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I. INTRODUCTION 

Dynamic programming provides an extremely powerful approach for 
solving the optimization problems that occur in the operation and planning 
of water resource systems. However, its applicability has been somewhat 
limited because of the large computational requirements of the standard 
algorithm. This paper summarizes some of these new computational proce- 
dures and discusses some recent applications. 

As water resource systems have grown larger and more complex, the 
importance of optimum operation and planning of these systems has in- 
creased. The investment costs and operating expenses of projects are so 
large that even small improvements in system utilization can involve sub- 
stantial amounts of money. Also, the various control points-power genera- 
tors, irrigation outlets, pumping stations, etc.-interact in such a compli- 
cated manner that it is difficult to obtain an optimum design or operating 
policy using an intuitive approach. Thus the potential benefits of using 
optimization techniques in these problems are very great indeed. 

The major reason dynamic programming is so attractive for these problems 
is the great generality of the problem formulation to which it can be applied. 
Nonlinearities in the system equations and performance criterion can easily 
be handled. Constraints on both decision and state variables introduce no 
difficulties. Stochastic effects can be explicitly taken into account. 

In Section II the theory of dynamic programming is briefly reviewed and 
a number of computational procedures are described, including the standard 
computational algorithm, forward dynamic programming, the standard 
computational algorithm for stochastic control problems, iteration in policy 
space, successive approximations, and state increment dynamic programming. 

In Section III some specific problems to which dynamic programming has 
been applied are discussed. Most water problems fall into one of the follow- 
ing three categories: 
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(1) Optimum operation during a short period, such as 24 hours, when all 
quantities are deterministic; 

(2) Monthly or yearly policy optimization when some system parameters, 
such as stream inflows, must be treated as stochastic variables; 

(3) Long-range planning or resource allocation where demands may or 
may not be treated as deterministic quantities. 

Four illustrative examples are discussed, including at least one from each 
of the above categories. The first problem is the optimum short-term opera- 
tion of a combined pumped hydro and irrigation storage facility involving 
two reservoirs; forward dynamic programming was used for this example. 
The second problem is the optimum short-term operation of a multipurpose 
four-reservoir system, where power generation, irrigation, flood control, 
and recreation are all considered; the technique of successive approximations 
was applied in this case. The third problem is the optimum management of a 
single reservoir over a one-year period, where stochastic variations of input 
stream-flows are considered; iteration in policy space was applied here. 
The fourth problem is the optimum planning of additions to a system over a 
30-year period; forward dynamic programming was again used for this 
example. 

II. DYNAMIC PROGRAMMING 

A. Problem Formulation for the Deterministic Case 

Most of the problems for which dynamic programming has been used to 
obtain numerical solutions can be formulated as deterministic discrete-time 
variational problems [l-3]. The general case of this problem is formulated as 
follows: 

GIVEN: 

(i) A system described by the nonlinear difference equation 

x(h + 1) = ‘,p[-q), u(h), q, 

where 
(1) 

x = state vector, n-dimensional 

u = control vector, m-dimensional 

k = index for stage variable 

0 = n-dimensional vector functional; 

409’24!1-6 



(ii) A variational performance criterion 

where 
J =- total cost 

(iii) Constraints 

where 

L = cost for a single stage; 

x E X(k) 

u E U(x, k) 

X(k) = set of admissible states at stage k 

U(x, k) = set of admissible controls at state x, stage k; 

(2) 

(3) 

(4) 

(iv) An initial state 

FIND: 

x(0) = c. (5) 

The control sequence u(O),..., u(K) such that J in Eq. (2) is minimized 
subject to the system equation (l), the constraint equations (3) and (4), 
and the initial condition (5). 

Continuous-time variational control problems can be treated by assuming 
that the control is piecewise constant in time and making appropriate trans- 
formations to the discrete-time case [l, 31. Extensions to problems involving 
uncertainty can be made as in Part C of this section. 

The dynamic programming solution to the above problem is obtained 
by using an iterative functional equation that determines the optimal control 
for any admissible state at any stage. A minimum-cost function is defined 
for all x E X and all k, k = 0, l,..., K, as 

I(x, k) = j=k,k+l ,,.,, K 1 i w.& 4iM / 1 min 
,=h 

where 
x(k) = x. 

Abbreviating u(k) as u, the iterative functional equation becomes 

I(x, k) = mjn{L(x, u, k) + I[@@, u, k), k + l]}. (7) 

This equation is a mathematical statement of Bellman’s principle of optimal- 
ity [l-3]. It states that the minimum cost for state x at stage K is found by 
choosing the control that minimizes the sum of the cost to be paid at the 
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present stage and the minimum cost in going to the end from the state at 
stage K + 1 which results from applying this control. The optimal control 
at state x and stage K, denoted as ~;(Lz, K), is directly obtained as the value of u 
for which the minimum in Eq. (7) is attained. 

Since Eq. (7) determines 1(x, K) and a(~, k) in terms of 1(x, k + l), it 
must be solved backward in k. As a terminal boundary condition 

1(x, K) = m;ln[L(x, u, K)]. (8) 

The optimization over a sequence of controls is thus reduced to a sequence 
of optimizations over a single control vector. 

A direct-search method for solving Eq. (7), based on quantizing the 
admissible values of x and u to a finite number of discrete values, is described 
in Refs. [l-4]. This computational procedure is appealing for a number of 
reasons. In the first place, thorny questions of existence and uniqueness are 
avoided. As long as there is at least one feasible control sequence, then the 
direct-search procedure guarantees that the absolute minimum cost is 
obtained. Furthermore, extremely general types of system equations, perform- 
ance criteria, and constraints can be handled; constraints actually reduce 
the computational burden by decreasing the admissible sets X and U. 
Finally, the optimal control is obtained as a true feedback solution in which 
the optimal control for any admissible state and stage is determined. 

The major limitation of this algorithm is the computational requirements 
associated with it (Bellman’s “curse of dimensionality” [l]). The difficulty 
that is generally most severe is the amount of high-speed storage required to 
store 1(x, k + 1) during the computation of ti(x, K) and 1(x, K). The number 
of storage locations required is one for each quantized state, a quantity that 
increases exponentially with the number of state variables, Another major 
difficulty is the amount of computer time required to carry out the calcula- 
tions. A third consideration is the amount of off-line storage required to store 
the results. Many of the computational procedures discussed in the remainder 
of this section reduce one or more of these requirements. 

