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1. Introduction

In 1968, Zenger [7] proved the following result that is known as Zenger’s lemma.

Theorem 1.1. Let ‖ · ‖ be a norm on C
n, let αk > 0 for all k = 1, . . . ,n, and let

∑n
k=1 αk = 1. Then there exists a vector

w = (w1, w2, . . . , wn) ∈ C
n with ‖w‖ = 1 and w1 w2 · · · wn �= 0 such that the functional φ on C

n defined by

φ(z) =
n∑

k=1

αkzk

wk

(
z = (z1, z2, . . . , zn) ∈ C

n)
has norm one.

Zenger applied Theorem 1.1 in the proof of the fact that the convex hull of the point spectrum of a linear operator is
contained in its numerical range; see also [5, Section 19]. Some years ago, Theorem 1.1 was also applied in the theory of
invariant subspaces; see [4] or [6]. The aim of this note is to extend the theorem from the space C

n to the classical sequence
space l∞ .

We omit the proof of the following known lemma, since it can be easily proved by an application of the uniform
boundedness principle. We refer the reader to [2] or [3] for details concerning absolute weak topologies.

Lemma 1.2. For a net {x(i)}i∈I in l∞ and a vector x ∈ l∞ , the following assertions are equivalent:
(a) The net {x(i)}i∈I converges to x in the absolute weak topology |σ |(l∞, l1), i.e., for each y ∈ l1 ,

lim
i∈I

( ∞∑
k=1

∣∣x(i)
k − xk

∣∣ · |yk|
)

= 0;
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(b) The net {x(i)}i∈I converges to x in the weak∗ topology σ(l∞, l1), i.e., for each y ∈ l1 ,

lim
i∈I

( ∞∑
k=1

(
x(i)

k − xk
) · yk

)
= 0;

(c) For each k ∈ N, limi∈I x(i)
k = xk, and the net {x(i)}i∈I is norm bounded, i.e., sup{‖x(i)‖∞: i ∈ I} < ∞.

We will mention several times the order ideal I w generated by a vector w = (w1, w2, . . .) ∈ l∞ . For this smallest order
ideal containing w it holds that

I w = {
x ∈ l∞: there exists λ > 0 such that |xk| � λ|wk| for all k ∈ N

}
.

We refer the reader to [2] or [3] for the theory of Riesz spaces.

2. The result

Let ‖ · ‖ be a norm on the classical sequence space l∞ that is equivalent to the original norm ‖ · ‖∞ , i.e., there are
numbers C � c > 0 such that

c‖x‖∞ � ‖x‖ � C‖x‖∞ for all x ∈ l∞. (1)

By ‖ · ‖∗ we denote the predual norm to the norm ‖ · ‖, i.e., the norm of a vector y = (y1, y2, . . .) ∈ l1 is defined by

‖y‖∗ = sup

{∣∣∣∣∣
∞∑

k=1

xk yk

∣∣∣∣∣: x ∈ l∞, ‖x‖ � 1

}
.

For N ∈ N, let P N be the natural projection on l∞ defined by

P N(x1, x2, . . .) = (x1, x2, . . . , xN ,0,0, . . .).

Since P 2
N = P N , the operator norm ‖P N‖ of P N with respect to the norm ‖ · ‖ is at least 1.

Some properties of these projections are assumed in the following extension of Theorem 1.1 from the space C
n to the

sequence space l∞ .

Theorem 2.1. Let ‖ · ‖ be a norm on l∞ that is equivalent to the norm ‖ · ‖∞ , i.e., (1) holds. Suppose also that

lim inf
N→∞ ‖P N‖ = 1 and ‖x‖ = lim inf

N→∞ ‖P N x‖ for all x ∈ l∞. (2)

Let α = (α1,α2,α3, . . .) ∈ l1 be a sequence of strictly positive numbers such that ‖α‖1 = ∑∞
k=1 αk = 1. Then there exist w ∈ l∞ and

φ ∈ l1 such that

‖w‖ = 1, ‖φ‖∗ = 1 and wkφk = αk for all k ∈ N.

Proof. Clearly, we can assume that c = 1 in (1). By the Banach–Alaoglu theorem, the unit ball B∞ = {x ∈ l∞: ‖x‖∞ � 1} is
compact in the weak∗ topology σ(l∞, l1). Since the unit ball B = {x ∈ l∞ : ‖x‖ � 1} is contained in B∞ , it is also compact
in σ(l∞, l1) if we show that it is closed in σ(l∞, l1). To end this, pick an arbitrary net {x(i)}i∈I in B converging to a vector
x ∈ l∞ . By Lemma 1.2, limi∈I x(i)

k = xk for each k ∈ N, and so limi∈I ‖P N (x(i) − x)‖∞ = 0 for every N ∈ N. Since the norm ‖ · ‖
is equivalent to the norm ‖ · ‖∞ , we obtain limi∈I ‖P N (x(i) − x)‖ = 0 for every N ∈ N. Now, the inequality

