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Two applications of analytic functors
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Abstract

We apply the theory of analytic functors to two topics related to theoretical computer science.
One is a mathematical foundation of certain syntactic well-quasi-orders and well-orders appear-
ing in graph theory, the theory of term rewriting systems, and proof theory. The other is a new
veri*cation of the Lagrange–Good inversion formula using several ideas appearing in seman-
tics of lambda calculi, especially the relation between categorical traces and *xpoint operators.
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Combinatorial species are introduced by Joyal [37] as a categorical framework of the
theory of enumerative combinatorics. Analytic functors are equivalent to the combinato-
rial species [38]. A principal machinery in enumerative combinatorics is the generating
functions, which are formal power series where the coe:cients of xn equal the numbers
of those objects on an n point set which one wants to enumerate. An analytic functor
is the functor on the category of sets having a form similar to a formal power series.
Analytic functors can manipulate the structures themselves directly while generating
functions the numbers of the structures.
In this paper, we give two applications of the analytic functor to completely di=er-

ent directions related to theoretical computer science. The *rst is the theory of term
rewriting systems. The main theme of the theory is to develop the tools to prove the
termination of computation. One of the most useful methods is Dershowitz’ recursive
path ordering [14]. This method is superior in respect that we can de*ne a well-order
directly on the set of terms, rather than assign to terms, say, natural numbers. This
property, which is on the one hand a great advantage, may be a disadvantage on the
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other. In an attempt to extend the original de*nition to an inenumerable variation,
we lack of the principle to rely on if we insist on the syntactic structures. One of
such syntactic monsters appears in proof theory. Takeuti’s ordinal diagram is a pow-
erful well-ordering to prove the consistency of logical systems. But it requires sev-
eral pages for just de*nition and dozens of pages for the proof of well-orderedness
[61, 63]. We want to demonstrate that the ordering including the recursive path order-
ing and the ordinal diagrams can be handled in a single framework using the ana-
lytic functor, thus giving a mathematical foundation to a class of well-orderings. The
recursive path ordering is based on the theory of well-quasi-ordering, including the
celebrated theorem by Kruskal [41]. The analytic functor is useful also to deal with
a class of well-quasi-orderings in a uni*ed framework. These points are discussed in
Section 2.
The second application is to the semantics of the lambda calculi. The lambda cal-

culus is widely used as the foundation of functional programming from its beginning.
However, the calculus has many concepts that challenge if we try to construct its
model. For instance, we must deal with a function and a data in a single regime, and
we must *nd the interpretation of the *xpoint combinator that produces a *xpoint for
any function. This challenge stimulated the development of the domain theory after
the work by Scott [57, 26]. This theory shows that, using posets, we can construct
models where these characteristic phenomena of the lambda calculus are interpreted
consistently. These models are extensively used to develop the theory of the lambda
calculus, but they are still di:cult to analyze. Later Girard gave a model of lambda
calculi where the terms of the calculi are interpreted by functors in a special class
of analytic functors [23]. Since analytic functors generalize formal power series, we
may hope that we can directly manipulate the model of the lambda calculus, using
a handful weapons of mathematics developed in centuries of its history. Indeed, we
proved that the interpretations of the pure lambda terms are regarded as systems of
formal power series in integer coe:cients, and we gave an explicit formula for the
interpretation of the *xpoint combinator in [30]. In Section 3, we give a formal power
series interpretation of system PCF. The system contains the *xpoint combinator; thus
its interpretation by an analytic functor is expected to give a formula computing *x-
points of formal power series. In analysis, this kind of formula has been known for
long as the Lagrange inversion formula [21]. We give a new proof of the generalization
of the inversion formula to several variables, known as the Lagrange–Good inversion
formula [24]. To this end, we use the recent result [28, 29] establishing *xpoints and
categorical traces [40].
This paper is an extension of the talk presented in the workshop “Theories of Types

and Proofs”, and written as a lecture note surveying the author’s recent works. Several
results have already been published elsewhere (see Reference). Part of Section 2 and
the most of Section 3 are new. Also the results by others are included to facilitate the
reader’s understanding of this ongoing *eld. In the *rst section, we give an elementary
theory of analytic functors needed to read the following sections.
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1. Analytic functors

1.1. Preliminaries

We begin with preliminaries of category theory needed in this paper.

