematics 158 (2010) 1624–1632

7. Randomized divide and conquer for k-ascent

Recently, the complexity upper bounds for the k-path problem were improved using a randomized divide and conquer
algorithm [13,15] in running time O(4kk3.42m) that is better than the previous best algorithms.
Inwhat follows, we show how to apply this technique to the k-ascent problem. Let us say that an ascent λ1 is smaller than

the ascent λ2 if the label of the last edge in λ1 is smaller than the label of the last edge in λ2. An ascent in G is a (u, k)-ascent
if it contains exactly k edges and if the last vertex of the ascent is u. An ascent in G is called a (u, k, x)-ascent if it forms
(u, k)-ascent and the label of the last edge is at most x,
Let p be a path ending at the vertex u and (u, v) be an edge in G. We denote by p + (u, v) the path p elongated by the

edge (u, v).
We find a (k− 1)-ascent in the graph G and a fixed edge-ordering by calling the function find-ascentswith parameters

(∅,G, k). Theorem 7 claims that the probability of success (the algorithm finds at least one (k − 1)-ascent under the
assumption that one exists) is at least 0.5.

Function find-ascents(P ′,G′, k)
Input: G′ a subgraph of G, P ′ a set of k′-ascents in G that contains no vertex in G′, an integer k ≥ 1;
Output: a set P of ascents, each is a concatenation of a k′-ascent in P ′ and a (k− 1)-ascent in G′;

1. P := ∅;
2. if k = 1 then

if P ′ = ∅ then
return all 0-ascents in G′;

else
for each (u, k′)-ascent p in P ′ and each vertex v in G′ do

if (u, v) is an edge in G such that p+ (u, v) forms a (v, k′ + 1)-ascent then
if P does not contains a smaller (v, k′ + 1)-ascent then
erase from P all (v, k′ + 1)-ascents ;
add p+ (u, v) to P ;

return P;
3. loop 2.51 · 2k times do

3.1. randomly partition the vertices of G′ into two parts VL and VR;
denote by GL and GR the subgraphs induced by VL and VR, respectively;

3.2. PL := find-ascents(P ′,GL, dk/2e);
if PL 6= ∅ then

3.3. PR := find-ascents(PL,GR, k− dk/2e);
for each (u, k′ + k− 1)-ascent p in PR do

if P does not contains a smaller (u, k′ + k− 1)-ascent than p then
erase from P all (u, k′ + k− 1)-ascents ;
add p to P ′ ;

4. return P ;

Theorem 7. Let k be a positive integer and G = (V , E) be a graph with n vertices and m edges. Let u be an arbitrary vertex
of G. Then if G contains a (u, k − 1)-ascent, with probability larger than 1 − 1/e > 0.632, the set P returned by the
algorithm find-ascents(∅,G, k) contains a (u, k − 1)-ascent. The algorithm find-ascents(∅,G, k) runs in time O(4kk3.42m)
and in a polynomial space.

Proof. To prove the first part, we verify the following claims using mathematical induction on k:
1. If P = ∅ and G′ has a (u, k− 1, x)-ascent, then with probability larger than 1− 1/e, the set P returned by the algorithm

find-ascents(P ′,G, k) contains a (u, k− 1, x)-ascent.
2. If P ′ 6= ∅ and G′ has a (u, k − 1, x)-ascent whose other end vertex can be connected to an end vertex of an ascent in
P ′, then with probability larger than 1 − 1/e, the set P returned by the algorithm find-ascents (P ′,G′, k) contains a
(u, k′ + k− 1, x)-ascent.

The claims are obviously true for k = 1. Let k > 1. First consider the case when P ′ = ∅. Suppose that

[u1, u2, . . . , uk1 , uk1+1, . . . , uk]

is a (uk, k − 1)-ascent in G′, where k1 = dk/2e. Then with probability 1/2k, in step 3.1 of the algorithm the vertices
u1, u2, . . . , uk1 are added into VL, and vertices uk1+1, . . . , uk into VR. If this is the case, the graph GL contains the (uk1 , k1−1)-
ascent [u1, . . . , uk1], and the graph GR contains the (uk, k−k1−1)-ascent [uk1+1, . . . , uk]. By the inductive hypothesis, with
probability larger than 1− 1/e, PL obtained in step 3.2 includes a (uk1 , k1 − 1, y)-ascent, y ≤ f (uk1−1, uk1). Such an ascent
can be connected to the ascent [uk1+1, . . . , uk]. By the second inductive hypothesis, with probability larger than 1− 1/e, PR

J. Katrenič, G. Semanišin / Discrete Applied Mathematics 158 (2010) 1624–1632 1631

obtained in step 3.3 contains an ascent of length (k1− 1)+ 1+ (k− k1− 1) = k− 1 that ends with uk and its last edge has
label at most f (uk−1, uk). Therefore in each loop of step 3, the probability that a (uk, k− 1, x)-ascent is added to the set P is
larger than

(1− 1/e)2

2k
>
0.6322
2k

>
1

2.51 · 2k
.

