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We develop a duality theory introduced by Paschke to give a simplified account
of the main results of the Brown-Douglas-Fillmore extension theory and the
relative K-homology theory of Baum and Douglas. 1995 Academic Press. Inc

0. INTRODUCTION

The Brown-Douglas-Fillmore extension theory is concerned with
C*.algebra extensions of the form

O >FE—->A-0, 0.1)

where 4 denotes the C*-algebra of compact operators on a separable
Hilbert space. Modulo a small technical condition on (0.1), the “stable
equivalence classes” of such extensions, for a fixed C*-algebra A, may be
organized into an abelian group Ext(A). It exhibits many remarkable
homological properties [4, 8], and the purpose of this paper is to give a
new treatment of the topic on the basis of an isomorphism between Ext(A4)
and the K-theory of a C*-algebra which is “dual” to 4. Our principal
objective is the six term, periodic exact sequence of Ext-groups associated
to a short exact sequence of C*-algebras, which will be derived from the six
term exact sequence in K-theory, but we shall also take a look at the
homotopy invariance of Ext(A) from this point of view. In addition the
dual C*-algebras fit neatly with the theory of relative K-homology
developed by Baum and Douglas [2]. We shall give a new account of their
formula for the boundary map in K-homology.

The results in this note constitute Section 2 of a previous three-section
article circulated by the author [7]. For no particular reason he delayed
publication of that paper. Section 1 contained a long calculation in
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350 NIGEL HIGSON

KK-theory which no longer seems very timely, while an account of Section
3 has in the mean time appeared elsewhere [ 11]. So it seemed appropriate
to remove them and publish a shorter, reworked article. The author would
like to express his gratitude to the referee of the previous version, whose
suggestions have been incorporated here: they have greatly improved the
paper. In addition the author has benefited from many discussions with
John Roe on the subjects of K-homology and extension theory.

1. K-HOMOLOGY AND PASCHKE DUALITY

In this section we review Paschke’s duality theory [10]."
We shall use the following notation: if X and Y are operators on a
Hilbert space we shall write

X~Y

if X and Y differ by a compact operator.

Let A be a separable C*-algebra. Following Kasparov [8] we define
abelian groups K/(4) (j=0, 1) by specifying “cycles” for each, along with
an equivalence relation on cycles, and then defining K/(A) to be the sets of
equivalence classes (which turn out to be abelian groups).

A cycle for K°(A4) consists of a triple (D, @,, F), where &, and &, are
representations of 4 on separable Hilbert spaces #; and #;, and
F: Hy— H, is a bounded operator such that

®,(a) F~Fdya), Dola)(F*F—I)~0, & (a)(FF*—I1)~0, (1.1)
for all ae A. A cycle is degenerate if we can replace the occurrences of “ ~"
in (1.1) with “ =" signs. An operator homotopy of cycles is a family (@,
&,, F,) of cycles (where the representations @, are fixed) such that F, varies
norm-continuously with /. We generate an equivalence relation from the
relations of unitary equivalence (in the obvious sense), homotopy, and
direct sum (in the obvious sense) of degenerate cycles. See [3] for more
details.

A cycle for K'(A) consists of a pair (@, F), where @ is a representation
of 4 on separable Hilbert space # and F'is a bounded self-adjoint operator
on ¥ such that

®(a) F ~ F®(a) and ®(a)(F*—1)~0, for all aeA.

! We should point out that our definitions are, in various details, a little different from
Paschke’s.
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We define degeneracy and homotopy as for K% 4) and once again generate
an equivalence relation from the relations of unitary equivalence,
homotopy and direct sum of degenerate cycles. Once again, the reader
unfamiliar with all this is referred to [3].

The group K'(A4) identifies with the abelian group obtained by dividing
the semigroup of unitary equivalence classes of extensions

0N ->E—>A-0

admitting a completely positive section 4 — E by the subsemigroup
compromised of extensions admitting a section 4—E which is a
x-homomorphism. See [3, 9].