A weak pullback of a family of morphisms Ai
fi→B is an object P with a family

of morphisms P
pi→Ai satisfying that all fi ◦ pi are equal, and that, for each family of

morphisms D
gi→Ai subject to the condition that all fi ◦gi are equal, there is a morphism

h from D to P such that gi =pi ◦ h for every i. The di=erence with the usual pullback
lies in that we do not require the uniqueness of the intermediate morphism h. In this
paper, whenever we refer pullbacks or weak pullback, we intend those for arbitrarily
many legs.
Set is the category of all small sets and all functions. For a small category C, we

denote by SetC the category of all presheaves over C and all natural transformations.
Here a presheaf over C is simply a functor from C to Set.
A 4nitely presentable object in a category C is the object X satisfying that the

representable functor C(X; –) preserves *ltered colimits [2]. Finitely presentable objects
in Set are simply *nite sets. If A is a discrete category, i.e., a set, a *nitely presentable
object of SetA is equivalent to a function f carrying a∈A to a natural number, where
a natural number n is identi*ed with the set of all natural numbers satisfying x¡n, this
f subject to the condition that f(a) is 0 except for *nitely many a. We can regard
such a function as a *nite multiset � where a is in � with multiplicity m i= f(a)=m.
For a category C and its object B, the slice category C=B is de*ned as follows:

Its objects are the pairs of an object A and a morphism A
f→B of C. A morphism g

from (A; f) to (A′; f′) in the slice category is a morphism A
g→A′ of C rendering the

triangle diagram

commutative. More in general, for a functor F :C→ D and an object B of D, the slice
category F=B is de*ned as follows: The objects are pairs of an object A of C and a

morphism FA
f→B in D. A morphism g from (A; f) to (A′; f′) is a morphism A

g→A′

in C rendering the triangle diagram

commutative. There is an obvious forgetful functor F=B→C taking the *rst component.

De�nition 1.1. Let F : C→Set be a functor from some category C.
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The category of elements el(F) is de*ned as follows: The objects are the pairs (B; a)
where B is an object of C and a is a member of FB. A morphism f : (B; a)→ (B′; a′)

in el(F) is a morphism B
f→B′ satisfying Ff(a)= a′.

There is an obvious forgetful functor from el(F) to C taking the *rst component. If
the functor F preserves pullbacks, the forgetful functor el(F)→C creates pullbacks.

Namely, for a family of morphisms (Ai; ai)
fi→(B; b) in el(F), if P is a pullback of

Ai
fi→B in category C, there is an element c∈FP such that (P; c) is a pullback of fi in

the category el(F) of elements. Likewise, if F preserves weak pullbacks, for a family
of morphisms fi in el(F) and a weak pullback P of fi in C, there is a weak pullback
(P; c). Similar facts hold for other types of limits as well.
To each functor F :C→D between small categories, we associate functors F∗ :SetD

→SetC and F! : Set
C→SetD such that F! � F∗. The inverse image functor F∗ is easily

de*ned. For each presheaf G over D, the composition G ◦F yields a presheaf over C.
The composition (·) ◦ F is exactly the inverse image F∗.
The functor F! :Set

C→SetD is de*ned by left Kan extension. We put F!(T )
�=

LanF(T ) for each presheaf T over C where LanF(T ) denotes the left Kan extension of
T along F . Namely, F!(T )=LanF(T ) is the presheaf over D satisfying the isomorphism

SetD(LanF(T ); G) ∼= SetC(T; F∗(G))

natural in G ∈SetD. We have the following pointwise construction of F!(T )=LanF(T ).
For each object B of D, we have a diagram F=B→C T→Set where the left arrow is
the forgetful functor from the slice category mentioned above. We denote this diagram
by T (F=B). Then the value of the left Kan extension at B is given by the colimit
F!(T )(B)

�= colim
→

T (F=B) in the cocomplete category Set. This mapping F! gives rise

to a functor and the isomorphism above turns out to be natural also in T . Hence F! is
a left adjoint of F∗.
By the dual construction, we can de*ne a right adjoint F∗ of the functor F∗, although

we do not use this.
A group G is regarded as a category with a single object ∗ and with morphisms

that are the elements of G. Then a presheaf T over G determines a left G-set A as
the image T (∗) of the single object, and vice versa. We recall that a left G-set is a
set A endowed with a left action of the group G, that is, with a group homomorphism
G→AutSet(A). We consider the functor F! :Set

