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a b s t r a c t

In this study, we investigated the enzymatic hydrolysis of pretreated sugarcane bagasse using eight dif-
ferent enzymatic blends obtained from concentrated crude enzyme extracts produced by Penicillium
funiculosum and Trichoderma harzianum as well as from the extracts in combination with a commercial
enzymatic cocktail. The influence of different levels of biomass delignification, degree of crystallinity of
lignicellulose, composition of enzymatic activities and BSA on enzymatic hydrolysis yields (HYs) was
evaluated. Our X-ray diffraction studies showed that crystallinity of lignocellulose is not a key deter-
minant of its recalcitrance toward enzymatic hydrolysis. In fact, under the experimental conditions of
ignocellulosic materials
nzymatic hydrolysis

our study, an increase in crystallinity of lignocellulosic samples resulted in increased glucose release by
enzymatic hydrolysis. Furthermore, under the same conditions, the addition of BSA had no significant
effect on enzymatic hydrolysis. The most efficient enzyme blends were obtained by mixing a com-
mercial enzymatic cocktail with P. funiculosum or T. harzianum cellulase preparations (HYs above 97%)
followed by the concentrated extract of P. funiculosum alone (HY = 88.5%). Increased hydrolytic efficien-
cies appeared to correlate with having an adequate level of both �-glucosidase and xylanase activities in

the blends.

. Introduction

The conversion of lignocellulosic biomass to glucose requires the
se of cellulolytic enzymes. It is well established that hydrolytic
fficiency is a result of the concerted and synergistic actions of
multicomponent enzymatic system consisting of at least three
ajor groups of enzymes: endo-�-glucanases, exo-�-glucanases

nd �-glucosidases [1–7]. Various enzymatic compositions pro-
uced and secreted by filamentous fungi and other microorganisms

ave very different effects on biomass depolymerization. Cellu-

ases produced by Trichoderma reesei and Aspergillus niger are the
ost common enzymes used in the hydrolysis of lignocellulosic

iomasses. The former microorganism produces large quantities
f exo- and endoglucosidases but little �-glucosidase activity,
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whereas the latter secretes massive quantities of �-glucosidases,
though its cellulase activities are somewhat limited. To date, no
natural microorganism that produces an ideal enzyme preparation
for biomass hydrolysis has been discovered. Therefore, inade-
quate enzymatic activities must be supplemented with native or
recombinant enzymes for use in particular biotechnological appli-
cations.

Additives, such as surfactants, have been used to enhance
cellulose hydrolysis yields by reducing non-productive enzyme
adsorption on the lignin in the substrate [8]. Proteins such as
bovine serum albumin (BSA) can be competitively and irreversibly
adsorbed by lignin, thus shielding the lignin and reducing enzyme
adsorption. This impedes the non-productive binding of cellulases,
therefore increasing the efficiency of enzymatic hydrolysis [9].

Open access under the Elsevier OA license.
Here, we investigated the hydrolysis of pretreated bagasse using
cellulases from Penicillium funiculosum and Trichoderma harzianum
with the aim of obtaining blends that are superior to commer-
cial enzymatic preparations. In addition, we analyzed the effects
of cellulignin crystallinity, the concentration of alkali used in the
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agasse pretreatment and addition of BSA on the yields of enzy-
atic hydrolysis of sugar cane bagasse.

. Materials and methods

.1. Bagasse pretreatment

Sugarcane bagasse was kindly provided by Dedini S.A. (Piracicaba, SP, Brazil).
he sugarcane bagasse was pretreated with 1% H2SO4 solution at 121 ◦C for 45 min
o partially remove the hemicellulosic and lignin fractions, thus allowing the enzyme
ccess to the cellulose. After pretreatment, the cellulose-rich solid phase was sepa-
ated in a hydraulic press filter by applying 2 tons of pressure over an area of 201 cm2.
he solid fraction was submitted to an additional step of partial delignification by
lkaline treatment with various concentrations of NaOH (0.1, 0.5, 1.0 and 4.0% m/v)
ith a 1:20 solid:liquid ratio at 121 ◦C for 30 min as described in [10]. After thermal
ressurization, the solid fraction (partially delignified cellulignin) was separated
sing a stainless steel sieve (0.5 mm) and exhaustively washed; the pH was then
djusted to 5.0 using 2 M HCl.

