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On Number of Circles Intersected by a Line1
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Consider a set U of circles in the plane such that any line intersects at least one of
those circles. For a given natural number m, is there a line in the plane intersecting
at least m circles in U? In this paper this problem is solved. Our result is also
generalized to compact convex subsets and to higher dimensional cases. © 2002

Elsevier Science (USA)
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1. INTRODUCTION

In combinatorial geometry the Sylvester-type problems are very impor-
tant and attractive. A century ago Sylvester [6] posed a question: For a
finite set of points in the plane such that the line through any two of them
passes through a third point of the set, must all the points lie on one line?
Later it resurfaced as a conjecture by Paul Erdös [2]: If a finite set of
points in the plane is not on one line then there is a line through exactly
two of the points. Since then there has appeared a substantial literature
(seen in [1]) on the problem and its generalizations. For example, in [5]
Motzkin considered n points in the plane, not all on a line and not all on a
circle, and showed that there is either a circle or a line containing exactly
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three of the points. Herzog and Kelly [4] also proved that for given n
pairwise disjoint compact sets in Rd, which are not all contained in a line
and at least one of which contains infinitely many points, there is a line
intersecting exactly two of them.

Related to the above mentioned, another problem says the following: For
a set U of some unit circles in the plane R2 such that any line in R2 intersects
at least one of those circles, given natural number m, is there a line in R2

which intersects at least m circles in U? Although it has been proposed for a
long time and known extensively, no published answer is found yet. It is
too hard to search where this was stated originally but one version states
that it was once raised in a personal letter of P. Erdös to Y. Q. Yin.
A closer result is Proposition 93 in [3], which tells that if a collection of
mutually congruent convex bodies is not ‘‘extremely sparsely distributed’’
then for any natural number m there is a line which intersects more than m
bodies of the family. However, it does not give a full answer to the problem
because it requires a different assumption that the collection of circles are
not extremely sparsely distributed. No matter where it comes from, this
problem is interesting and has been puzzling us since we heard of it.

In this paper this problem is solved by reducing to divergent series, the
same idea as used for Proposition 93 in [3]. We state the main result in
next section. By lemmas given in Section 3, we prove the result in Section 4.
The basic result is generalized in Section 5 to compact convex subsets and
to higher dimensional cases. For convenience, let R2 and N denote the
plane (2-dimensional Euclidean space) and the set of natural numbers,
respectively. Let C(Q, r) denote the circle of radius r centered at Q. Let
|PQ| represent the distance between P and Q in Euclidean spaces if P, Q
stand for points and |B| represents the area of B if B stands for a set.

2. MAIN RESULT

Theorem 1. Let U be a set of circles in the plane R2 such that any line in
R2 intersects at least a circle in U. Then for any m ¥ N and any point P ¥ R2

there exists a line in R2 through P intersecting at least m circles in U.

This result is stronger than the original problem hoped since we do not
require the circles of U to be unitary. Moreover, different from [3] we
do not require the collection of circles to be congruent. Consider U=
{C(O, 2k) : k ¥ N}. As in [3], let N(R) denote the number of circles in U
which lie entirely inside the disk of radius R about the reference point O.
Then lim infR Q .N(R)/R=0. Therefore U is extremely sparsely distrib-
uted and as in the case of Proposition 93 in [3] it cannot give an answer to
our problem. However our theorem works in this case; actually, each line
through a point P ¥ R2 intersects infinitely many circles in this U.
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For another example, consider U to be a set U consisting of a circle
centered at the origin and some small circles along the hyperbolas x2 − y2=
± 1 such that along the same branch of the hyperbolas each circle is
tangent to its consecutive two circles; two circles respectively along different
branchs do not intersect, and no circle along a branch intersects the circle
centered at the origin. Such U satisfies the condition of Theorem 1. Notice
that no line in the plane intersects infinitely many circles in such a U.

Solving this problem would be easier if the set U contains more circles.
We mainly prove Theorem 1 when U is countable. The case of uncountable U
is simple and its proof is a standard argument. In the following, we suppose
that U is countable; i.e., U={C(Ak, rk) : Ak ¥ R2, rk > 0, k=1, 2, ...}. Let
dk=|AkO|, where O is the origin of R2. We only need to consider the case
that

rk/dk < 1, -k \ k0, (2.1)

for some k0 > 0; otherwise there is a subsequence ki such that rki
/dki

\ 1
(i=1, 2, ...) and thus Theorem 1 holds naturally because every line
through O intersects all circles C(Qki

, rki
), i=1, 2, ... .