G→Set1 where F is a functor from
the group G to the trivial category 1 having a single object and a single morphism.
For each G-set A determined by a presheaf T , the diagram T (F=∗) determined by the
unique object ∗ of 1 is simply the G-set A itself endowed with the morphisms p · (−)
given by the left action for p∈G. Hence the colimit F!(T ) in Set1 ∼= Set is exactly
the quotient set A=G, that is, the set of all orbits by the left action of G.
We denote by AutC(A) the group of all automorphisms of A (i.e., invertible mor-

phisms from A to A), for a category C and its object A.
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1.2. Analytic functors

We give de*nition of analytic functors by Joyal [38]. Let X be a *nite set and G a
subgroup of the symmetric group on X . Namely G is a group of bijections from X to
itself, regarded to act on X from left by p · x=p(x) for p∈G and x∈X . Then, for
each set A, the group G acts on the homset Set(X; A) by composition of inverse, that is,
p · f := f ◦ p−1 for p∈G and f : X →A. In other words, G acts on Set(X; A) from
right. Let Set(X; A)=G denote the set of all orbits by this action. Then Set(X;−)=G
gives rise to a functor from Set to Set. An analytic functor is by de*nition a sum of
these functors:

De�nition 1.2. An analytic functor from Set to Set is a (not *nite, in general) coprod-
uct

∑
i∈I Set(Xi;−)=Gi where Xi is a *nite set and Gi is a subgroup of the symmetric

group AutSet(Xi).

A leading example frequently appearing in this paper is the functor expX . For a set
A, we de*ne expA as the set of all *nite multisets of members of A. This operation
turns out to be an analytic functor. Namely, if we write X n =Set(n; X ),

expX = 1 + X=S1 + X 2=S2 + X 3=S3 + · · ·+ X n=Sn + · · ·

where Sn is the symmetric group over n letters. The power X n is the set of all lists
〈a1; a2; : : : ; an〉 of members of X of length n. The symmetric group Sn acts on the set
of lists by permuting the components. The orbits by this action are the lists where the
order of components are ignored. These are exactly multisets {a1; a2; : : : ; an}.
The reason this functor is named expX lies in its similarity to the Taylor series of

the exponential function exp x=1 + x=1! + x2=2! + · · · + xn=n! + · · · . If we identify
the symmetric group Sn with its order n!, the functor expX has the same form as
the Taylor series of the exponential function. So one may regard analytic functors
as generalization of formal power series. In general, transferring from Set(n; X )=G to
xn=|G| where |G| is the order of the group G, we can associate a formal power series
to each analytic functor.
One of the subjects of mathematics where the formal power series are principal

vehicles is enumerative combinatorics. Generating functions are a machinery to attack
the problems of enumeration. The coe:cient of xn in a generating function is the
number of structures satisfying the condition of the problem. The analytic functors are
introduced to give a foundation to the theory of generating functions in enumerative
combinatorics. We refer the reader to [37, 7]. The relation between analytic functors
and enumerative combinatorics is employed to answer a question of the lambda calculus
addressed by Girard [30].
We have two other equivalent conditions for analytic functors. To this end, we need

several notions.
A transitive object is an object X satisfying the following two conditions for every

object A: (i) Hom(X; A) is non-empty; (ii) The right action of Aut(X ) on Hom(X; A)
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by composition is transitive. Namely, for all f; g :X →→ A, there is an automorphism
p :X ∼→X such that f= gp. Obviously any object isomorphic to a transitive object is
transitive.

Lemma 1.3.
(i) If X is a transitive object; every endomorphism f :X →X is invertible. Namely

Hom(X; X )=Aut(X ).
(ii) Any two transitive objects are isomorphic.

Proof. (i) It su:ces to show that each X
f→X has right inverse. Since the action of

Aut(X ) is transitive, there is p∈Aut(X ) such that f ◦p= idX , giving the right inverse
of f. (ii) Suppose that X and Y are transitive objects. By the non-emptiness condition,

there are morphisms X
f→Y and Y

g→X . If we let the inverses of gf and fg be p and
q, then pg and gq give the left and the right inverse of f, respectively. Thus they
must be equal and are the inverse of f.

Remark. An initial object is a special case of a transitive object X , where the group
Aut(X ) is a unit group.