B. Forward Dynamic Programming 

If the minimum cost function is redefined to be the minimum cost to 
reach a given state and stage from the initial state, an iterative equation 
analogous to Eq. (7) can be derived. In this case the calculations proceed 
forward in k rather than backward; hence, the term forward dynamic pro- 
gramming is used to describe the computational procedure for this case. 

For many applications this form of solution is more desirable than the 
dynamic programming solution. This is particularly true when the initial 
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state is fixed and the terminal state and/or stage is free; most real-time dis- 
patching problems fall into this category. The optimum final state can be 
selected by searching over the minimum costs for all admissible final states 
and, if desired, adding a terminal cost function. The terminal cost function 
can be quite flexible, and the effect of using different functions can easily 
be seen without repeating the dynamic programming calculation. No matter 
which final state is finally selected, the optimum trajectory from the initial 
state to this final state is obtained; this property of the solution is analogous 
to the feedback control property of the normal dynamic programming solu- 
tion. It should be noted that for a given initial state and final state the same 
optimum trajectory is determined by both methods. 

The iterative equation is derived by defining I’(x, k) as the minimum cost 
to reach state x at stage k from the initial state. Formally, 

where 

.2” = @[x(/z - I), u(iz - l), k - 11. 

If the inverse functional to @ is defined as 6, so that 

@{tqx, u(k - l), k - I], U(K - l), K - l} = x w-9 

then the iterative equation becomes 

I’(% K) = J@p{@, u(k -- l), k - 11, u(k - l), k - 1) 

+ r,{@[x, u(k - l), k - I], k - 1)). (11) 

As a boundary condition for this equation, I’(%, 0) is specified. If, as is 
often the case, the initial state is fixed at one particular value, I’(%, 0) is set 
to zero for this state and no other initial state is considered admissible. 
Several computational procedures using Eq. (11) are described in Ref. [4]. 

C. Stochastic Control 

An important extension of the problem formulation of Part A is the sto- 
chastic control problem as defined by Bellman [2]. In this problem the state 
variables are assumed to be perfectly measurable, but the system equations 
are affected by stochastic inputs. Many multi-reservoir control problems fit 
this formulation; the perfectly measurable state variables are the levels in the 
reservoirs, and the stochastic inputs are those streamflows that cannot be 
predicted exactly. 
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The basic formulation is modified by including w(k), an s-dimensional 
vector of stochastic variables. It is assumed that the probability density 
function of w(K), p[ru(k)], is known and that samples of w(k) at different 
values of k are uncorre1ated.l The relation of the stochastic variables to the 
other system variables is made explicit by including them in the system 
equation 

x(k + 1) = @[x(k), u(k), w(k), 4. (12) 

This equation shows that the state variables at time k + 1 depend not 
only on x(k), the set of state variables at time k, and u(k), the control decision 
made at time k, but also on the stochastic variables, w(k). The next state thus 
is not determined exactly, but has a probability density function resulting 
from that of w(k). 

Because of this uncertainty in the evolution of the system state variables, 
it is not possible to optimize a deterministic performance criterion. Instead, 
a probabilistic performance measure must be considered. Customarily, the 
expected value of a cost function is minimized, where the expectation is taken 
over the sequence of stochastic inputs. Formally, 

(13) 

where E denotes the expectation operator. By modifying the form of the 
functional L, it is possible to consider other types of performance measures, 
such as the probability that performance is better than a certain specified 
value. 

Constraints on state and control variables are imposed exactly as in Part A 
of this section: 

x(k) E -w4 (14) 

44 E WG), 4. (1% 

A recursive relation analogous to Eq. (7) can now be derived. The minimum 
expected cost function, I”(x) k), is defined as 

I”(% k) = u(k) y(k$~ ( E j IF L[x(j), f4ih 4iM 1) , ,...,dU mvd,m(k+l),. ..,w(K) j=lc 

1 The latter assumption can be relaxed at the expense of defining additional state 

variables to account for correlation in R, 
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where 
x(k) = .T. 

Under the assumption that w(k) is uncorrelated in k, the recursive relation 
is found as 

Z’(x, k) -= min tl(k) [wE#q u(k), w(k), kl + WYw> u(k), w(k), 4 k + U)] . 

(17) 

As before, the optimal control for a given state x and stage k, ii(x, k), is found 
as the value of u(k) for which the minimum is attained. 

D. Iteration in Policy Space 

If the system equation functional, 0, and the cost functional, L, have no 
explicit dependence on k, and if the total of number of stages, K, becomes 
infinite, the resulting optimization problem is called the “steady-state” 
optimization problem. This refers to the fact that the optimal control depends 
only on the state variables and not on the stage variable. This problem is of 
importance to water resource problems in long-term operations and planning. 
Because both the deterministic and stochastic version of this problem occur 
in practice, both will be analyzed. 

The major change in the basic iteration equation (7) for the deterministic 
case is that the minimum cost function depends only on x and not on k. The 
iterative equation thus becomes 

where the function I now appears on both sides of the equation. As before, 
the optimal control, a(x), is found as the value of u for which the minimum 
is attained. 

A number of iterative techniques are available for solving these equations. 
The most straightforward approach is to treat the problem as a finite-stage 
problem and repeat the use of Eq. (7) until the differences between 1(x, k) 
and 1(x, k + 1) and/or ti(x, k) and G(x, k + 1) are sufficiently small. If 
convergence occurs after a reasonable number of stages, then this technique 
is generally satisfactory. 

An alternative approach is to guess the form of I(X), say I(O)(x), and solve 
for a sequence of approximations to I(X), W(x), by using the equation 

Icd+l)(x) = m;ln {L(x, u) + Icc)[@(x, u)]). (19) 

This technique, called by Bellman “approximation in function space” [I], 
is effective when a good initial approximation to I(X) can be found, 
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Another approach, which generally has better convergence properties, 
is to guess an optimal control function, fi(O)(x), compute the corresponding 
minimum cost function, I(O)(x), and then obtain a sequence of optimal control 
functions, z2tt)(x), by using Eq. (19). The main difference between this 
approach, called by Bellman “approximation in policy space” [l], and the 
technique just discussed is that W(x) is always computed as the true mini- 
mum cost function corresponding to lied)(x); generally, this is achieved by 
direct iteration using the following equation 

Z(~J’l)(X) = qx, fqx)] + Z’~~~‘{q%“, fP’(x)]}, (20) 

where P*‘)(x) denotes th e value of I(j)(x) obtained after r iterations. Often, 
as an initial condition for these iterations, 

pyx) = 0. 