‖P N x‖ �
∥∥P N

(
x − x(i))∥∥ + ∥∥P N x(i)

∥∥ �
∥∥P N

(
x − x(i))∥∥ + ‖P N‖

implies that ‖P N x‖ � ‖P N‖, and so

‖x‖ = lim inf
N→∞ ‖P N x‖ � lim inf

N→∞ ‖P N‖ = 1,

that is, x ∈ B as desired.
Define a function F : B → [−∞,∞) by

F (x) =
∞∑

k=1

αk · log |xk|.

Since ‖x‖∞ � 1 for each x ∈ B , log |xk| � 0 for each k, and so the series above converges in [−∞,0]. We claim that the
function F is upper semicontinuous in the topology σ(l∞, l1). Pick any c ∈ R and any net {x(i)}i∈I in B converging to x ∈ B .
We must show that F (x) � c if F (x(i)) � c for all i ∈ I . For each m ∈ N we define y(m) ∈ l∞ by y(m)

k = max{|xk|, 1
m } (k ∈ N).

Observe that F (y(m)) ∈ (−∞,0], since 1 � y(m) � 1 .
k m
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By Jensen’s inequality, we have, for every m ∈ N and i ∈ I ,

F
(
x(i)) − F

(
y(m)

) =
∞∑

k=1

αk · log

( |x(i)
k |

y(m)

k

)
� log

( ∞∑
k=1

αk · |x(i)
k |

y(m)

k

)
,

and so

F
(

y(m)
) + log

( ∞∑
k=1

αk

y(m)

k

· ∣∣x(i)
k

∣∣) � F
(
x(i)) � c. (3)

Since 0 <
αk

y(m)
k

� m · αk for all k and since α ∈ l1, we have ( α1

y(m)
1

, α2

y(m)
2

, . . .) ∈ l1, and so Lemma 1.2 implies that

∞∑
k=1

αk

y(m)

k

· ∣∣x(i)
k

∣∣ i∈I−→
∞∑

k=1

αk

y(m)

k

· |xk|.

Consequently, we obtain from (3) that

F
(

y(m)
) + log

( ∞∑
k=1

αk

y(m)

k

· |xk|
)

� c. (4)

Now, by the monotone convergence theorem,

∞∑
k=1

αk

y(m)

k

· |xk| m→∞−→
∞∑

k=1

αk = 1

and

−F
(

y(m)
) = −

∞∑
k=1

αk · log
(

y(m)

k

) m→∞−→ −
∞∑

k=1

αk · log |xk| = −F (x),

and so we obtain from (4) that F (x) � c as claimed.
Since every upper semicontinuous function attains its maximum on a compact set, there exists a vector w ∈ B such that

F (x) � F (w) for all x ∈ B . Since F (x) = − log C for x = 1/C · (1,1,1, . . .) ∈ B , we have 0 � F (w) � − log C . Also, ‖w‖ = 1 and
wk �= 0 for all k. Now, fix x ∈ B such that, for some λ > 0, |xk| � λ|wk| for all k ∈ N, that is, x belongs to the order ideal I w

generated by w . Since (1 − 1
m )w + 1

m x ∈ B for all m ∈ N, it holds that mF ((1 − 1
m )w + 1

m x) � mF (w) which rewrites to the
inequality

0 �
∞∑

k=1

αk · log

∣∣∣∣ (1 − 1
m )wk + 1

m xk

wk

∣∣∣∣
m

=
∞∑

k=1

αk · log

∣∣∣∣1 + 1

m

(
xk

wk
− 1

)∣∣∣∣
m

�
∞∑

k=1

αk · log

∣∣∣∣1 + 1

m

(
Re

(
xk

wk

)
− 1

)∣∣∣∣
m

, (5)

as |Re z| � |z| (z ∈ C). Now we will use the known fact that, for any x � 0, the sequence {(1 + x/m)m}m∈N increases to ex ,
while the sequence {(1 − x/m)−m}m∈N decreases to ex . Since∣∣∣∣Re

(
xk

wk

)
− 1

∣∣∣∣ �
∣∣∣∣ xk

wk

∣∣∣∣ + 1 � λ + 1,

the sums of positive terms

∑
Re(

xk
wk

)>1

αk · log

(
1 + 1

m

(
Re

(
xk

wk

)
− 1

))m

increase with m to a finite limit∑
Re(

xk
w )>1

αk ·
(

Re

(
xk

wk

)
− 1

)

k
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by the monotone convergence theorem, while the sums