1.1. DEFINITION.  Let @ be a representation of 4 on a separable Hilbert
space .#. Denote by D,(A) the essential commutant of @[ A] in B(A"). Thus

Dy(A)={xeB(H)|VaeA, [Pla), x]~0}.
If J is an ideal in A then we define
Do(A, JY={xeDy(A)|VjeJ, ®(j)x ~0~xP(j)}
(note that this is an ideal in Dg4(A4)).

Given two representation @ and @' of 4, on separable Hilbert spaces #°
and #', let us write @ < @' if there is an isometry V: 5 — #' such that

®'(a) V~V@(a), forall aeA. (12)

Given such an isometry, the map Ad(¥): x+— VxV* is a *-homomorphism
from D4(A4) to Dy(A). It maps D4(A,J) into D,{(A,J), for any ideal J
in A.

12. LemMA. If V|, and V, are two isometries satisfying (1.2) then
Ad( V) and Ad(V,) induce the same map on the K-theory groups of Dg(A)
and D4(A, J).

Proof. The maps

x 0 d . 00
C —
X 0 0 an x 0 x)
taking D4 (A) into M,(D 4(4)), induce the same isomorphism on K-theory.
So to prove the lemma for D,(A) it suffices to show that the maps

H(leV,* 0) i XH<0 0)
0 0 0 VixVi)
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which take Dg(A4) to M,{(D4(A)), induce the same map on K-theory.
But the second is obtained from the first by conjugating with the
unitary

I—-V\Vx YV V¥
vopE 1=V R

which is an element of M,(D,(A4)). Now use the fact that inner
automorphisms act trivially on K-theory to prove the result for K (D 4(A)).
Exactly the same argument works for K (D.(A, J)), since the restrictions
of inner automorphisms to ideals also act trivially on K-theory. |

The relation “<” makes the set of all representations® of 4 into a
directed system. Using Lemma 1.2 we can form the direct limit

K, (D(4)) € lim K,(Dy(A)). (13)

Let us recall that this is constructed from the disjoint union of all
K. (D4A)) by identifying ae K (Dy(A4)) and Ad(V), {(a)e K (Dy(A4)),
where @ <@ and V: # — ' is an isometry satisfying (1.2). Our notation
for the direct limit, as the K-theory of some (C*-algebra D(4), should not
cause any confusion. It is in any event justified by the following well known
result of Voiculescu [ 1, 14].

1.3. THEOREM. Let @ be a faithful representation of A whose image
contains no compact operator. If A has a unit suppose that P(1)# L
If @' is any representation of A at all (on a separable Hilbert space) then
P <P

For convenience, let us call a representation admissible if it satisfies the
hypotheses of Voiculescu’s theorem. The theorem implies that if @ is
admissible then the natural map of K, (D,(A4)) into K (D(A4)) is an
isomorphism. Although it is not absolutely necessary to do so, we shall for
convenience use this result at several points below.

Let us define groups

def

K, (D(A,J)) = lim K (Dy(A,J))
and

K, (D(4)/D(A,])) E lim Ky(Dy(A)/Dy(A, J))

2 To avoid possible set-theoretic difficulties we might limit ourselves to consideration of all
representations of 4 on a fixed Hilbert space.
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(by Voiculescu’s theorem we can replace the direct limits with
K, (Dg(A, J)) and K (Dy{A)/Dy(A,J)), where & is admissible). They
organize themselves into a six term exact sequence

Ko(D(4, J))

Ko(D(A)) —— K(D(A4)/D(4, ]))

(1.4)
K, (D(A)/D(A,J)) —— K (D(A))

K\(D(4,J)).

We shall study this carefully in the next section.

1.4. DeFINITION.  Define a homomorphism
ag: K (Dg(Ad)) — K't'(4)

for i=0, 1 (mod 2) as follows.

For i =0, given a projection Pe D4(A) (or in some matrix algebra over
D4(A)) associate to [P]eKy(Dy(A)) the class a,[ P1e K'(4) given by
the cycle (@, 2P —1).