Since step 4 of the algorithm loops 2.51 · 2k times, the overall probability that the algorithm returns a set of paths that
contains a (uk, k− 1, x)-ascent (when P ′ = ∅) is

1−
(
1−

1
2.51 · 2k

)2.51·2k
> 1−

1
e
.

In the case when P ′ = ∅, we follow the same argument as before except that we require that the [u1, . . . , uk1 ,
uk1+1, . . . , uk] ascent in G

′ may be connected to a k′-ascent in P ′. So PL contains a (uk1 , k
′
+ k1 − 1)-ascent λ that is a

concatenation of a k′-ascent in P ′ and a (k1−1)-ascent in GL, and PR contains a (uk, k′+k−1)-ascent that is a concatenation
of a (k− k1 − 1)-ascent in GR.
In order to analyze the time complexity, let us denote by T (k) the running time of the algorithm find-ascents(∅,G, k).

Without loss of generality, we can assume that m ≥ n. From the algorithm, we get the following recurrence relation
(assuming that the recursive function find-ascents is implemented in time O(nm2)without the time of recursive calls):

T (k) = 2.51 · 2k[cnm2 + T (dk/2e)+ T (k− dk/2e)],

where c > 0 is a constant. We claim that for all k > 0,

T (k) ≤ c · (10.7)dlog ke22knm2, (1)

and we prove it by induction on k. Obviously T (1) ≤ cnm2 if c is sufficiently large, and the inequality (1) holds for k = 1.
Let k > 1. Then k− dk/2e ≤ dk/2e and 2dk/2e ≤ k+ 1 and we have

T (k) = 2.51 · 2k
(
cnm2 + T (dk/2e)+ T (k− dk/2e)

)
≤ 2.51 · 2k

(
cnm2 + 2cnm2 · (10.7)dlogdk/2ee22dk/2e

)
≤ 2.51 · 2k

(
cnm2 +

2cnm2

10.7
· (10.7)dlogdk/2ee+12k+1

)
.

Since dlog ke = dlog(d k2e)e + 1 for k > 1, we can express the previous bound in the following form:

T (k) ≤ cnm2 · (10.7)dlog ke22k · 2.51
(

1
10.7dlog ke2k

+
4
10.7

)
≤ cnm2 · (10.7)dlog ke22

k
· 2.51

(
1

10.7 · 4
+

4
10.7

)
< cnm2 · (10.7)dlog ke4k.

Therefore the overall running time of the algorithm find-ascents(P,G, k) is O((10.7)dlog ke22knm2) = O(4kk3.42nm2). �

A derandomization of this algorithm can be done by an approach used in [13]. In order to present it we need the following
definition.

Definition 2. An (n, k)-universal set T is a set of n-bit binary strings such that for every subset π of k elements in
{1, 2, . . . , n}, the collection {π(s)|s ∈ T } contains all 2kk-bit binary strings. The size of the (n, k)-universal set T is the
number of strings in T .

Proposition 1 ([19]). There is a deterministic algorithm of running time O(2kkO(log k)n log n) that constructs an (n, k)-universal
set of size 2kkO(log k) log n.

Proposition 1 can be used to achieve a deterministic algorithm. Step 3 of our algorithm can be replaced in such away that
instead of choosing partitions VL and VR randomly 2.51 ·2k times, we use the (n, k) universal set of size 2kkO(log k) log n. Using
induction on k, we can prove that this deterministic algorithm correctly returns a (k− 1)-ascent if such an ascent exists for
the input graph and edge-ordering. The running time of this deterministic algorithm is bounded by O(4k+o(k)nO(1)).