De�nition 1.4. Let C be a category and A its object.
A weak normal form of A is a transitive object X →A in the slice category C=A.

What interests us later on are weak normal forms in the category el(F) of elements.
We give an example for the case that F is the analytic functor FX = expX of *nite
multisets. Let us consider an object (N; {5; 5; 4}) of el(F). A weak normal form of this

object has the shape (3; {0; 1; 2}) f→(N; {5; 5; 4}) where the function f is not unique.
For example we may set f to be given by 0 → 5, 1 → 5 and 2 → 4. But an arbitrary

function 3
f′
→N carrying any two elements of the domain to 5 and the remaining single

element to 4 can take place of f, giving a weak normal form as well.
By the preceding lemma, a weak normal form is determined uniquely up to iso-

morphism, if it exists. The weak normal form property is satis*ed by the category C
i= each object in the slice category C=A has a weak normal form for every object A.

Furthermore, we call X a weak normal form if an identity X 1→X is a weak normal
form.

Lemma 1.5. Let A
g→B be a morphism in a category C.

(i) If X h→B is a weak normal form; then there is a weak normal form X
f→A such

that h= gf.

(ii) Suppose that C has the weak normal form property. If X
f→A is a weak normal

form; then X
gf→B is a weak normal form.

Proof. (i) We repeatedly use the hypothesis that h is a weak normal form, so we

refer this as WNF. By WNF, there is X
f→A such that h= gf. We show that f is a weak
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normal form in C=A. For this, let C e→A be any object of C=A. By WNF, there is X d→C

such that h= ged, i.e., h ed→ g over B. By WNF again, there is p :X ∼→X over B such

that edp=f, i.e., f
dp→ e over A. Since h

dp→ ge over B, dp is unique up to AutC=B(h)
by WNF. We must show that dp is unique up to AutC=A(f). So let us assume that

f d′
→ e over A. By WNF, there is q : X ∼→X over B such that d ′q= dp. Then f= edp=

ed ′q= fq, showing q is in AutC=A(f).

(ii) Let Y h→B be a weak normal form. Then there is Y k→A such that h= gk.
By (i), k is a weak normal form of A. So there is an isomorphism f∼= k, inducing
gf∼= gk(= h). Hence gf is a weak normal form of B.

As an easy corollary of this lemma, we have the following: Suppose that a category

C satis*es the weak normal form property. Then X
f→A is a weak normal form i=

X is a weak normal form. The direction (⇐) is an immediate consequence of (ii) of
the preceding lemma. For (⇒), an application of (i) of the preceding lemma implies
the existence of a weak normal form X

p→X , this morphism p being invertible as a
morphism between transitive objects f. Hence p is isomorphic to an identity 1X in the
slice category C=X , concluding that also the identity is a weak normal form.
Now we can state two other equivalent conditions for analytic functor. The one of

them is in terms of universal conditions, and the other is by the weak normal form
property.

Theorem 1.6. For a functor F : Set→Set; the following three conditions are equi-
valent:
(i) F is isomorphic to an analytic functor.
(ii) F preserves all 4ltered colimits and all weak pullbacks (not only binary ones).
(iii) The category el(F) of elements has the weak normal form property. Moreover;

X is a 4nite set for every weak normal form (X; x).

Remark. To extend the theorem to more general categories, we should read the *nite
set X in the condition (iii) as a *nitely presentable object.

The proof of (iii)⇒ (i) is easy. Let (Xi; xi) (i∈ I) be a set of representatives of all
isomorphism classes of weak normal forms in el(F). For each element a∈FA, there

is unique (Xi; xi) such that a morphism (Xi; xi)
f→ (A; a) is a weak normal form in

el(F). Hence, for every (Xi; xi)
f′
→ (A; a), we have an invertible morphism p such that

f′ =f ◦p, since f′ is a weak normal form as well by the corollary mentioned after
Lemma 1.5 and a morphism between weak normal forms is invertible. If we put Gi to
be Autel(F)(Xi; xi), namely the stabilizer of xi with respect to the action of AutSet(Xi) on
FXi, this morphism p is an element of Gi. Hence FA has a one-to-one correspondence

to the sum of Set(Xi; A)=Gi. Furthermore, if (Xi; xi)
f→ (A; a) is a weak normal form

and g : A→A′, then (Xi; xi)
gf→ (A′; Fg(a)) is a weak normal form by Lemma 1.5(ii).
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This shows that Fg equals the sum of Set(Xi; g)=Gi. Hence F is isomorphic to an
analytic functor

∑
i Set(Xi;−)=Gi. This concludes the proof of (iii)⇒ (i). Next we

prove (i)⇒ (ii).