.2. Sugar cane bagasse and partially delignified cellulignin composition analysis

The bagasse and partially delignified cellulignin were milled and passed through
0.5 mm sieve. The bagasse and cellulignin compositions were determined by

hemical hydrolysis with H2SO4, which was performed in two steps according to
he procedures established by the National Renewable Energy Laboratory (NREL)
11,12].

.3. Crystallinity analysis of pretreated bagasse

Material crystallinity, defined as the weight ratio between cellulose crystals and
ry matter, was determined using the X-ray diffraction method recently developed
y Driemeier and Calligaris [13]. X-ray diffraction was performed in transmission
ber geometry on samples inserted inside 2-mm glass capillaries using a Rigaku
ltraX-18HF rotating anode generator operated with Cu K� radiation (� = 1.54 Å)
nd a Mar345 image plate detector at a 120 mm sample-to-detector distance. Each
rea detector diffraction pattern was corrected for X-ray absorption and dark counts.
nstrumental line broadening and detector position and tilts were calibrated with
-alumina. The absorption-corrected area detector patterns were modeled by the
ietveld method [14] using the MAUD program [15], cellulose I� structure [16] and
harmonic description of the preferred orientation of the crystals. Crystallinity, xcr ,
as determined using the following expression:

cr = Q [I′
cr ]

Q [Iexp] − (Texp/T0)Q [I0]
1 + 1.2xm

1 − εinc

here Q[I] is a function that integrates I(s) s2 ds in the standard interval
.11–0.50 Å−1, with s = 2sin�/�. I′cr and Iexp are Rietveld-reconstructed isotropic

ntensities from diffraction and total scattering, respectively. I0 is the scattered
ntensity from the empty capillary. Texp and T0 are the transmitted X-ray intensities
at 2� = 0) of the sample and empty capillary, respectively. The corrective term xm is
he dry-basis moisture content determined gravimetrically after heating at 105 ◦C to
constant weight while εinc is the incoherent scattering factor, as calculated in [13]

εinc = 0.102). The reported uncertainties in xcr consist of two major components:
i) variability (std. dev. ≈10%) in Q[I0]/T0 measurements and (ii) uncertainty in xm

≈1%). Hence, the reported uncertainties do not include possible a systematic bias
ntroduced by the crystallinity method, which was estimated to be below ± 5% [13].

.4. Cellulase production by P. funiculosum and T. harzianum and concentration
f crude enzyme extracts

The cellulases were produced by the filamentous fungi P. funiculosum ATCC
1797 and T. harzianum IOC 3844. T. harzianum was cultivated in Mandels’ medium
17], and P. funiculosum was cultivated in a previously described medium [18].

icrocrystalline cellulose (Avicel®) and partially delignified cellulignin were used
s carbon sources for T. harzianum and P. funiculosum, respectively. The cellulases
ere produced in 500 mL Erlenmeyer flasks in 200 mL of media. The flasks were
aintained at a constant agitation of 200 rpm for 72 h at 30 ◦C for P. funiculosum

nd at 27 ◦C for T. harzianum. The solutions were then centrifuged for 30 min at
000 × g, and the supernatants (crude enzymatic extracts) were concentrated in a
acuum rotary evaporator at 45 ◦C under 760 mmHg negative pressure. The enzy-
atic extracts were concentrated 30 and 25 fold for T. harzianum and P. funiculosum

upernatants, respectively, prior to the hydrolysis assay of pretreated bagasse.