Acknowledgement

The research of the first author was supported in part by Slovak VEGA grant 1/0035/09. The research of the second author
was supported in part by SlovakVEGAgrant 1/0035/09, APVV-0007-07 and by theAgency of the SlovakMinistry of Education
for the Structural Funds of the EU, under project ITMS:26220120007.

1632 J. Katrenič, G. Semanišin / Discrete Applied Mathematics 158 (2010) 1624–1632

References

[1] N. Alon, R. Yuster, U. Zwick, Color-coding, J. ACM 42 (1995) 844–856. http://doi.acm.org/10.1145/210332.210337.
[2] H. Bodlaender, On linear time minor tests with depth-first search, J. Algorithms 14 (1993) 1–23.
[3] A.P. Burger, E.J. Cockayne, C.M. Mynhardt, Altitude of small complete and complete bipartite graphs, Australas. J. Combin. 31 (2005) 167–177.
[4] A.P. Burger, C.M.Mynhardt, T.C. Clark, B. Falvai, N.D.R. Henderson, Altitude of regular graphswith girth at least five, DiscreteMath. 294 (2005) 241–257.
[5] A.R. Calderbank, F.R.K. Chung, D.G. Sturtevant, Increasing sequences with nonzero block sums and increasing paths in edge-ordered graphs, Discrete
Math. 50 (1984) 15–28.

[6] V. Chvátal, J. Komlós, Some combinatorial theorems on monotonicity, Canad. Math. Bull. 14 (1971) 151–157.
[7] E.J. Cockayne, G. Geldenhuys, P.J.P. Grobler, C.M. Mynhardt, J.H. Van Vuuren, The depression of a graph, Util. Math. 69 (2006) 143–160.
[8] E.J. Cockayne, C.M. Mynhardt, Altitude of K3,n , J. Combin. Math. Combin. Comput. 52 (2005) 143–157.
[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, The MIT Press, 1990.
[10] T. Dzido, H. Furmańczyk, Altitude of wheels and wheel-like graphs, Cent. Eur. J. Math. 8 (2010) 319–326.
[11] I. Gaber-Rosenblum, Y. Roditty, The depression of a graph and the diameter of its line graph, Discrete Math. 309 (2009) 1774–1778.
[12] R.L. Graham, D.J. Kleitman, Increasing paths in edge ordered graphs, Period. Math. Hungar. 3 (1973) 141–148.
[13] J. Chen, S. Lu, S.-H. Sze, F. Zhang, Improved algorithms for path, matching, and packing problems, in: SODA’07: Proceedings of the Eighteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, 2007, pp. 298–307.
[14] D. Karger, R. Motwani, G.D.S. Ramkumar, On approximating the longest path in a graph, Algorithmica 18 (1997) 82–98.
[15] J. Kneis, D. Molle, S. Richter, P. Rossmanith, Divide-and-color, Lecture Notes in Comput. Sci. 4271 (2006) 58–67.
[16] Y. Kortsarts, J. Rufinus, How (andwhy) to introduceMonte Carlo randomized algorithms into a basic algorithms course? J. Comput. Sci. Coll. 21 (2005)

195–203.
[17] B. Monien, How to find long paths efficiently, Ann. Discrete Math. 25 (1985) 239–254.
[18] C.M. Mynhardt, Trees with depression three, Discrete Math. 308 (2008) 855–864.
[19] M. Naor, L.J. Schulman, A. Srinivasan, Splitters and near-optimal derandomization, in: IEEE Symposium on Foundations of Computer Science, FOCS

1995, pp. 182–191.
[20] C. Papadimitriou, M. Yannakakis, On limited nondeterminism and the complexity of the V–C dimension, in: Structure in Complexity Theory

Conference, 1993, Proceedings of the Eighth Annual Volume, 1993, pp. 12–18.
[21] Y. Roditty, B. Shoham, R. Yuster, Monotone paths in edge-ordered sparse graphs, Discrete Math. 226 (2001) 411–417.
[22] R. Yuster, Large monotone paths in graphs with bounded degree, Graphs Combin. 17 (3) (2001) 579–587.

http://doi.acm.org/10.1145/210332.210337

	Finding monotone paths in edge-ordered graphs
	Introduction and motivation
	 N P -completeness of the ascent finding problem
	The problem of finding complete ascents
	Finding ascents in complete graphs
	An estimation of the complexity of a brute-force like algorithm
	A color-coding scheme for the ascent problem
	Randomized divide and conquer for k -ascent
	Acknowledgement
	References