For the stochastic control case, the iterative equation becomes 

(21) 

Z(x) = m$ I ,E [WG u, 41 + Z[@@, u, 41 j . (22) 

Computational procedures analogous to all three of those mentioned for the 
deterministic case can be developed. 

The particular procedure that has received most attention in the literature 
is Howard’s iteration in policy space [S]. In this procedure state variables are 
quantized to a set 0, x@) ,..., x@), control variables are quantized to a set 
u(l), u(2),..., u(M) and the stochastic variables are quantized to a set w(r), 
w(2) wcR) It ii assumed that the quantization levels and the state trans- ,..., . 
formation equation are such that for a given quantized present state, quant- 
ized control, and quantized stochastic input, the next state is always a 
quantized state as well. It is then possible to define transition probabilities 
pz, where 

pz = prob[x(k + 1) = x(‘) 1 x(k) = x’<), u(k) = u(~)]. (23) 

These probabilities are easily computable in terms of the functional 
@(x, U, w) and p(w). 

It can then be shown that the minimum cost function for any finite number 
of stages takes the form 

Z[x(i’, k] = v-i + gk, (24) 

where V, represents a transient cost that depends on the present state, and 
where g represents the steady-state cost per stage. For a given optimal 
control policy, tied)(x), the corresponding minimum cost function is computed 
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by assuming the form of Eq. (24), substituting into Eq. (22), and utilizing 
the definition in Eq. (23). It is then found that 

where m(k, i) is the index of the optimal control G”)[x(i’] and where, for 
simplicity in notation and without loss of generality, it is assumed that the 
single-stage cost is not an explicit function of w. Equation (25) specifies N 
equations for the (N + 1) unknowns Vi , i = 1, 2 ,..., N, and g. However, it 
can easily be shown that one of the vi--say, VA--can be set to zero, and the 
resulting system of equations solved exactly. This operation Howard calls 
value determination operation (VDO) [5]. 

Having now obtained the W[X@)] corresponding to Z;(L)[~‘i)], a new 
optimal control function, ,i(L+l)[~(i)], is found by Howard’s policy improve- 

ment routine (PIR) [5]. Basically, this procedure consists of minimizing g, 
where g is obtained as 

g = f  p;(L[x’i’, ZP] + Vj} - V$ , 
I=1 

The minimization is over ucnL), m = 1,2 ,..., M. 
It can be shown [5] that iterative use of the VDO and PIR, starting from a 

given initial control function ti(O)[x(i)], will eventually lead to the optimum 
control function O[xo)] and that the succesively determined values of g are 
monotonically nonincreasing. The strength of these results are the main 
reason this technique is used more than any of the iterative procedures for 
the stochastic case. 

E. Sucessive Approximations 

One of the most promising techniques for solving high-dimensional water 
resource problems is Bellman’s successive approximations [3]. In this 
technique it is assumed that the optimal control sequence from a given initial 
state is desired, rather than optimal control at every admissible state. This 
is typically the case in a real-time control or operations problems. It is also 
convenient to assume that there are as many control variables as state varia- 
bles; in multi-reservoir control problems, where the state variables are the 
water levels in the reservoirs and the control variables are the releases from 
each dam, this is the case. 

The problem formulation can be as in any of the preceding sections. How- 
ever, attention will be confined in this section to the deterministic, finite- 
stage problem of Part A of this section, 



WATER RESOURCE SYSTEM OPERATION AND PLANNING 89 

In order to begin the approach, a guess is made of an initial control 
sequence, u(O)(k), k = 0, l,..., K. The corresponding trajectory is then 
determined as x(O)(k), K = 1, 2 ,..., K, from knowledge of X(O), the given 
initial state, and the control sequence. 

The basic idea behind the method is to solve a sequence of one-dimensional 
problems, rather than the complete n-dimensional problem. In one version 
of this technique that has been studied extensively, (n - 1) of the state 
variables are fixed along the most recent sequence of states, x(i)(K). The 
remaining state variable is taken to be the state variable in a one-dimensional 
problem. The control for this problem is the complete control vector, u(k), 
except that the restriction that (n - 1) of these state variables follow the 
prescribed trajectory imposes (n - 1) constraints on admissible controls. 
The performance criterion is that of the original problem, and other con- 
straints are handled exactly as before. When a new optimal control sequence, 
a(j+l)(k), has been found, the corresponding trajectory, &+l)(K), is computed 
and the process repeated for another state variable. Convergence is mono- 
tonic, but it is not always possible to attain the absolute optimum. Some 
variations of this basic technique that improve the likelihood of finding 
the absolute optimum are considered in Ref. [4]. The extension to stochastic 
control problems is also covered in Ref. [4]. 

Potentially, this technique has tremendously reduced computational 
requirements over other dynamic programming methods; these require- 
ments grow linearly with the number of state variables rather than expo- 
nentially. In the example of Section III-B a four-reservoir optimization 
problem was solved in less than a minute on a moderate-speed computer.2 
Also, in Ref. [4] an airline scheduling problem with 70 state variables was 
solved in 3 minutes on the same computer. 

F. State Increment Dynamic Programming 

Another promising technique for high-dimensional problems is state 
increment dynamic programming [4]. This technique is particularly valuable 
for reducing the high-speed memory requirement over that of the method of 
Section II-A in problems where optimal control is desired at every admissible 
state. When only the optimal control sequence from a given initial state is 
desired, the technique can be modified to have reduced computing time as 
well. Finally, when there are as many control variables as state variables, a 
particularly efficient algorithm can be employed. The details of this technique 
are covered in Ref. [4]. 