−
∑

Re(
xk
wk

)�1

αk · log

∣∣∣∣1 + 1

m

(
Re

(
xk

wk

)
− 1

)∣∣∣∣
m

=
∑

Re(
xk
wk

)�1

αk · log

∣∣∣∣1 − 1

m

(
1 − Re

(
xk

wk

))∣∣∣∣
−m

decrease with m (provided m > λ + 1) to the sum

∑
Re(

xk
wk

)�1

αk ·
(

1 − Re

(
xk

wk

))

by the dominated convergence theorem. Therefore, we conclude from (5) that

∞∑
k=1

αk ·
(

Re

(
xk

wk

)
− 1

)
� 0,

and so

Re

( ∞∑
k=1

αk · xk

wk

)
=

∞∑
k=1

αk · Re

(
xk

wk

)
�

∞∑
k=1

αk = 1.

Since we can replace x by eit x (t ∈ R), it must hold that∣∣∣∣∣
∞∑

k=1

αk · xk

wk

∣∣∣∣∣ � 1,

that is,∣∣∣∣∣
∞∑

k=1

xkφk

∣∣∣∣∣ � 1, (6)

where φk = αk
wk

(k ∈ N). Given N ∈ N, define x ∈ I w by xk = wk
C |wk | for k � N and xk = 0 otherwise. Then we have ‖x‖ �

C‖x‖∞ = 1. Inserting this x in the inequality (6) yields
∑N

k=1 |φk| � C . Since this holds for any N ∈ N, we conclude that
φ ∈ l1 and ‖φ‖1 � C .

It remains to show that the inequality (6) holds for any x ∈ B . We may assume that x �= 0, and so P N x �= 0 for all N ∈ N

large enough. Since for such an N the vector P N x
‖P N x‖ belongs to B ∩ I w , we have∣∣∣∣∣

N∑
k=1

xkφk

∣∣∣∣∣ � ‖P N x‖,

and so∣∣∣∣∣
∞∑

k=1

xkφk

∣∣∣∣∣ � lim inf
N→∞ ‖P N x‖ = ‖x‖ � 1.

This shows that ‖φ‖∗ � 1. On the other hand, since
∑∞

k=1 wkφk = ∑∞
k=1 αk = 1 and ‖w‖ = 1, we have ‖φ‖∗ � 1. This

completes the proof. �
3. Examples

Theorem 2.1 raises some questions. Two of them are answered by the following examples. The first example shows that
in Theorem 2.1 the assumptions (2) cannot be removed.

Example 3.1. The norm

‖x‖ = ‖x‖∞ + lim sup |xn|

n→∞
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is equivalent to the original norm ‖ · ‖∞ on l∞ , as ‖x‖∞ � ‖x‖ � 2‖x‖∞ . For every x ∈ l∞ and every N ∈ N, we have
‖P N x‖ = ‖x‖∞ � ‖x‖, and so ‖P N‖ � 1 and lim supN→∞ ‖P N x‖ � ‖x‖. If u = (1,0,0,0, . . .) ∈ l∞ then ‖u‖ = ‖P N u‖ = 1, and
thus ‖P N‖ = 1. However, for e = (1,1,1, . . .) ∈ l∞ we have ‖P N e‖ = 1 and ‖e‖ = 2, so that the right-hand assumption in (2)
is not satisfied.

Let α = (α1,α2, . . .) ∈ l1 be a sequence of strictly positive numbers such that
∑∞

k=1 αk = 1. To prove that the conclusion
of Theorem 2.1 does not hold, pick any w ∈ l∞ such that ‖w‖ = 1 and wk �= 0 for all k ∈ N. Since ‖w‖∞ � ‖w‖ = 1, we
have |wk| � 1 for all k ∈ N and |wn| < 1 for some positive integer n. Therefore, it follows from

∞∑
k=1

αk

|wk| >

∞∑
k=1

αk = 1

that there is N ∈ N such that

N∑
k=1

αk

|wk| > 1.

Define the vector φ = (φ1, φ2, . . .) by φk = αk
wk

for k ∈ N, and the vector x ∈ l∞ by xk = wk|wk| for k � N and xk = 0 otherwise.
Then ‖x‖ = 1 and

∞∑
k=1

xkφk =
N∑

k=1

αk

|wk| > 1.

This implies that ‖φ‖∗ > 1, and so the conclusion of Theorem 2.1 is not valid.

Examining the proof of Theorem 2.1 one may ask whether the vector |w| is necessarily the order unit of l∞ , i.e., the
order ideal I w generated by w is equal to l∞ . The following example shows that this is not the case.

Example 3.2. Set w = (1,2−1,2−2,2−3, . . .) ∈ l∞ , and define the norm on l∞ by

‖x‖ = ‖x‖∞ + ‖x − x1 w‖∞.