.5. Protein and enzymatic assays
The protein concentration of the cellulase preparations was measured using
he Bradford Protein Assay (Bio-Rad) using bovine serum albumin as a stan-
ard (5–30 �g/mL) [19]. The activities of FPase, Avicelase, CMCase, �-glucosidase
nd xylanase were measured using filter paper, Avicel® , carboxymethylcellulose,
ellobiose and xylan as substrates, respectively [20]. The carboxymethyl cellu-
ose sodium salt (medium viscosity), cellobiose and xylan were purchased from
istry 46 (2011) 1196–1201 1197

Sigma–Aldrich. Grade 1 Whatman filter paper and Avicel® were purchased from
Whatman and Fluka, respectively. Test tubes containing substrate and crude enzyme
extract were incubated under continuous agitation at 50 ◦C for 2 h and1 h for mea-
surements of avicelase and filter paper activities, respectively. A 15 min incubation
time was used for CMCase, �-glucosidase and xylanase activities. All enzymatic
activities were determined under the same conditions (pH and temperature) used
for cellulignin hydrolysis.

Cellulase, �-glucosidase and xylanase activities were expressed in international
activity units (U), which is defined as the amount of enzymatic extract that releases
1 �mol of sugars (glucose equivalent) per minute.

2.6. Enzymatic hydrolysis of cellulignin and the effect of BSA on hydrolysis yields

Cellulignin (25 g/L) that had been partially delignified with 4% NaOH was used in
the enzymatic hydrolysis assays. Hydrolysis was carried out in 100 mL Erlenmeyer
flasks containing 50 mL of a cellulignin suspension in 50 mM citrate buffer (pH 5.0)
under constant agitation.

The following commercial enzymatic blends and their combinations with the
indicated enzymatic concentrations of P. funiculosum and T. harzianum were studied:
Multifect CX 10 L (Genencor), based on enzyme load (FPU) per gram of cellulignin;
M25 (100% commercial Multifect at 25 FPU/g); M12.5 (100% Commercial Multifect at
12.5 FPU/g); P (100% P. funiculosum supernatant at 25 FPU/g); T (100% T. harzianum
at 25 FPU/g); MP (12.5 FPU/g of Multifect + 12.5 FPU/g of concentrated P. funiculo-
sum extract); MT (12.5 FPU/g of Multifect + 12.5 FPU/g of concentrated T. harzianum
extract); PT (12.5 FPU/g of P. funiculosum + 12.5 FPU/g of T. harzianum extracts);
MTP (8.3 FPU/g of Multifect + 8.3 FPU/g of P. funiculosum + 8.3 FPU/g of T. harzianum
extracts).

The enzymatic blends were added to the cellulignin suspension at 25 FPU/g
of FPase activity except for the M12.5 blend, which consisted of pure commer-
cial Multifect® , which was added at an activity of 12.5 FPU/g. The flasks containing
bagasse and enzyme were maintained under constant agitation at 200 rpm at 50 ◦C
for 18 h. During this procedure, samples were periodically taken for a kinetic profile.
The samples were centrifuged at 10,000 × g for 10 min, and the sugars released in
the supernatant were quantified using HPLC.

It is generally accepted that cellulases adsorb irreversibly to the lignin in lig-
nocellulosic materials, thus decreasing the hydrolysis efficiency [21,22]. This effect
can be partially prevented by the addition of BSA [9]. To study the influence of BSA
on the hydrolysis yields, a 1.5 g/L solution of BSA was added to the cellulignins with
different degrees of delignification 2 h prior to the addition of the enzyme mix-
tures (enzymatic load of 18 FPU/g). In parallel, control hydrolysis experiments were
performed in the absence of BSA.

The hydrolysis yield was determined using the following equation:

where HY is the hydrolysis yield; 25 is the cellulignin concentration (g/L); 0.68 is the
cellulose content in the cellulignin (g/g), and 1.11 is a correction factor that accounts
for the addition of water molecules to the anhydroglucose residues in cellulose.

The experiments were repeated three times. The results were evaluated using
Analysis of Variance (ANOVA) at a 5% significance level; Tukey’s test was applied to
the averages.

2.7. Quantification of sugars using High performance liquid chromatography
(HPLC)

Released sugars were quantified using a Waters 2414 High Performance Liq-
uid Chromatographic system on an Aminex HPX87P column (Bio-Rad) at 60 ◦C
with a differential refractive index detector (Waters). The mobile phase was
Milli-Q water at a flow rate of 0.6 mL/min. Glucose and cellobiose were used
as standards.