Lemma 1. Suppose (2.1) holds. If ;+.

k=k0
rk/dk diverges, then for any

m ¥ N there is a line through O intersecting at least m circles in U.

Proof. When rk/dk < 1, the origin O is outside the circle C(Ak, rk). Let
fk denote the scope-angle of O to C(Ak, rk), namely, the angle between the
two tangents from O to C(Ak, rk). Clearly, fk=2 arcsin(rk/dk) > 2rk/dk,
so ;.

k=k0
fk also diverges. Thus for any natural number m there exists a

natural number N such that ;N
k=k0

fk > 2mp. By the drawer principle,
there is at least a line through O intersecting at least m circles in U. L

Lemma 1 gives a way to reduce our problem to divergence of a series.

3. SOME LEMMAS

For a line l in R2, let Fl denote the intersection point of l with its normal
through O. Obviously, Fl=0 if l is through O. Fl is unique and Fl ] FlŒ if
neither l nor lŒ is through O and l ] lŒ. Let

Wk :={Fl: l 5 C(Ak, rk) ] ”}. (3.2)

Under the condition in Theorem 1,

R2= 0
.

k=1
Wk. (3.3)
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In fact, for each P ¥ R2 there is a line l such that Fl=P. It is assumed in
Theorem 1 that l intersects a circle in U, so Fl ¥ Wk for some k ¥ N.

We still need more geometric properties of Wk. Let Sk be the circle of
diameter |OAk | through 0 and Ak and let Q be the center of Sk. Then
Sk … Wk since Sk={Fl: Ak ¥ l}. For AŒ ¥ Sk, let

h(AŒ) := = AŒAkO (3.4)

and let C(AŒ) denote the circle of radius rksin h(AŒ) centered at AŒ.

Lemma 2. Wk … 1AŒ ¥ Sk
C(AŒ).

Proof. Let the line l satisfy that l 5 C(Ak, rk) ] ” and let A* be one of
two intersection points of l and C(Ak, rk) arbitrarily fixed. Take A ¥ Sk

such that the rectangular triangle DOAAk is similar to DOFlA* with the
same orientation, as in Fig 1. Clearly A exists uniquely. Thus = A*OFl=
= AkOA and |OA|/|OFl |=|OAk |/|OA*|. It follows that = AOFl== A*OFl+
= AOA*== AkOA+= AOA*== AkOA* and |OA|/|OAk |=|OFl |/|OA*|.
Hence DOAFl ’ DOAkA* and thus

|AFl |=|AkA*| · |OA|/|OAk |=rksin h(A), (3.5)

where h(A)= = AAkO. Therefore, Fl ¥ C(A). Since A ¥ Sk, we get Fl ¥

1AŒ ¥ Sk
C(AŒ). L

Let |Wk | represent the area (or out measure) of Wk, which clearly has its
area. By Lemma 2, each Wk is covered by an annular region between a

FIG. 1. DOAFl ’ DOAkA*
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FIG. 2. What is Wk, R covered by?

circle of radius dk/2+rk and a circle of radius dk/2 − rk, which are both
centered at Q. Thus

|Wk | [ p 1dk

2
+rk

22

− p 1dk

2
− rk

22

=2prk dk, (3.6)

if dk \ 2rk.
For a given R > 0, let B(O, R) be the open disk of radius R centered at O

and let

Wk, R :=Wk 5 B̄(O, R), k=1, 2, ..., (3.7)

where B̄(O, R) is the closure of B(O, R) (see Fig. 2).

Lemma 3. If dk \ max {R+rk, 2rk}, then |Wk, R | [ 8pR2rk/dk.

Proof. For A ¥ Sk, C(A) 5 B(O, R)=” if and only if

|OA| > R+rksin h(A). (3.8)

Note that |OA| varies continuously from 0 to dk when A goes from O to Ak.
Thus we can take A* ¥ Sk appropriately such that

|OA*|=R+rksin h(A*); (3.9)
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i.e., C(A*) is externally tangent to B(O, R). Substituting |OA|=dksin h(A)
in (3.8) and (3.9) separately we obtain

sin h(A) >
R

dk − rk
=sin h(A*). (3.10)

Hence C(A) 5 Wk, R=” when sin h(A) > sin h(A*). Furthermore, let A**
be a symmetric point of A* to the line OAk. Then in the angular region
centered at Q, the middle of OAk, and faced by the arc A*Ak