For i=1, given a unitary Ue D4(A) (or again in some matrix algebra
over D4(A)), associate to [U] € K,(D4(A4)) the class a,[ U] € K% A) given
by the cycle (&, @, U).

The definition of a, is compatible with the direct limit in (1.3}, and we
obtain homomorphisms

a,: K(D(A))—> K'*'(A4), i=0,1

1.5. THEOREM. (Compare [101).) The maps a, are isomorphisms.

The proof is simply a matter of defining a map 8 ,: K'(4)— K, _ (D(A4))
and then using the equivalence relations in the definitions of K-theory and
K-homology to show that a, and f, are inverse to each other. The
following fact simplifies matters somewhat.

1.6. LemMAa. The natural map K, (D(A))— K, (D(A)/D(A4, A)) is an
isomorphism.

Proof. In view of the long exact sequence it suffices to show that
K, (D(A, A)y=0. Given a representation & of 4, form the zero representa-
tion of 4 on the same Hilbert space. It suffices to show that the inclusion
Dy(A, A)— D 4golA, A) induces the zero map on K-theory. The maps

x 0

XHR,<0 0

>R,*, 0<r<a/2,

5R0:/129:2-8
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where

R,=< cos(t) sin(t)>’

—sin(t) cos(?)

form a homotopy from the given inclusion to a map into the subalgebra
Dy(A, AYS Dpgol A, A). Since Do(A, A)=#(H) and since K (B(H#'))=0
the result follows. |

Returning to the proof of Theorem 1.5, it suffices to define maps

Bat K'(4) > K, ((D(A4)/D(4, 4)).

In the case i=1, given a cycle (&, F) for K'(A4), the operator %(F+ 1) is

an element of D,(A) which i1s a projection, modulo D,(A4, A). We define

Bal®, F1=[2(F+1)].

In the case i= 1, given a cycle (@, ®@,, F) for K°(A), if ®,= @, then we
define

ﬂA[¢0’¢laF]=[F]

(we observe that F is a unitary element of Dy (A4), modulo Dy (4, 4)). In
the general case, construct first the equivalent cycle (¥, ¥, F) compromised
of the natural “diagonal” representation ¥ of 4 on the Hilbert space

H = @ADHDADADAD -, (1.5)

and the operator F shifting the summands to the right, and mapping .#,
into J#, via F. We then define

/’)A[‘pu, D, F] = [F]

Given these definitions, it is straightforward to check that g, is well defined
and inverse to a .

Let f: B— A be a *-homomorphism of separable C*-algebras. If @ is a
representation of 4 then of course @/ is a representation of B. There is
an inclusion Dg4(4)< D, A B). It induces a map on K-theory groups and
passing to direct limits we obtain a map

D(f): KAD(A)) > K, (D(B)).

This definition makes 4 +— K,(D(A4)) into a contravariant functor.
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1.7. LEMMA. The diagram

K, (D(A)) —2L K (D(B))

K*+1(A) S K*-H(B)

commuites.

Proof. This follows immediately from the definitions. §

2. ExciIsioN

Our objective is to derive from the long exact sequence (1.4) the
following result.

2.1. THEOREM. Corresponding to any short exact sequence
0—J-5 45 AlJ—0

which admits a completely positive and contractive section s: A/J — A there
is a functorial six term exact sequence

K%A/J) L KO(4) L — KJ)
F,I Jm
K'(J) «Z—K\(A) L K'(A/T).
If ¥ is a representation of A/J then we have an inclusion
DA )= Dy, (A, J),
from which we obtain a map

K (D(A/J)) > K (D(A, J)). (2.1)

22. LeMMA. If the representation p: A— A/ admits a completely
positive and contractive section s: AJJ — A then (2.1) is an isomorphism.