3. Results and discussion

3.1. Sugar cane bagasse and cellulignin composition

Lignin represents one of the main obstacles to using lignocellu-
losic materials in biotechnological applications based on biomass
cellulose [23]. The purpose of pretreatment is to remove part of
the lignin and hemicellulose, reduce cellulose crystallinity and
enhance porosity [6,24]. Table 1 presents the experimentally deter-

mined composition of sugar cane bagasse and partially delignified
cellulignin obtained in our study. The sum of all components
(95.5 ± 4.3% and 97.0 ± 3.4% for sugar cane bagasse and cellulignin,
respectively) was close to 100%, taking into account experimental
error and extractives that were partially unaccounted for.
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Table 1
Composition of sugar cane bagasse and partially delignified cellulignin after acid
pre-treatment followed by pre-treatment with 4.0% of NaOH.

Components Sugar cane bagasse
(% w/w)

Partially delignified
cellulignin (% w/w)

Cellulose 34.1 ± 1.2 68.0 ± 1.3
Hemicellulose 29.6 ± 1.4 12.2 ± 0.9
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Fig. 2. Experimental (dots) and modeled (thin lines) diffractograms from bagasse
Lignin 19.4 ± 0.4 9.3 ± 0.6
Ash 7.9 ± 1.1 3.5 ± 0.4
Moisture 4.4 ± 0.1 4.0 ± 0.2
Total 95.5 ± 4.3 97.0 ± 3.4

The results show that the pretreatments (acid and alkaline) were
fficient in reducing the hemicellulose (29.6–12.2%) and lignin
19.4–9.3%) fractions, with a concomitant increase in the cellulose
ontent of cellulignin from 34.1% to 68.0%.

.2. Enzymatic hydrolysis of bagasse pretreated with different
egrees of delignification and the effect of BSA on hydrolysis yields

In this study, we attempted to identify the minimum concentra-
ion of sodium hydroxide that could be used in the pretreatment
rocedure while maintaining hydrolysis efficiency. The influence
f the concentration of sodium hydroxide (NaOH) on cellulignin
ydrolysis is shown in Fig. 1. The rates of hydrolysis of cellulignin
retreated with 1% or 4% NaOH were comparable whereas pre-
reatment of samples with 0.5% sodium hydroxide slightly reduced
he efficiency of hydrolysis. The enzymatic hydrolysis of cellulignin
pon treatment with 0.1% NaOH was not efficient (Fig. 1).

The decrease in the hydrolysis efficiency of cellulignin pre-
reated with the lowest NaOH concentration is likely due to the
hysical barrier generated by residual lignin, which impeded the
nzyme from accessing the cellulose microfibrils.

In a separate set of experiments, BSA was added to the cel-
ulignin prior to adding the enzymatic blend. Surprisingly, our
esults indicate no statistically significant difference in hydrolytic
fficiency of the cellulase blend in BSA-pretreated and BSA-

ntreated cellulignin (Fig. 1). This contradicts results reported by
ang and Wyman [9] who observed a significant increase in the
fficiency of the enzymatic hydrolysis of dilute acid-pretreated
orn stover upon addition of BSA. The same enhancement, how-
ver, was not observed for Avicel®, which does not have exposed

ig. 1. Effects of varying degrees of delignification (different NaOH concentrations
n the pretreatment procedure) and the presence of BSA on the enzymatic hydrol-
sis of cellulignin. Solids concentration: 25 g/L; enzymatic load of the mixture of
ultifect® , T. harzianum and P. funiculosum extracts (MTP) was set to 18 FPU/g in

qual proportions.
pretreated with 4% NaOH. The isotropic reconstructed diffractogram (blue line),
model-resolved diffuse background (grey area) and non-sample contribution (thick
black line) are also shown. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

lignin surface areas that would allow BSA adsorption [9]. We argue
that the absence of any influence of BSA on the yields of enzymatic
hydrolyses may indicate that NaOH pretreatment was efficient in
at least partially removing the lignin wrapping, thus preventing
non-productive adsorption of the enzymes.