In one application, where the high-speed memory requirement for the 



90 KECKLER AND LARSON 

normal dynamic programming approach was IO6 locations, the high-speed 
memory requirement of state increment dynamic programming was on the 
order of lo2 locations [4]. By using this technique, a computer program 
capable of solving general dynamic optimization problems having four or 
less state variables was recently written [4]. 

G. Other Techniques with Reduced Computational Requirements 

A number of other dynamic programming techniques are of potential 
value in solving water resource problems but with reduced computational 
requirements over the method of Section II-A. These include quasilineariza- 
tion [6], iterations about a nominal trajectory with increasingly finer grid 
sizes [7], use of Lagrange multipliers to replace state variables [7], and 
polynomial approximation of the minimum cost function [I]. These techni- 
ques and others are covered in a recent survey paper [8]. 

III. EXAMPLES 

A. Short-Term Optimization of a Pumped-Storage Two-Reservoir System 

1. Problem Statement 

In Ref. [9] a pump-storage system is described. The basis for the problem 
is the San Luis Reservoir and its forebay, a joint facility of the State of 
California and Bureau of Reclamations in the State Water Project. However, 
simplifying assumptions were made to obtain a problem in which the basic 
principles were not obscured by details. The solution of this problem utilized 
forward dynamic programming. 

The network configuration of the problem to be solved is shown in Fig. 1. 

“, PUMPING RATE, STATION I 

(ft3/sec) 

u2 PUMPING RATE, STATION 2 
(ft3/sec) 

x, STORAGE IN FOREBAY 
(ac-ft) 

x2 STORAGE IN IRRIGATION 
RESERVOIR (ac-ft) 

0 IRRIGATION DEMAND 

(ft3/sec) 

FIG. 1, Network configuration for two-reservoir example. 
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The water from the source river is pumped in the forebay x1 , from which 
it is either pumped into the storage reservoir xs or used to meet an irrigation 
demand. The pumps of the large reservoir can also function as generators 
of electrical power when water flows back to the forebay. The rate at which 
water can be removed from the source river has an upper limit, and the 
pumping plants have capacity limitations. Dollar values can be put on all 
costs and revenues. The problem is to operate within all constraints and to 
meet all demands on the system at minimum cost. 

The quantized state variables are x1 and x2 . The control variables ui and 
u2 are allowed to vary continuously within certain upper and lower limits. 
Control ui varies from zero to an upper limit and control u2 varies from some 
negative lower limit to some positive upper limit. A negative ua indicates 
that Pumping Station 2 is being used to generate electrical power. The irriga- 
tion demand D is limited to positive values and has the same units as the 
controls (a flow rate). Because of the dimensional differences in the U’S and 
x’s, a conversion factor is needed: 

C = 12.3 e. 

The operating procedure is to be computed one day in advance and is 
reconsidered every hour; therefore, time is quantized into increments of 
one hour. 

The state equations are the following: 

x,[(K + 1) dt] = xr(Kdt) + C[u,(Kdt) dt - u&It) dt - D(M) At] 

x,[(K + 1) Lit] = x,(Kdt) + C[u,(Kdt) dt], (26) 

where in this problem 
dt = 1 hour. 

Thus, the equations become 

x,(k + 1) = M4 + CM4 - u,(k) - WI 
x,(k + 1) = x2@) + C@,(k). (27) 

However, operating the pumping stations for an hour incurs certain costs. 
The only pumping station operating cost considered in this problem is the 
cost of electrical power. This cost (K) is expressed as the cost of pumping 
at the rate of one ft3/sec for one hour. The efficiencies of both pumping 
plants are the same, so the per-unit operating cost of each one is K if us 
is positive. The efficiency of Station 2 changes when it is used as a generator; 
thus, there must be a different cost (benefit) K’ when pa is negative. It is 
assumed that the electrical power that Station 2 generates can be sold at the 
same price that power can be purchased and that the power cost varies 
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during a day. Thus, the cost of producing additional power is greater than 
the cost of producing the base level of power. Intuitively, it appears that in 
order to meet the irrigation demand, and minimize cost, there are times during 
the day when it is most profitable to release water. The solution to the problem 
verifies this supposition and determines when each policy should be followed. 

The cost accrued during the kth time increment is 

L(k) = Ku,(k) $- K,u,(k) 

K 
? 

= K, uz 3 0 
1 K’, up < 0. 

The total cost from the initial time to time R is thus 

(28) 

1(x, k) =1(x, k - 1) + L(k) 

1(x, 0) = L(0) = 0 for all X. (29) 

The quantity 1(x, N) is the cost of operating the system from initial to final 
time (t = tf = NAt or k == N) and terminating in state X. The problem 
becomes one of choosing the controls u(k) of Eq. (27) for all values of K such 
that all constraints are satisfied and 1(x, N) is minimized for all X. 

2. A Typical Problem 

A FORTRAN program using forward dynamic programming has been 
implemented for the two-reservoir, two-pump station facility (Ref. [9]). 
The control is not quantized, but allowed to vary continuously between certain 
limits. The computed trajectories can therefore be forced to go from one 
quantized state to a quantized state at the next stage of the process. Thus, 
no interpolation is required and one has continuous, piecewise-linear tra- 
jectories in the state space. 

Figure 2 shows the demand curve of irrigation water and the incremental 
power cost curve. The incremental power cost is the cost of the last megawatt- 
hour produced during each hour. Since the whole system analyzed here 
operates as an additional load or source to the electric power grid, it will 
either have to buy power at the incremental power cost or replace power 
which costs this much. This curve was derived from information given in 
Ref. [lo]. The irrigation demand curve was arbitrarily assumed to be as 
shown. The initial value of the reservoir levels are the k = 0 values shown 
in Fig. 3. 

The optimum cost for each terminal state varies considerably, and the 
one which is the overall optimum depends on the penalty assessed for 
arriving at each .of ‘these final states. If there is no penalty assessed 
for arriving at different terminal states, but a terminal constraint is imposed 
that the-Ma1 amaunt of water in the two reservoirs must be 10 units, then 
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6000 

= 4000 

4 2000 
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0 

L 4 

; 

93 

72 

=; 8 I 

0 

DEMAND CURVE 

INCREMENTAL 
POWER COST 

l-1 I I ’ I i I I I I 
0 4 8 12 16 20 24 

TIME-hrs 

FIG. 2. Input quantities for the numerical example: Irrigation demand and 
incremental cost as a function of time. 