5A** there is no
point of Wk, R because the distances between Q and points on C(A) are
greater than dk/2 − rksin h(A*) when sin h(A) < sin h(A*). Therefore, Wk, R

is covered by both the closed annulus of width 2rksin h(A*) along Sk and
the angular region of angle 4h(A*) centered at Q and faced by the arc
A*O1A**. Notice that Q is the center of Sk. Applying the known inequalities
dk − rk \ dk/2 and |h| [ |p2 sin h| for |h| [ p

2 and applying (3.10), we obtain

|Wk, R | [ 4h(A*) ·
dk

2
· 2rksin h(A*)

[ 14 arc sin
R

dk − rk

2 ·
dk

2
· 2rk ·

R
dk − rk

[ 4 ·
p

2
·

R
dk − rk

·
Rdkrk

dk − rk
[

8pR2rk

dk
. (3.11)

L

4. PROOF OF THEOREM 1

If there is a subsequence {ki, ki+1, ...} such that rj/dj > 1/2, j=ki, ki+1, ...,
then

C
.

j=1

rj

dj
> C

.

i=0

rki

dki

>
1
2
+

1
2
+ · · · =., (4.12)

implying the result of Theorem 1 by Lemma 1. Thus in what follows we
suppose that there exists a natural number K such that

rk

dk
[

1
2

, -k > K. (4.13)
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Take R > 0 large enough such that

R > 2 max
0 [ k [ K

{dk+rk}. (4.14)

By (3.3) we have

1 0
.

k=1
Wk

2 5 A=A, (4.15)

where A is the annulus between two circles both centered at O and respec-
tively of radii R and R/2. The definition of A implies that (1dk+rk < R/2 Wk)
5 A=”. Hence (1dk+rk \ R/2Wk) 5 A=((1dk+rk \ R/2Wk) 2 (1dk+rk < R/2Wk))
5 A=A; that is,

1 0
R/2 − rk [ dk [ R+rk

Wk
2 2 31 0

dk > R+rk

Wk
2 5 A4

‡ 31 0
R/2 − rk [ dk [ R+rk

Wk
2 5 A4 2 31 0

dk > R+rk

Wk
2 5 A4

=1 0
R/2 − rk [ dk

Wk
2 5 A=A. (4.16)

Estimating areas for both sides of (4.16) we get

C
R/2 − rk [ dk [ R+rk

|Wk |+ C
dk > R+rk

|Wk, R | >
3
4

pR2. (4.17)

It follows from (3.6) and Lemma 3 that

2
R2 C

R/2 − rk [ dk [ R+rk

rkdk+8 C
dk > R+rk

rk

dk
>

3
4

. (4.18)

Now we claim that (4.18) implies the divergence of ;.

k=1 rk/dk.
Assume this series converges. Then the second sum in (4.18) is arbitrarily

small as R is large enough; i.e., there is a constant M > 0 such that for all
R > M,

2
R2 C

R/2 − rk [ dk [ R+rk

rkdk >
1
2

. (4.19)
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For sufficiently large R such that

R > M* :=max {M, 2 max
0, [ k [ K

{dk+rk}}, (4.20)

by (4.14), all those k satisfying dk+rk \ R/2 must be greater than K. From
(4.13) we see that dk \ 2rk holds for all k such that dk+rk \ R/2. Thus the
condition R/2 − rk [ dk [ R+rk of summation in (4.19) implies that

dk

2
[ dk − rk [ R. (4.21)

It follows that dk/R [ 2 and rkdk/R2 [ 4rk/dk. Therefore, from (4.19) we
get

8 C
R/2 − rk [ dk [ R+rk

rk

dk
\

2
R2 C

R/2 − rk [ dk [ R+rk

rkdk >
1
2

, - R > M*. (4.22)

Clearly, for arbitrarily large K in (4.13) we can take a correspondingly
large R. Thus

C
.

k=K+1

rk

dk
\ C

R/2 − rk [ dk [ R+rk

rk

dk
>

1
16

. (4.23)

This contradicts to the assumption of convergence of ;.

k=1 rk/dk. By
Lemma 1, we obtain the conclusion of Theorem 1. L

5. GENERALIZATION

Corollary 1. Let U and U* be sets of circles in R2 and let there be a
mapping f: U* Q U defined by C(Ag

a , rg
a ) W C(Aa, ra) such that

ra+|Ag
a Aa |

rg
a

< L, (5.24)

where L is a positive constant independent of a. If any line in R2 intersects at
least one circle in U, then for any m ¥ N and any point P ¥ R2 there exists a
line in R2 through P intersecting at least m circles in U*.