3.3. Crystallinity of lignocellulose samples

To gain further insights into the physical parameters of cel-
lulignin samples, we investigated their crystallinity using an
X-ray diffraction method based on Rietveld-reconstructed isotropic
intensities [13]. Fig. 2 shows meridional (� = 0◦) and equatorial
(� = 90◦) diffractograms from the material pretreated with 4%
NaOH. The two diffractograms represent the variability observed
within the 63 slices taken from each area detector diffraction
image (−155◦ ≤ � ≤ 155, with slices of 5◦; Section 2). The differ-
ences between the two diffractograms arise from differences in
the preferred orientation of the cellulose crystals. The anisotropy
differences, as well as other major features of the diffractograms,
are adequately reproduced by the Rietveld model. Isotropic recon-
structions were generated by eliminating the crystals’ preferred
orientation in the model and used to calculate the degree of crys-
tallinity. Fig. 2 also shows a model-resolved diffuse scattering
background as well as the non-sample contribution (predomi-
nantly from the capillary).

The degree of crystallinity of the materials pretreated with
NaOH (0.1%, 0.5%, 1% and 4%) is reported in Table 2. An increase
in cellulignin crystallinity was observed with increased NaOH con-
centration during the alkali pretreatment steps. Because the degree
of crystallinity is a weight ratio, the crystallinity increase can be
attributed to the preferential removal of amorphous matter such
as lignin, and to a lesser extent, hemicellulose and non-crystalline
cellulose.
Quantification of the crystalline content in cellulose is impor-
tant and provides an estimate of the recalcitrance of the biomass
to enzymatic attack [25]. Enzymatic cellulose hydrolysis is typi-
cally 3–30 times faster for amorphous cellulose than for highly
crystalline cellulose [6]. Therefore, it could be concluded that the

Table 2
Degrees of crystallinity of bagasse samples after acid pre-treatment followed by
treatment with variable NaOH concentrations (calculated on a dry-weight basis).

Pre-treated bagasse (% NaOH)

0.1% 0.5% 1% 4%

Degree of crystallinity (%) 62.9 ± 2.2 66.6 ± 3.0 70.5 ± 2.9 68.6 ± 3.4
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Table 3
Cellulase activities of the blends used in the hydrolysis assays of the cellulignin. The cellulase blends from P. funiculosum and T. harzianum were concentrated as described
in Section 2.

Enzymatic blend Activities (U/mL) Protein (mg/mL)

FPase Avicelase CMCase �-Glucosidase Xylanase

25.0
21.4
00.0
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three enzymatic preparations (MTP) released 16.7 g/L and 16.6 g/L
of glucose, respectively, at the end of 18 h and corresponded to
a hydrolysis yield of 88.5% and 88.0%. The enzymatic blend of T.
harzianum (T) showed no statistical difference compared to the
Multifect® commercial blend, releasing 12.24 g/L of glucose after

Fig. 3. (a) Glucose and (b) cellobiose released during 18 h of hydrolysis of partially
delignified cellulignin, containing 68% of cellulose, at concentration of 25 g/L. M25
Penicillium funiculosum 5.8 7.2 1
Trichoderma harzianum 8.4 4.2 1
Multifect® 174.2 99.2 65

morphous part of the cellulose would be depolymerized first,
hich increases the crystallinity of the cellulose during enzymatic
ydrolysis [26,27]. However, several research groups have found
hat crystallinity does not increase during enzymatic hydrolysis
28–31]. The uncertainty of methodologies for measuring crys-
allinity contributed to the differences observed in the results and
onclusions [6]. Here, we applied a novel procedure to evaluate
rystallinity, which was based on the Rietveld models (Section 2;
13]).