IO / , , , / , , 

RESERVOIR LEVEL x, 

ONE PUANTIZATION LEVEL 
EOIJALS 150 ACRE FEET - 

LEVEL ONE INDICATES 
46,200 ACRE FEET _ 

RESERVOIR LEVEL x2 - 

ONE OUANTIZATION LEVEL- 

: 6 
EQUALS 150 ACRE FEET- 

: 
LEVEL ONE INDICATES - 

cc 4- 
STORAGE OF 
APPROXIMATELY 

- 2.1 MILLION ACRE FEET - 

2 -- 

0 I’l’l”‘l’l’lJ 
0 4 0 12 16 20 24 

TIME - hrs 

FIG. 3. State variables as a function of time. 

the optimum terminal state is x, = 9, x2 = 1. The minimum cost for 
this state is I@, N) = $611.93. The optimal policy corresponding to this 
state is shown in Figs. 3-5; the reservoir levels as function of time are shown 
in Fig. 3, the optimum controls are shown in Fig. 4, and the cumulative 
operating cost is shown in Fig. 5. 



-5000 

0 4 8 12 I6 20 24 

TIME-hhrs 

FIG. 4. Pumping rates of the numerical example as a function of time, 

0 4 8 I2 I6 20 24 
TIME--m 

FIG. 5. Cumulative operating cost. 

In this case, the best policy is to fill Reservoir 2 early in the day when power 
is least costly and then drain all that is possible during the period (the tenth 
hour) when the return is greatest. Reservoir 1 is first operated to ensure that 
it is at its lowest allowable level in the tenth hour and is thus able to receive 
the water released from Reservoir 2. In the tenth hour the reservoir rises to 
the ninth quantization level and remains there. No change in the level of the 
reservoir is possible because the irrigation demand requires less than one 
quantization level of water and the additional demand is met by tir . The 
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cumulative operating cost (Fig. 5) reflects the pumping policy shown in 
Fig. 4. It shows high cost as the pumps fill Reservoir 2 early in the day, but 
the return for this policy is high during the tenth hour. 

3. Extensions 

The real world is never as simple as the example described above. However, 
dynamic programming is able to handle a wide variety of constraints that do 
result from physical situations. Some of these which can be expressed in the 
context of this example are cited below. One constraint is a limitation on 
the amount of water than can be pumped from the source river during a 
24-hour period. This is a very real problem in California: The Sacramento 
River Delta could be contaminated by salt water if the flow of the river were 
disturbed too much. As a result, the irrigation requirement often is also 
expressed as the amount to be delivered during a 24-hour period. 

Many pump/generator stations have already been built and integrated 
into a power system. These stations provide a “spinning reserve” during 
certain hours of the day. This responsibility requires that us be constrained 
to be less than some negative value during these hours. Other contractual 
requirements would be imposed on a realistic system. These include penalties 
for not exceeding minimum levels of irrigation or electric power demand. 
If too much water or electric power is produced, the return for the excess 
may be less than for the basic deliveries. Since the short-term control 
situation is imbedded in a longer-term operation, the final values of the two 
reservoir levels are confined to certain regions of the state space, A penalty 
cost is assessed for not reaching the desired final state and bonus given if this 
value is exceeded. 

B. Short- Term Optimization of a Multipurpose Four-Reservoir System 

In this section, the optimum operation over 24 hours of a multipurpose 
four-reservoir system is determined. The reservoir network, which contains 
both series and parallel connections, is shown in Fig. 6. In this optimization, 
use of water for power generation, irrigation, flood control and recreation 
is considered. Interaction of the short-term optimization with longer-term 
operating policies is also taken into account. 

The amount of water in the ith reservoir is denoted as xi , i =I 1, 2, 3, 4, 
where each xi is expressed in normalized units. 

On the basis of potential use of the reservoir for recreation purposes, a 
minimum water level for each reservoir is specified; the amount of water 
needed to achieve this level is arbitrarily set as xi = 0, and a constraint is 
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FIG. 6. Network configuration of four-reservoir problem, 

imposed that the amount of water in each reservoir cannot drop below this 
value. 

On the basis of flood control considerations, a maximum water level for 
each reservoir is established. The amount of water needed to raise the level 
from the minimum to the maximum value is then expressed in terms of the 
normalized units, and a constraint is imposed that each xi cannot exceed this 
level. 

The particular constraints considered in this example are expressed as: 

The flow of water between reservoirs is also expressed in the same normal- 
ized units; the control variables u,(k), i = 1, 2,..., 4, specify the amount of 
water released from the ith reservoir over the kth time interval. In this 
example each time interval is two hours. For each reservoir a maximum flow 
is determined by the capacity of the power generators, and a minimum flow 
is determined by considering the use of the downstream river beda for 
navigation, conservation, and municipal and industrial water supplies. For 
this example the constraints were 
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o<u1,<3 

o<uu,<4 

o<u3<4 

0 <IL, < 7. (31) 

The system equations express how the water flows between the reservoirs. 
They are: 

x,(lz + 1) = x,(k) - u,(k) + INI 

x,(K + 1) = x,(k) - u,(k) + ZNz 

%(A + 1) = X2(k) - u2@) + u,(k) 

x,(k + 1) = X4(k) - %(A) + %v4 + w 

K = 0, I,.., 11. 

The inflows IiV1 and IN, are assumed constant over the day as 

(32) 

INI = 2 

IN, = 3. (33) 

The performance criterion considers the use of water for both power 
generation and irrigation. It is assumed that there is a ipower ,generation 
station at each reservoir outflow. The benefit from the flow over a given two- 
hour period is assumed to be a linear function of the flow, (i.e., the benefit 
from a flow out of reservoir at time K is c,(K) ui(k). The function 
c,(K) is based on the power curve in Part A of this section. The values of Q(K) 
are shifted in k with respect to each other to account for the transport delay 
of water between reservoirs. This delay is four hours from Reservoir 1 to 
Reservoir 4, four hours from Reservoir 2 to Reservoir 3, and two hours from 
Reservoir 3 to Reservoir 4. The values of c,(k), i = 1, 2, 3, 4 are shown in 
Table I. 