Lemma 1.7. Each analytic functor preserves 4ltered colimits.

Proof. A representable functor Set(X;−) for *nite X preserves *ltered colimits as
an endofunctor on Set, since *nite sets are exactly the *nitely presentable objects of
Set. We immediately see that, if G is a subgroup of the symmetry group AutSet(X ), the
functor Set(X;−) indeed sends *ltered colimits in Set to *ltered colimits in
G-Set. Moreover, for unique F :Gop→ 1, the functor F! :Set

Gop →Set taking quotients
preserves all colimits, since F! =LanF is the left adjoint of the inverse image functor
F∗. Hence a functor Set(X;−)=G preserves *ltered colimits. Finally coproduct pre-
serves all colimits. Therefore an analytic functor preserves *ltered colimits.

Lemma 1.8. Each analytic functor preserves weak pullbacks (including in4nite ones).

Proof. Coproduct (possibly in*nite) on Set preserves pullbacks, thus preserving weak
pullbacks [45]. So it su:ces to show that the functor Set(X;−)=G preserves weak
pullbacks for a *nite set X and a subgroup G of AutSet(X ).

Let W
ci→Ai be a weak pullback of a family of morphisms Ai

hi→B. We can conclude
that FW is a weak pullback of Fhi if there is a function " from a pullback (

∏
FB FAi)

to FW satisfying F(ci) ◦"= #i where #i is the ith projection from the pullback. To
obtain ", let us take 〈[fi]G; i〉 in

∏
FB FAi. Namely, all hifi are equal modulo the action

of G. Thence we *x i0, put f0 := hi0fi0 , and we take pi ∈G such that f0 = hifipi. Since

W is a weak pullback, there is a morphism X k→W such that fipi = cik for all i. We
de*ne the function " by "(〈[fi]G; i〉)= [k]G. (Remark: [k]G depends on the choice of
representatives fi). We have F(ci)([k]G)= [cik]G = [fipi]G = [fi]G, this verifying FW
to be a weak pullback.

From the last two lemmas, we have the proof of (i)⇒ (ii). Finally we verify
(ii)⇒ (iii).

In place of manipulating el(F) directly, we provide conditions for a category C to
have a weak normal form property. First we introduce a de*nition. A minimal object
in a category C is an object S to which every morphism A→ S is an epimorphism.
The conditions on C are the following two:

(1) For each family of morphisms Bi
fi→A with a common target, there is a family of

morphisms C
gi→Bi such that figi are equal. We refer this situation as “each fan

is spanned”.

(2) For each object A, there is a morphism S
f→A from a minimal object S which has

only *nitely many quotient objects.

First we show that the existence of minimal objects is related to the weak normal form
property of a category C.
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Lemma 1.9. Let C be a category ful4lling the conditions (1) and (2) above; and let
X be an object of C.
Every X →A is a transitive object in the slice category C=A for all object A if and

only if all morphism S→X from each minimal object S is isomorphic.

Proof. (⇒) Suppose S
f→X is given where S is minimal. In C=X , there is a morphism

g from idX to f. Hence fg= idX . By minimality, g is epi. So f is an isomorphism.
(⇐) Suppose that

C� h

X −→
f

A

is given. We show the following two: (a) there is a morphism X →C over A. (b) if
g; g′ : X �C over A, then there is an isomorphism p : X ∼→X over A such that gp= g′.
For (a), we take a square diagram

D
q′−−→ C

q

� � h

X −−→
f

A

and take S m→D where S is minimal. Here the conditions (1) and (2) are used. Then

S
qm→X is iso by the hypothesis. Hence X

(qm)−1

→ S
q′m→ C is a morphism from f to h in

C=A. For (b), apply the same argument for (g; g′) in place of (f; h).

Lemma 1.10. A category C has the weak normal form property if C ful4lls the
conditions (1) and (2) above.