The results support the conclusion that the crystallinity of the
amples increased with increased delignification following NaOH
retreatment, at least up to 1% of NaOH. There was a small decrease

n crystallinity when the concentration of NaOH used in pretreat-
ent reached 4% (from 70.5 ± 2.9% to 68.6 ± 3.4%), but uncertainties

n the measurements did not permit us to conclude whether it was
n artifact or an actual trend. Furthermore, the size of the cellulose
rystals estimated from the diffraction data consistently increased
ith an increase in crystallinity (data not shown). The results sug-

est that delignification of the bagasse led to a steady increase in
he proportion and size of the cellulose crystals within the samples.
hese trends were observed under the pretreatment conditions and
ere likely related to the removal of lignin/hemicellulose. The pro-

ess appears to be accompanied by the condensation of cellulose
icrocrystals within the increasingly delignified cellulignin. More-

ver, the results reveal that the increase in crystallinity under these
onditions does not impede the enzymatic hydrolysis of the bagasse
amples. On the contrary, the increase in crystallinity positively
orrelated with an increase in glucose release from the samples
Fig. 1).

Notably, the cellulignin pretreatment process also increased the
ccessibility of the cellulose microfibrils to the enzymes [6,23]. The
nhanced accessibility of cellulose to enzymatic hydrolysis resulted
n consistently increased glucose yields under a constant enzyme
oad. However, experimental studies of cellulose accessible areas
n the samples would be required for a detailed characterization of
his phenomenon.

.4. Hydrolysis of cellulignin using cellulases from P. funiculosum,

. harzianum and a commercial enzymatic preparation

To evaluate the effect of P. funiculosum and T. harzianum cellu-
asic blends on the Multifect® commercial preparation, systematic
ydrolysis procedures were carried out with each blend and with
ifferent combinations. Enzymatic activities of the tested blends
nd their combinations were all normalized to 25 FPU/g. For com-
arison, hydrolysis using the commercial enzyme at half the
nzymatic load (12.5 FPU/g) was also performed. Table 3 shows the
nzymatic activity and protein content of the enzyme preparations
rom each source.

Enzymatic hydrolysis kinetics of P. funiculosum and T. harzianum
ellulasic enzymatic blends and the Multifect® commercial enzy-

atic blend are shown in Fig. 3a. The Multifect® commercial blend

eleased a maximum of 12.89 g/L of sugars after 18 h of hydrolysis
hen added at an enzymatic load of 25 FPU/g. When the enzymatic

oad was 12.5 FPU/g, 9.08 g/L of sugars were released. The perfor-
ances of the two blends were 68.3% and 48.1% of the theoretical
26.6 90.0 2.6
31.4 320.0 6.4

195.3 2107.0 56.8

hydrolysis yield, respectively. As confirmed by Tukey’s test, the val-
ues increased when half of the enzymatic load was substituted by
the enzymatic blend obtained from P. funiculosum (MP) and/or T.
harzianum (MT), raising the released sugars to 18.9 g/L (MP) and
18.42 g/L (MT). These concentrations represent yields of 100.2% and
97.6% of the maximum theoretical value, respectively. The enzy-
matic blend of P. funiculosum (P) alone and the mixture of the
(Multifect® at 25 FPU/g); M12.5 (Multifect® at 12.5 FPU/g); P (Penicillium funiculo-
sum enzymes at 25 FPU/g); T (T. harzianum enzymes at 25 FPU/g); MP (Multifect® at
12.5 FPU/g + P. funiculosum enzymes at 12.5 FPU/g); MT (Multifect® at 12.5 FPU/g + T.
harzianum enzyme at 12.5 FPU/g); PT (P. funiculosum enzymes at 12.5 FPU/g + T.
harzianum enzymes at 12.5 FPU/g); MTP (Multifect® at 8.3 FPU/g + P. funiculosum
enzyme at 8.3 FPU/g + T. harzianum enzymes at 8.3 FPU/g).
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he same time of hydrolysis (hydrolysis yield of 64.7%). However,
hen the 50% P. funiculosum and 50% T. harzianum blends (PT) were
sed simultaneously, there was an increase in the released sug-
rs up to 15.21 g/L, corresponding to a hydrolysis yield of 80.6%.
he negative control experiments (the addition of buffer instead of
nzymatic blend) showed no sugar release.

In general, the hydrolysis yields achieved in this study were sig-
ificantly higher than the yields reported in the literature [31–35].