Irrigation benefits are considered only for the outflow from Reservoir 4. 
The benefit is again linear with flow-i.e., the benefit from flow uq(K) is 
c&k) i(g(K). The function c5(k) is shown in Table I. 

The benefit function also includes a terminal cost for failing to reach a 
specified level for each reservoir at the end of the day. This function accounts 
for the long-term policy of filling or emptying the reservoir during a particular 
season. This function assesses a heavy penalty for having less than the 
specified amount of water at the end of the day, but gives no credit for having 
more than this amount. The particular function used was 

where na, = desired level of reservoir i at end of the day (li = 12). 

409/24/r-7 
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TABLE I 

CONSTANTS IN PERFORMANCE CRITERION 

k c,(k) c*(k) c,(k) c,(k) c&4 

0 1.1 1.4 1.0 1.0 1.6 
1 1.0 1.1 1.0 1.2 1.7 
2 1.0 1.0 1.2 1.8 1.8 
3 1.2 1.0 1.8 2.5 1.9 

4 1.8 1.2 2.5 2.2 2.0 
5 2.5 1.8 2.2 2.0 2.0 
6 2.2 2.5 2.0 1.8 2.0 
7 2.0 2.2 1.8 2.2 1.9 
8 1.8 2.0 2.2 1.8 1.8 
9 2.2 1.8 1.8 1.4 1.7 

10 1.8 2.2 1.4 1.1 1.6 

11 1.4 1.8 1.1 1.0 1.5 

This problem has been solved by successive approximations. The initial 
state was taken to be 

x,(O) = 5 

x2(0) = 5 

x3(O) = 5 

x4(0) = 5. (35) 

The desired final state was 

m, = 5 

m2 = 5 

m3 = 5 

7114 = 7. (36) 

The system dynamic equations are as in Eqs. (32) and (33). The constraints 
are expressed in Eqs. (30) and (31). The performance criterion is 

11 4 

(37) 

where c,(k), i = 1,2,... 5 is specified in Table I, &[xi(12), mJ is as shown in 
Eq. (34) and mi , i = 1, 2, 3, 4, are given in Eq. (36). 
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The initial policy chosen is shown in Table II. Basically, this policy 
consists of setting outflow equal to inflow at every time period, so that the 
water level in each reservoir remains constant. The only exception to this 
policy occurs at the end of the day, when the terminal cost function is taken 
into account. 

TABLE II 

INITIAL POLICY 

k 44 x,(k) xdk) x,(k) u,(k) u&k) u,(k) u,(k) 

0 5 5 5 5 
1 5 5 5 5 
2 5 5 5 5 
3 5 5 5 5 
4 5 5 5 5 
5 5 5 5 5 
6 5 5 5 5 
I 5 5 5 5 
8 5 5 5 5 
9 5 5 5 5 

10 5 5 5 5 
11 5 5 5 5 
12 5 5 5 7 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
3 

Total Benefit = 362.5 

The optimum policy is shown in Table III. The improvement in benefit 
was from 362.5 units to 401.3 units. The amount of computer time required 
for convergence to the optimum policy was about 30 seconds in the B5500. 

The extension of this approach to larger systems is clearly feasible. Time- 
varying constraints and more general types of performance criteria can easily 
be handled. Furthermore, the problem formulation can be modified to 
perform optimization over time periods other than 24 hours. The effects of 
stochastic variations can also be taken into account. At this time it appears 
that optimization of 20-reservoir systems is well within the capability of 
present-day computers. 

C. Optimization in the Presence of Stochastic Inflows 

1. Problem Statement 

The following example (see Ref. [l 11) shows how dynamic programming 
can be applied to an annual scheduling problem with stochastic inputs. The 
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‘I’ABLE III 

C)IW~fLM POLlCl 

k x,(k) x,(k) x&4 x,(k) Ill(k) 44 dk) u,(k) 

0 5 5 5 5 1 

I G 4 8 7 0 
2 8 5 IO 5 0 

3 10 7 8 1 2 

4 IO IO 4 0 3 

5 9 IO 3 0 3 
6 8 9 3 0 3 

7 7 8 3 0 3 

8 6 7 3 0 3 
9 5 6 3 0 3 

10 4 5 3 0 3 

11 3 4 3 I 0 

12 5 5 5 I 

4 

1 
2 

0 

3 
4 

4 
4 

4 

4 

4 

2 

0 

0 
4 

4 

4 

4 
4 

4 
4 

4 

4 

0 

0 

2 
7 

7 

7 
7 
7 

7 

7 

7 

0 

0 

_____ _. _.. .--. -- .- ~_. ~~~____. ~-~.-.----. - 
Total Benefit = 401.3 

problem posed can be solved by means of iteration in policy space to yield a 
series of optimum policies for the management of one reservoir. 

The problem is expressed in terms of a transaction between two business- 
men-one the manager of a reservoir and one the owner of a hydroelectric 
plant fed by this reservoir. A similar problem could be posed even if both 
facilities were operated by the same group. The manager of a water storage 
reservoir wishes to maximize the average return from his reservoir over a 
long period of time. The reservoir has three sourcea of income. 

(1) An annual payment from agricultural users of water which is released 
during the growing season-April through September. 

(2) An annual return from recreational use which is a function of the 
reservoir level on 30 September-the end of the water year. 

(3) A return for each acre-foot of water which is released during the 
winter months between 1 October and 31 March. This revenue comes from 
the owner of a hydroelectric power generator downstream. 

During the winter, when much of the precipitation falls as snow and thus 
is not immediately available, this power facility is faced with a severe water 
shortage. Thus, the owner is willing to pay well for each acre-foot of water 
guaranteed to be delivered, less for each acre-foot delivered in excess of this 
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guarantee, and invokes a penalty for each promised acre-foot that is not 
delivered. 

Each October the manager is faced with the problem of deciding how much 
water should be promised to the hydroelectric company. He knows the 
distribution of annual inflows into the reservoir and that 65 percent of this 
inflow will occur during the duration of the contract. He must meet the terms 
of the contract unless there is no water in the reservoir. He will deliver no 
more water than is specified in the contract unless the reservoir will otherwise 
overflow. 