Proof. By the preceding lemma, it su:ces to show that, for every minimal object X ,
there is a minimal object X ′ with an (epi)morphism X ←X ′ such that every morphism
X ′← S from each minimal object S is isomorphic.
For contradiction, let us assume that there is a sequence of epimorphisms X0

e0←X1
e1←

X2
e2← · · · where all Xi are minimal objects and none of the morphisms are isomor-

phisms. Let us put eij = ei ◦ ei+1 ◦ · · · ◦ ej−1 for i¡j. If i= j, we put eij to be an
identity. We consider a fan of ! morphisms X0

e0i←Xi, which is spanned by a fam-

ily of morphisms Xi
di←X!. Take X!

c← S with minimal S which has only *nitely
many (say, n) quotient objects. We consider n + 1 morphisms ei n+1dn+1c from S
to Xi. By the pigeonhole principle, there are i¡j such that ei n+1dn+1c is equal to
ej n+1dn+1c as quotient objects. Hence there is an invertible morphism Xj

p→Xi such
that ei n+1dn+1c=pej n+1dn+1c. Since ej n+1dn+1c is epi, we have eij =p. So ei; ei+1

etc. must be invertible. Contradiction.

Lemma 1.11. The category el(F) of elements has the weak normal form property if
F : Set→Set preserves 4ltered colimits and weak pullbacks (including in4nite ones).
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Proof. We verify that el(F) ful*lls the conditions (1) and (2) above. Condition (1)
immediately follows from the assumption that F preserves weak pullbacks (see the
paragraph after De*nition 1.1). We prove (2). To each object (A; a) of el(F) there is
a morphism (X; x)→ (A; a) with *nite set X , since F preserves *ltered colimits. Each
*nite set X has only *nitely many subobjects. Hence we can *nd (X0; x0)→ (X; x)
with monic X0→X satisfying that there is no (Y; y)→ (X0; x0) with monic Y →X .
Therefore (X0; x0) is a minimal object over (A; a), observing that Set has epi-mono

factorization and that (Y; y)
f→ (X0; x0) is epi in el(F) i= f is epi in Set. Finally each

*nite set X0 has only *nitely many quotient objects, thus so does (X0; x0).

Remark. In the argument of this section, we used only countable fans. Accordingly,
in order to prove the weak normal form property of el(F), it su:ces that F preserves
weak pullbacks of countably many morphisms.

The last lemma completes the proof of (ii)⇒ (iii). So we have proved the equiva-
lence of the three conditions in Theorem 1.6.

1.3. Normal functors

Girard introduced normal functors for the purpose of giving models of various sys-
tems of lambda calculi. It turns out that normal functors are a special case of analytic
functors. Namely the Qat species [42] correspond to the normal functors. So they obtain
the same concept from entirely di=erent motivations. In [23], analytic functor is used
as an alias of normal functor. To avoid confusion, we reserve the name of analytic
functor for more general ones by Joyal and call normal functors for these specialized
functors.

De�nition 1.12. A normal functor from Set to Set is a coproduct
∑

i∈I Set(Xi;−) of
representable functors where all Xi are *nite sets (*nitely presentable objects of Set).

Therefore normal functors are simply analytic functors where the involving groups
are all a unit group.
A typical example of normal functors is the functor List(X ). For a set A, we de*ne

List(A) as the set of all *nite lists 〈a1; a2; : : : ; an〉 of members of A. As in the case of
analytic functor expX , we have the following representation as a formal power series

List(X ) = 1 + X + X 2 + X 3 + · · ·+ X n + · · ·
where X n is equal to the collection of all lists of exactly n components. Another
example of a normal functor is BinTr X that is the collection of all ordered binary
trees with leaves labeled by members of X . Here an ordered tree means a tree with
root such that the set of immediate successors of each node is linearly ordered. We
have the representation

BinTr X = X + X 2 + 2X 3 + 5X 4 + · · ·+ CnX n + · · ·
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where the coe:cient Cn is the Catalan number (1=n)( 2n−2
n−1 ). Here we identify *nite

sets with their cardinalities, which are non-negative integers. So CnX n is the cartesian
product of two sets Cn and X n in the category Set.
Corresponding to Theorem 1.6, we have two equivalent characterizations of normal

functors. First we de*ne a normal form, that is a special case of a weak normal form.

De�nition 1.13. A normal form of an object A in a category C is an initial object
X →A in the slice category C=A. If every object has a normal form, the category C
ful*lls the normal form property.