Proof. Let @ be an admissible representation of 4 on a Hilbert space
# . By a theorem of Stinespring [12] there exists a dilation of the com-
pletely positive contraction @-s: A/J — B(#') to a representation

(p ERY ql ) )
9/:( A "):A/J—».%(.}{/@J’/”),
lpzl l1122



356 NIGEL HIGSON

where #' is some other Hilbert space. This is an admissible representation
of 4/J. Now, by Voiculescu’s theorem the lemma will be proved if we can
show that the composite map

D‘I’(A/J)_’D‘I’(AP(A’J)_)DWwp®(D(A’J) (22)

induces an isomorphism on K-theory.
The inclusion of # into # @ #" gives an inclusion

Do(A, J)SD o (A/T). (2.3)

Composing (2.2) with (2.3) gives the map
x 00
x—{0 0 0
0 0 0

of Dg(A4,J) into Dy ,q4(A4,J) (note that the Hilbert space of the
representation Yop@ D is # @ H' @ H; this explains the 3 x 3 matrix
notation). Conjugating with the rotation matrices

cos ¢ 0 sin¢
0 1 o |, 0<t<n/2,

—sint 0 cos¢?

we obtain a homotopy to the map Dy(4,J)— Dy ,g4(A,J) induced
from the inclusion of @ as a subrepresentation of ¥« p @ ®. It follows from
Lemma 1.2 and Voiculescu’s theorem that this is an isomorphism at the
level of K-theory, which proves {2.2) is surjective at the level of K-theory.

The inclusion of # @ #' @ # into ¥ @ H' @ H# @ A’ as the first three
summands gives an inclusion

D*l’ p@lD(A’ J)(__')D‘I‘Q) ‘I’(A/J) (24)

The composition of (2.2) with (2.4) is the map from D (A4/J) into
Dygu(A/J) induced from the inclusion of ¥ as the first summand in
Y® Y. By Lemma 1.2 and Voiculescu’s theorem again, this gives an
isomorphism at the level of K-theory, which shows that (2.2) is injective on
K-theory. |1

The inclusion
Dy(A4)=>Dy ,(J)
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maps Dg(A,J) into Dy ;(J,J). Thus we obtain a map
D¢(A)/D¢(Aa-])*’D¢,j(J)/D¢ j(‘]s‘])s (2.5)
and, passing to K-theory and direct limits, a map

K (D(4)/D(A, J))— K (D(J)/D(J, ])). (2.6)

2.3. LEMMA. The map (2.6) is an isomorphism.

Proof. 1f @ is an admissible representation of 4 then @<j is an
admissible representation of J. So by Voiculescu’s theorem it suffices to
show that (2.5) induces an isomorphism when @ is admissible. In fact more
is true: the map (2.5) is itself an isomorphism (whether or not @ is
admissible). It is clearly injective. On the other hand, suppose xe D, ,(J).
Note that

PN D(A4), x]1~0,  [x. D(J)]~0, [D(A), P(J)]<=DJ).

It follows from the Kasparov technical theorem (see [6,9]) that there
exists a positive operator X such that

(1) X®(J)~D0,

() (1-=X)[D(4), x]~0,

(n) [x,X]~0and [®(A), X]~0.
Since

[(I=X)x, P(a)]=(1 - X)[x, Pla)] - [ X, D(a)] x
it follows from (ii} and (i1} that (1 — X) x € D4(A). In addition, it follows
from (ii) that XxeDg, ,(J,J), and so the image of (1—X)x in
Dy ;(J)/Dg . ;(J,J) coincides with the image of x. ||
Proof of Theorem 2.1. The six term exact sequence is constructed by

substituting K, (D(J)) and K, (D(A4/J)) into (1.4), using the isomorphisms
in Lemmas 2.2 and 2.3. From a commuting diagram