To gain a better understanding of the data from the hydrolysis
f bagasse cellulignin, we determined the enzymatic activities of T.
arzianum and P. funiculosum extracts and the Multifect prepara-
ion. Table 3 indicates that P. funiculosum is an efficient producer
f cellulases and �-glucosidases, providing a fair balance between
he cellulase activities in the enzyme preparation. This finding was
onsistent with previous studies [33,36–46].

The FPase and �-glucosidase activity ratio in the crude extract
f P. funiculosum and T. harzianum were close to 1:4.5 and 1:3.7,
espectively, whereas the Multifect® ratio was 1:1. The high ratio
f �-glucosidase activity to FPase is important in simultaneous
accharification and fermentation (SSF) processes to avoid accumu-
ation of cellobiohydrolases inhibitors (cellobiose) in the reaction

edia. The positive effect of the addition of enzyme blends from P.
uniculosum and T. harzianum over the cellobiose concentration can
e observed in Fig. 3b. Cellobiose accumulation in the hydrolyzate
as only detected when the commercial enzyme preparation

Multifect®) was used, both at 12.5 FPU/g and at 25 FPU/g, resulting
n cellobiose concentrations of 0.89 g/L and 2.28 g/L, respectively.
owever, in the media hydrolyzed by the mixture of commer-
ial enzyme and P. funiculosum (MP) or T. harzianum (MT), there
as an initial accumulation of cellobiose followed by conversion

nto glucose after 2 h of reaction, presumably as a result of the
ction of the �-glucosidases of P. funiculosum and T. harzianum.
he hydrolysis performed with enzymes from P. funiculosum and
. harzianum alone did not result in an accumulation of cel-
obiose. Moreover, the T. harzianum extract had an approximately
hree-fold higher concentration of xylanase: FPase activities ratio
ompared to Multifect© (Table 3), which might further contribute
o its efficiency. Xylooligomers have recently been identified as
trong inhibitors of the enzymatic hydrolysis of cellulose, capable
f significantly inhibiting biomass saccharification even at concen-
rations as low as 1.67 mg/mL [47]. Xylose proved to be a much
eaker inhibitor, and therefore, it was less of an impediment to

he saccharification process. This finding highlights the impor-
ance of xylanase activity in the enzymatic hydrolysis of biomass.
urthermore, the presence of hemicellulose hindered the access
f enzymes to cellulose and reduced cellulose depolymerization.
igher xylanase activity in the T. harzianum extract might explain

he higher efficiency of blends containing this preparation com-
ared to P. funiculosum and T. harzianum extracts, which had lower
ylanase activity. Other components of the enzymatic mixtures
roduced by T. harzianum and P. funiculosum, such as glycoside
ydrolases (GH) from the GH family 61 [48] and swollenins [49],
ight also contribute to the observed enhanced enzymatic hydrol-

sis yields.

. Conclusions

Based on the results of the present study, the highest sugar
ields from enzymatic hydrolysis of pretreated sugar cane bagasse
re obtained with an enzymatic blend prepared from the commer-

ial enzyme preparation (Multifect®) enhanced with the same load
in terms of FPase activity) of either P. funiculosum or T. harzianum
nzyme extracts. Additionally, the P. funiculosum enzymatic blend
lone shows better hydrolytic performance on sugar cane bagasse
ellulignin compared to the commercial Multifect® preparation.

[

[

istry 46 (2011) 1196–1201

Adequate levels of �-glucosidase and xylanase activities appear to
be important for enhancing the efficiency of cellulignin hydroly-
sis by the enzymatic blends. Additionally, the high crystallinity of
the bagasse lignocellulose (∼70%) has no detrimental effect on the
yield of hydrolysis. The experiments evaluating sugar cane bagasse
alkaline pretreatment indicate that the amount of sodium hydrox-
ide used for delignification can be reduced several fold (down to 1%
or even 0.5%) without significant loss in the enzymatic hydrolysis
yields, which might be of interest for reducing costs. The studies
also show that the crystallinity of the bagasse increases during
delignification. Finally, under the conditions used in this study, the
addition of BSA has no significant effect on the enzymatic hydrolysis
of sugar cane bagasse cellulignin.
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