The proof is simple. In fact, under the assumption (5.24) the divergence
of ;.

k=1 rk/dk implies the divergence of ;.

k=1 rg
k /dg

k , where dg
k =|OAg

k |.
Applying Corollary 1, we can generalize Theorem 1 further to compact

402 NOTE



convex subsets in the plane. We refer to the ratio between the diameter of
the minimum circle containing a compact convex subset V and the diameter
of the maximum circle contained in the V as the rectangular ratio of the V.

Corollary 2. Let M consist of some compact convex subsets in R2 such
that their rectangular ratios have a uniform upper bound L > 0. If any line in
R2 intersects at least a compact convex subset in M, then for any m ¥ N and
any point P ¥ R2 there exists a line in R2 through P intersecting at least m
compact convex subsets in M.

Proof. Let U* consist of all those circles, each of which is the maximum
circle contained in a compact convex subset in M. Similarly, let U consist
of all those circles, each of which is the minimum circle containing a
compact convex subset in M. Define a mapping f: U* Q U such that the
image of a circle C* in U* is that one in U which corresponds to the same
compact convex subset as C* does. Because of the uniform boundedness of
rectangular ratios, f satisfies (5.24). Thus our result can be deduced
directly from Corollary 1. L

The uniform boundedness of rectangular ratios in Corollary 2 is indis-
pensible. Consider a hyperbola C in R2 and take a sequence of different
points {Pk: k=0, ± 1, ± 2, ...} on the same branch of C such that
|PkPk − 1 |=1. Similarly take another sequence {Ak: k=0, ± 1, ± 2, ...} on
the other branch of C such that |AkAk − 1 |=1. Let B(PkPk − 1) denote the
closed region surrounded by the chord PkPk − 1 and the arc PkPk − 1

5 . More-
over, let B0 be the closed unit disk centered at the center of C. Let
M :={B0, B(PkPk − 1), B(AkAk − 1) : k=0, ± 1, ± 2, ...}, which clearly consists
of compact convex subsets but does not possess uniform boundedness of

FIG. 3. Projection US.
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FIG. 4. Un-1 on En-1
0 .

rectangular ratios. Obviously, every line in R2 intersects at least one but at
most five in M.

We can also generalize our result to Rn.

Remark 1. Let n \ 3 and U consist of (n − 1)-dimensional superspheres
in Rn such that any (n − 1)-dimensional superplane in Rn intersects at least
one supersphere in U. Then for any given m ¥ N, any plane E2, and any
P ¥ E2 there exists a superplane En − 1 in Rn which is through P, orthogonal
to E2, and intersects at least m superspheres in U. This can be shown easily
with the orthogonal projection U: Rn

Q E2 as in Fig. 3 since UU :=
{US: S ¥ U} is a set of some circles on the plane E2 and Theorem 1 can be
applied.

Remark 2. Let n \ 3 and U consist of (n − 1)-dimensional superspheres
in Rn. For given k ¥ N with 1 [ k < n, if any k-dimensional superplane in
Rn intersects at least one supersphere in U, then for any m ¥ N and any
P ¥ Rn there exists a k-dimensional superplane Ek in Rn through P inter-
secting at least m superspheres in U (Fig. 4). In fact, by Remark 1, it suffices
to discuss the case of k [ n − 2. For k=n − 2, take a (n − 1)-dimensional
superplane En − 1

0 in Rn through O and P. Let En − 2
n − 1 be the set of all (n − 2)-

dimensional superplanes in En − 1
0 and let Un − 1 :={Bn 5 En − 1

0 : Bn ¥ U}. For
any l ¥ En − 2

n − 1 there is a supersphere Bn ¥ U such that l 5 Bn ] ”. Thus
Bn 5 En − 1

0 ] ” and l 5 (Bn 5 En − 1
0 ) ] ” since l … En − 1

0 . This means that
every (n − 2)-dimensional superplane in En − 1

0 intersects at least one (n − 2)-
dimensional supersphere of Un − 1. By Remark 1 there exists a (n − 2)
dimensional superplane l* in En − 1

0 through P intersecting m(n − 2)-
dimensional superspheres B1

n 5 En − 1
0 , B2

n 5 En − 1
0 , ..., Bm

n 5 En − 1
0 in Un − 1. Of

course, l* intersects all B1
n, B2

n, ..., Bm
n .
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