0 J—t— A4 —L— A/] >0
L]
O A‘J' J Al p"‘A’/J’ 0

we obtain the commuting diagram

0—— DyA,J) ——— Dy(A) ——— Dy(A)Dy(A J) —— 0

| | |

00— Dy JAJ)—— Dy (Ad')—— Dy [(A')Dy (A J)—— 0.
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Passing to K-theory we obtain a commuting diagram of six term exact
sequences, and then passing to direct limits, and using the (functorial)
isomorphisms in Lemmas 2.2 and 2.3, we get a commuting diagram of six
term exact sequences in K-homology. This proves that our six term exact
sequence is functorial. |

3. ReLaTivE K-HoMOLOGY THEORY

Let
0-»J>A—->A4/J-0

be a short exact sequence of separable C*-algebras, as in the previous
section. Suppose that (@, @,, F) is a cycle for K°(J) such that

F 15 a partial isometry (3.1)
and

@, and @ extend to representations of 4 with
@ (a) F—Fdya)~0, forallae A. (3.2)

Baum and Douglas [2] have given a useful formula for the image of the
class [@,, @,, F] under the K-homology boundary map

8y K°(J)—> K'Y (A/T).

Let P=1—F*F and P'=1— FF*. The compression of the representation
P, to the range of P is a completely positive map. Compose it with the
completely positive section s: A/J — 4 and dilate to a representation

WZ(P((D(,os)P ¥,
ql2] SUZZ

1 0
o=y 2)
then it is easily checked that (¥, G) is a cycle for K'(A/J).

Starting with the compression of @, to the range of P, we build an
analogous cycle (¥, G').

> C AN > B(PAD H).

If we write

3.1. THEOREM. o[y, ®,, F1=[¥,G]—[¥.G'].



EXTENSION THEORY 359

Proof. By using the construction (1.5) if necessary, we may assume that
®,=@,. We shall simply write @ for &, and &,. Reviewing the previous
section, we see that d,[ @, @, F] is computed as follows:

(a) Associate to [@, @, F] the dual class [F]e K (D ,(J)/D(J,J))
(here F denotes the image of F in the quotient D4(J)/D4(J, J)).
(b) Lift [F] to a class in K;(Da(A4)/D (A, J)).

{c) Apply to the lifting the K-theory boundary map from
K(Dy(A)/Dp(A,J)) to Ko(Dg(4, J)).

(d) Lift the image to a class in K,(D(A/J)) and apply Paschke
duality in reverse.

In the case at hand step (b) is trivial since F already lies in
D4(A)/Dy(A, J), thanks to (3.1). In addition, the lifting Fe Dy(A4) of F is
a partial isometry, and so a well known formula for the boundary map in
K-theory (see [3.13]) tells us that

B[F1=[P1—[P1eKy(Du(A,J)).
If Q and Q' denote the +1 eigenspaces of G and G’ then it is a simple

matter to check that [Q] and [ Q'] map to [ P] and [ P'], respectively,
under the map (2.1). This completes the proof. |

The following is an “odd dimensional” version of this formula. The proof
is quite similar to the one above and is left to the reader.

3.2. THEOREM. Suppose that (@, F) is a cycle for K'(J), such that @ is
the restriction of a representation of A with [®(a), F]1~0, for all ac A.

Then
einF 0
51[(¢,F)]=<5", ‘1’,< 0 1>>

where the representation ¥ is a dilation of ®os: AJJ — B(H).

4, HoMOTOPY INVARIANCE

Our objective is the following result.?

* There is of course a similar result for K"(4), but since it can be reduced in a number of
ways to the case of K'(4) we shall concentrate on Theorem 4.1.
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4.1. THEOREM. The functor K' is homotopy invariant, meaning that for
every C*-algebra A the two maps

ey, ;. C[0,1]®A— A4,

given by evaluation at 0€[0,1] and 1€[0, 1], induce the same map on
K'(A):
ef=ef: K (A)— K'(C[0,1]1® A).