The operating policy during the summer months is already specified. 
The reservoir is operated during these months to yield the best immediate 
return. The only trade-off is between use of the reservoir for recreational 
purposes and sale of water for irrigation. There is no return for release of 
irrigation water above a certain specified amount. In the spring the inflow 
for the rest of the water year is much better defined. The manager knows how 
much snow fell in the watershed of his reservoir and thus is able to specify 
the remaining inflow more closely, but not with certainty. 

Under the assumptions outlined here the whole operating policy for a year 
is specified once the contract with the hydroelectric company is signed. The 
manager’s problem thus becomes to decide how much water he should 
promise to deliver and how this amount should vary with the level of the 
reservoir in October. This example answers this question for the reservoir 
whose characteristics are described in the next section. 

2. The Source of Data 

The problem described in Part 1 is fictional, but it is strongly related to 
problems which are faced by water planners. The tables and graphs described 
below were adapted from the records of several government agencies con- 
cerned with water resources. A fictitious reservoir is assumed to have a storage 
capacity of 50,000 acre-feet, which is discretized into eleven values ranging 
from 0 to 50,000 acre-feet in 5,000-acre-foot increments. 

Figure 7 relates the annual benefit to the annual delivery of irrigation 
water. Negative value is given to small deliveries of water because the 
agricultural investment of the users is not utilized. The graph approximates 
a smooth curve by a series of linear functions to simplify digital computer 
use of this data. Figure 8 relates the annual recreation benefit to the end of the 
water year (30 September) storage in the reservoir. A negative value is given 
to zero storage because the investment in recreation facilities is not utilized. 
The values of this benefit at the quantized values of reservoir storage are 
used in computations. An analysis of the history of water year inflows yielded 
the discrete probability distribution function which is shown in Table IV, 
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FIG. I. Annual irrigation benefit. 
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Fro. 8. Recreation benefit. 

Figures 7 and 8 and Table IV describe the state of knowledge of the manager 
of the reservoir in the autumn when the contract with the electric power 
company is negotiated. 

By comparing records of the predicted and actual inflows into a number 
of re$ervoirs during the summer months, it is possible to obtain a probability 
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distribution function of the expected flow during the summer given the 
amount that flowed during the winter. Table V shows this result. To ease 
computations it is assumed that 65 percent of the annual inflow (Table IV) 
occurs during the winter months. However, once this period is past the rest 
of the inflow is described by a “more packed” probability distribution func- 
tion than the one available at the beginning of the water year. The decrease 
in uncertainty results from knowledge of the amount of water stored in the 
mountain in the form of snow and from the shorter prediction interval 
necessary to predict to the end of the water year. 

TABLE IV 

PROBABILITY DISTRIBUTION OF INFLOW 

Probability of Occurrence Volume (acre-feet) 

0.02 1,715 
0.08 3,920 

0.10 6,550 

0.10 9,300 
0.10 12,200 

0.10 15,200 

0.10 18,800 
0.10 23,500 
0.10 29,400 

0.10 39,100 
0.08 55,800 
0.02 92,000 

TABLE V 

SUMMER PROBAEILITY DISTRIBUTION OF INFLOW 

Probability 
Annual Predicted Rainfall 

which Occurs in the Summer 

(percentage) 

0.10 20 
0.20 30 
0.40 35 
0.20 40 
0.10 50 
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3. Problem Formulation and Indicated Solution 

Application of the technique of iteration in policy space (Section II-D) 
requires that quantized state variables, transition probabilities, and rewards 
be defined. The level of the reservoir at the beginning of each water year is a 
continuous variable which can be quantized into a relatively small number of 
discrete values. Neither the transition probabilities nor the rewards for these 
transitions are specified directly in Part C-2 of this section, but both can be 
computed from this data and the conditions specified in Part C-l. 

Once Ply and Q,” have been computed for all m, i, and j (in notation of 
Section II-D), the remainder of the solution to this problem becomes straight- 
forward application iteration in policy space discussed in Section II-D. The 
first step is to apply PIR: 

g + Vi = Qi” + f (P:) (Vi) for all m and i, (38) 
j=l 

g = gain from process each year 

Vi = the relative value of being in state xu) in 

the steady-state situation 

N = number of quantitizations of x. 

In the first iteration, all Vj are set equal to zero. The policy rn,? for which 
g + V, is largest is chosen for each x u). The resulting quantities are sub- 
stituted into the VDO routine: 

g + Vi = QF + f (P;:) (Vi) i = 1, 2,... N 
j=l 

v, = 0. (39) 

The resulting values of V, are substituted into Eq. (39). The process is 
repeated until two successive iterations yield the same set of rnf (1 < i < N). 
The release levels corresponding to this set of rn? are the outflows that the 
manager should promise as a function of the reservoir level. These values are 
the answer to the problem. 

4. Results 

The technique described in Section III-C-4 above has been implemented 
in a FORTRAN computer program. This program has been machine trans- 
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lated to ALGOL and run on the Burroughs B5500 at Stanford Research 
Institute. It requires about one minute to complete the computation of one 
case and usually converges to a solution in three or four policy iterations. 

A number of cases have been run (Ref. [ 111) using the data outlined in 
part C-2 of this section. The only quantities that were allowed to vary were 
the outflows that could be promised the hydroelectric company and the 
charges associated with this contract (Sl, S2, and S3). These charges are 
chosen so that the return per acre-foot is comparable to that obtained from 
the sale of irrigation water. The charge under contract (Sl) is chosen in the 
range of the slopes shown in Fig. 7 so there is a conflict between various poli- 
cies. Two cases and the results are shown in Table VI. 

In these two cases, the decision options and the contractual penalties 
remain the same, but the contract payment (Sl) changes. When the contract 
price drops from $10 to $6 per acre-foot, the expected annual income (the 
gain) declines from $110,284 to $72,839. The policy changes indicate that 
the reservoir management should not risk losing irrigation and recreation 
revenue at the lower contract price. The relative values show the long-term 
value of being in a given state x (a) at the present time compared to the 
value of being in state x(l) at the present time. Notice that the percentage 
loss in value of a full reservoir is even greater than the percentage decline in 
contract price. 