Since

‖x‖∞ � ‖x‖ � ‖x‖∞ + (‖x‖∞ + |x1|‖w‖∞
)
� 3‖x‖∞,

this norm is equivalent to the original norm on l∞ . Clearly, ‖w‖ = ‖w‖∞ = 1 and I w �= l∞ . Since

‖P N x‖ = max
1�k�N

|xk| + max

{
max

2�k�N

∣∣∣∣xk − x1

2k−1

∣∣∣∣, |x1|
2N

}

for every x ∈ l∞ and every N ∈ N, we have

lim
N→∞‖P N x‖ = ‖x‖∞ + ‖x − x1 w‖∞ = ‖x‖

and

‖P N x‖ � ‖x‖∞ + ‖x − x1 w‖∞ + |x1|
2N

� ‖x‖
(

1 + 1

2N

)
,

and so limN→∞ ‖P N‖ = 1. Therefore, the norm ‖ · ‖ satisfies all assumptions of Theorem 2.1.
Define the vectors α = (α1,α2, . . .) ∈ l1 and φ = (φ1, φ2, . . .) ∈ l1 by

αk = 3

4k
and φk = αk

wk
= 3

2k+1
(k ∈ N).

Then
∑∞

k=1 wkφk = ∑∞
k=1 αk = 1, so that ‖φ‖∗ � 1.

In order to show that ‖φ‖∗ = 1, choose any x ∈ l∞ with ‖x‖ � 1. Denoting |x1| = t ∈ [0,1], we have, for all k � 2,

1 � ‖x‖∞ + ‖x − x1 w‖∞ � |x1| +
∣∣∣∣xk − x1

2k−1

∣∣∣∣ � t + |xk| − t

2k−1
,

and so

|xk| � 1 − t + t

2k−1
.

It follows that
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∣∣∣∣∣
∞∑

k=1

xkφk

∣∣∣∣∣ � 3
∞∑

k=1

|xk|
2k+1

� 3t

4
+ 3

∞∑
k=2

(
1 − t

2k+1
+ t

4k

)

= 3t

4
+ 3(1 − t)

4
+ t

4
= 3 + t

4
� 1.

This shows that ‖φ‖∗ � 1, as desired.

4. Possible application in the Arrow–Debreu model

In the well-known Arrow–Debreu model from the mathematical economy (see [1] or [2]), various commodities are ex-
changed, produced and consumed. The classical model deals with finitely many commodities, but already Debreu proposed
to study commodity spaces with an infinite number of commodities. Let us suppose that there are countably many com-
modities, and that the commodity space is a subset X of the real vector space l∞ . Each vector x = (x1, x2, x3, . . .) ∈ X
represents a commodity bundle, that is, the number xk is the amount of the k-th commodity. Inputs for production are neg-
atively signed, outputs are positively signed. If pk is the price for one unit of the k-th commodity, then we can introduce
the price vector p = (p1, p2, p3, . . .), and define the value of a commodity bundle x at prices p by

∑∞
k=1 xk pk . The price pk

is negative in the case when the k-th commodity is noxious, and so the consumer pays to get rid of it. Hence, each price
vector defines a linear functional on l∞ , if we define the price space as the real vector space l1.

In this theory every consumer has individual taste or preference that is a binary relation 	 defined on the commodity
space X which is reflexive, transitive and total (see [1] or [2]). Such a preference is usually represented by a utility function
u : X → R in the following way:

x 	 y ⇐⇒ u(x) � u(y).

An important example of utility functions is a Cobb–Douglas utility function defined on the positive cone R
n+ of R

n by

u(x1, x2, . . . , xn) = xα1
1 xα2

2 · · · xαn
n ,

where αk > 0 for all k and
∑n

k=1 αk = 1. Since composing a utility function by a strictly increasing function does not change
the preference relation, we can replace the Cobb–Douglas utility function u by the utility function

log u(x1, x2, . . . , xn) =
n∑

k=1

αk · log(xk).

Hence, in our commodity space X ⊆ l∞ it is natural to take the utility function

F (x1, x2, x3, . . .) =
∞∑

k=1

αk · log |xk|,

where αk > 0 for all k and
∑∞

k=1 αk = 1. This is exactly the function defined in the proof of Theorem 2.1. How can we
interpret the conclusions of Theorem 2.1?

We consider the preference relation represented by the utility function F that is defined on the unit ball B =
{x ∈ l∞: ‖x‖ � 1}, where ‖ · ‖ is an equivalent norm on l∞ having the properties (2). Theorem 2.1 gives the commodity
bundle w ∈ B which maximizes the utility function F on B , so that w is the most desirable bundle in B . At the same time,
the result determines the price vector φ = (φ1, φ2, φ3, . . .) with the property that the value

∑∞
k=1 xkφk of x ∈ B at prices φ

is maximal for the bundle x = w .
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