Using the short exact sequence
0— K'(A) =55 K'(CT0,11® 4) — K'(Cy(0, 11® 4)— 0

(a degeneration of the six term exact sequence) the theorem reduces to
showing that the map

el K'(4) > K'(Co(0,11® 4)

is zero, and by the six term exact sequence again it suffices to show that
the boundary map

9o: K°(Cy(0,1)®A) - K'(A)
associated to the short exact sequence
00 Co(0,1)®@A4—-Cy(0,1]@A->C®A4 -0

is surjective. This is what we shall now prove.

4.2, LeMMA. Let (D, F) be a cycle for K'(A) with F*=1 and define
a «-homomorphism from A into B(H)A(H) by the formula
ar> Y(F+1)®D(a). Use this map to pull back the natural extension of
B(AH) X (H) to a short exact sequence

0> >E—->A4-0.

The associated boundary map 0,: KA (#)) > K (A) takes the generator
of KNA(HN=Z to [D, F].

Proof. The generator of K% '(#)) is given by the cycle (¢, =id,
¢, =0, F=0). This cycle is of the special form considered in Theorem 3.1,
and the formula there for @, gives the result. J|

4.3, LeMMA. Suppose given two C*-algebra extensions

0->J—->A->A/J—0
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and
0-J 4" 4] -0
Form new extensions by taking tensor products of each of the above with
the constituent C*-algebras in the other. The diagram of connecting
homomorphisms
K'U®T) —20s KYAIJ®J)

&, &N
KT ® AT ) —s KNALI® AT,
so obtained is anti-commutative.

Proof. It follows from the existence of completely positive sections that
the subalgebra

JRA+ART cARA

is a C*-algebra. So consider the commuting diagram

0 JJ > B JRA+AR)

| | |

0O—— JRS —— JIRA +ARS —— A/JRS BIRA/] — 0,

0

where B is the pull-back C*-algebra. Consider also the commuting diagram

0

JRA +ARS ARA —— AR A (] — 0
- C

0—— A/JRJ BIR AN > A AN ——— 0,

where
C={x®yecAQAN DA |x=p in AJJR A/}
Denote by
4 KNJIRIT V> KNATRS IR AT
and

Ay KNAT QT ®IQ AT = KNAITR AT
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the connecting homomorphisms in the long exact sequences associated
with the bottom two extensions in the above diagrams. By functionarility,
the composition 4,4, is equal to the composition of the connecting
homomorphisms associated with the top two extensions in our diagrams.
Since the first of these is split, its connecting homomorphism is zero, and
)

4,4,=0.
We shall deduce the lemma from this equation. Denote by
AJRT -5 AJQT IR AN > AJJRT

the natural inclusion and projection, and define ¢’ and =’ similarly. By
functoriality of boundary maps again, we have that

8 =0a*4,, d\=0d*4,, ¢y=4d,n*, and 0O,=4d,7'*
Hence
00, + 040, = Ad5(n*c* +n'*c'*) 4,.
But
nr*o* + o’  =idxuver@air
which proves the lemma. |

Proof of Theorem 4.1. We want show that for any A, the boundary
map Jy: KYR)® A) — K'(A) associated with the extension

0= CiRI®A->Cy{ —c, 0] ®A—-A—0

is surjective. Let [®, F]e K'(4). By passing to an equivalent cycle if
necessary we may assume that F2 =1 Let

0> —>E—>A4-0

be the extension in Lemma 4.2. By Lemma 4.3 the diagram of boundary
maps

KYCyR)® A ) ——— KA

|

KACYR)® A) —— K'(4)

anticommutes. Since [ @, F] is in the image of the right hand vertical map,
it suffices to show that @: K '(Cy(R)® A7) - K°( A7) is surjective. Consider
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the cycle (¢, F) for K'(Cy(R)) = K'(Cy(R) ® ") consisting of the standard

re
fo

presentation of Cy(R) on L*R) and the operator F whose Fourier trans-
rm is pointwise multiplication by the function &(1 +¢2) =2 It is easily

verified that this is a cycle of the sort considered in Theorem 3.1, and a
standard index computation (compare [5]) shows that o[ (¢, F)] is the
generator of K%C). |

1
2

3.

4.
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