D. Optimum Planning of System Additions 

The benefit of a large natural resource project is dependent on the timing 
of its construction. If it is completed too early, years may pass before its 
benefits can be fully utilized. However, if it is completed too late, there will 
be a long period when system users are denied its benefits or forced to pay 
higher costs than necessary. Thus, the decision of when to commit capital 
to a large project becomes critical. Unused investment is waste, and so is 
underdevelopment. 

TABLE VI 

EXAMPLE FOR ITERATION IN POLICY SPACE 

Alternative Polices 

0 acre-feet 15000 acre-feet 
2000 acre-feet 20000 acre-feet 
5000 acre-feet 27000 acre-feet 
8000 acre-feet 35000 acre-feet 

11000 acre-feet 45000 acre-feet 
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TABLE VI (continued) 

Results 
.-____--_-~ ------~ ~~~ .~~-~ .-.. -_- -~ 

Case 1 Case 2 

Sl = 10 $/acre-feet Sl = 6 $/acre-feet 

S2 = 3 $/acre-feet S2 = 3 $/acre-feet 
S3 = 15 $/acre-feet S3 = 15 $/acre-feet 

Optimal Optimal 
Policy Policy 

acre-feet Relative Value $ acre-feet Relative Value $ 

1 

2 
3 

4 
5 

6 

7 
8 

9 

10 
11 

8000 
15000 

27000 
27000 

35000 

35000 
45000 

45000 

45000 
45000 

0 5000 0 

51,108 11000 29,287 

101,108 15000 @woo 
148,312 2Ot300 %ooo 
202,875 27000 118,443 

251,108 27000 148,787 

297,460 35000 180,000 
351,108 35000 206,744 

397,460 45000 240,000 

428,952 45000 266,744 
461,914 45000 290,872 

Gain $110,284 $72,839 

Sl-payment for each acre-foot delivered under contract 

S2-payment for each acre-foot delivered in excess of the contract 
S3-penalty for each acre-foot contracted for but not delivered 

Dynamic programming is one way to optimally schedule when additional 
investment should be made when a long range solution is desired. A. Korsak 
of SRP2 has worked out the example given below of planning expansion 
of a power facility 30 years into the future. The problem may be stated as 
follows. 

A power system has a current hydro capacity of 200-MW and a current 
demand of 3%MW. The hydro-generated energy remains constant and no 
cost is associated with this type of generation. The power demand is assumed 
to grow at a rate of 7 percent per year. To simplify the model, it is assumed 
that the power demand makes discrete jumps of 7 percent at the beginning 
of a given year and remains constant until the beginning of the next year. 

The difference between the power demand and the hydro capacity can 
be made up each year in one of two ways. One may use plants that were 
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purchased in preceding years and buy the remaining power at the rate of 
12 mills per kWh or one may buy and install either a 250-MW or a 500-MW 
nuclear plant (but not one of each) at the beginning of the year. The operating 
cost of a nuclear plant is 3 mills per kWh. A 250-MW plant costs $3.45 x IO7 
dollars and a 500-MW plant cost $5.60 x 10’ dollars. Since buying a plant 
might not meet the power requirement in a given year, one might still need 
to buy some power. 

An interest rate of 12 percent per annum on initial capital is used in 
determining the costs of any power plants. 

The cost incurred during the Kth year can thus be expressed as follows: 

C(K) = gg + 1.2; go7 x(k) + 5.08 x 10’[1.07” - h(K) - x(k)], 

where 
(40) 

C(K) = cost incurred during the Kth year adjusted to beginning of first 
year with interest of 12 percent 

V(k) = cost of purchasing a plant in the lith year 
h(k) = hydro capacity in the Kth year 
x(K) = total number of 500-MW units installed at time K (a 250-MWunit 

is considered half a 500-MW unit). 

If no power is purchased, 

C(k) = $g + ls2; l;klo’ x(K). 

The optimization is to minimize Ci!J, C(K) subject to specified terminal 
constraints. The state variable x(k) satisfies the equation 

x(k) = x(k - 1) + u(Fz), 

where u(k) is the control variable representing the decision to add 0,250-MW, 
or 500-MW. 

This problem was solved by forward dynamic programming. As indicated 
in Section II-B, the optimum policy for reaching any feasible final state is 
determined. If the final state is selected as the one for which least cost is 
incurred, the optimal policy is as shown in Fig. 9. In this case the system 
capacity at the end is less than the demand; however, it can also be seen that 
in early years the capacity exceeds demand. These results reflect the assump- 
tion that no consideration is made of system operation after the final year. 
If the final state is constrained so that system capacity at the end exceeds 
demand, the optimal policy is exactly the same as in Fig. 9, except that 
during the last year before termination a 500-MW unit is purchased. 
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FIG. 9. Comparison of demand and capacity for 30 years. 

IV. CONCLUSIONS 

In this paper it has been shown that dynamic programming provides a 
powerful approach to many of the optimization problems that occur in 
water resource systems. Extremely general system equations and performance 
criteria can be handled, multiple constraints of a wide variety present no 
difficulties, an absolute optimum solution is obtained, the results are in a 
feedback control form, and stochastic variations can be explicitly taken into 
account. The major difficulty in applying it to practical problems has been 
the computational requirements associated with the standard computational 
algorithm. 

This paper has discussed many extensions of the standard algorithm that 
reduce these computational difficulties. State increment dynamic program- 
ming can substantially reduce the number of high-speed memory locations 
that are required with little loss in computer execution time. Forward 
dynamic programming is a particularly efficien$method for obtaining solu- 

tions when initial conditions are specified. The technique of successive 
approximations offers a very promising means of providing major reduc- 
tions in both the computer memory and computer time required. By using a 
computational algorithm based on one or a combination of these techniques 
many additional problems can be solved. 

The four problems discussed at length in Section III show the breadth 
of the water resource problems than can be solved. These range from hourly 
control of a system involving hydroelectric power, water storage, and irriga- 
tion to long-range optimum investment planning. The stochastic character 
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of nature is considered in the example of Section III-C. None of these 
examples are the most difficult of their type that can now be solved, but they 
do demonstrate the principles and power of dynamic programming. Much 
more complicated problems are being solved now, and further research in 
computer technology and dynamic programming techniques will allow an 
even greater range of applications. 
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