Normal forms are developed by Girard in the theory of ordinal notations called
dilators in mathematical logic [22].

Theorem 1.14. For a functor F : Set→Set; the following three conditions are equi-
valent:
(i) F is isomorphic to a normal functor.
(ii) F preserves all 4ltered colimits and all pullbacks (including in4nite ones).
(iii) The category el(F) of elements enjoys the normal form property. Moreover; X

is a 4nite set for every normal form (X; x).

In [23], it is assumed, by de*nition, a normal functor preserves equalizers as well.
This condition, however, follows from the preservation of *ltered colimits and pull-
backs. In fact, by the preceding theorem, the preservation of these ensures that the func-
tor is isomorphic to the formal power series

∑
i∈I Set(Xi;−). Since the representable

functors preserve any limits and the coproduct preserves equalizers, the functor must
preserve equalizers. Indeed the functor preserves all connected limits, i.e., the limits
the underlying diagram of which is connected graphically.
The proof of Theorem 1.14 is a modi*cation of the proof of Theorem 1.6. In the

proof of (iii)⇒ (i) therein, the stabilizer Gi turns out to be a unit group in the current
case, since a normal form is de*ned as an initial object, on which the automorphism
group is a unit group. The direction (i)⇒ (ii) is obvious, as mentioned in the preceding
paragraph. We prove (ii)⇒ (iii).

Lemma 1.15. Let A be an object of a category C.
(i) If an identity A 1A→A is a weak normal form in a category C; it must be a normal

form.

(ii) Suppose that C has binary pullbacks. If X
f→A is a normal form; then X

gf→B is
a normal form for every A

g→B.

Proof. (i) The automorphism group AutC=A(1A) on the identity 1A is always a unit

group. (ii) Let C h→B is an object of the slice category over B. We take a pullback

A×B C in category C. Since X
f→A is a normal form, there is a unique morphism from

f to the projection A×B C→A. Hence we have a morphism X →A×B C→C, which
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turns out to be a morphism from gf to h in the slice category over B. Furthermore,
every morphism from gf to h must factor through A×B C. So, by the universal property
of the pullback, the morphism must be unique.

We start the proof of (ii)⇒ (iii) of Theorem 1.14. By hypothesis (ii), F is an
analytic functor, so it satis*es the weak normal form property. We prove that every

weak normal form (X; z)
f→ (A; a) is actually a normal form. By Lemma 1.5, it is

implied that an identity (X; z) 1X→ (X; z) is a weak normal form. But the lemma above
shows that it must be a normal form. Since F preserves pullbacks by hypothesis, the
category el(F) of elements has pullbacks (see the argument after De*nition 1.1). So,

by (ii) of the preceding lemma, (X; z)
f→ (A; a) must be a normal form. This completes

the proof.

1.4. Composition

Composition of analytic functors is an analytic functor. This is obvious by the uni-
versal conditions satis*ed with analytic functors: If both G and H preserve *ltered
colimits as well as weak pullbacks, then so does H ◦G. Later, however, we need the
weak normal forms of composition of analytic functors. The following theorem shows
that the weak normal forms of H ◦G are obtained by taking the weak normal forms
of weak normal forms.

Theorem 1.16. Let G and H be analytic functors and let c be an element of H (G(A)).
The weak normal form of (A; c) in el(H ◦G) has the shape Rf : (X1 + X2 + · · · +

Xn; Rw)→ (A; c) which is given as follows: Let (Y; w)
g→ (GA; c) be a weak normal form

in el(H). We put the 4nite set Y to be {1; 2; : : : ; n}; and we take a family of weak

normal forms (Xi; zi)
fi→ (A; g(i)) in el(G) for each i=1; 2; : : : ; n. Function Rf is the

unique map from the coproduct induced by fi’s. Furthermore; we put Rw=He(w)
where Y e→G(X1 + X2 + · · ·+ Xn) carries i to Rzi which is the image of zi ∈G(Xi) by
the injection.

Proof. Let (B; d) k→ (A; c) be a morphism of el(HG). First, we verify the existence of
a morphism from (

∑
Xi; Rw) to (B; d) over (A; c). The morphism k induces a morphism

(GB; d) Gk→ (GA; c) in el(H). Hence there is (Y; w) h→ (GB; d) over (GA; c). In turn,

this induces a morphism (B; hi)
k→ (A; gi) in el(G). Hence there is (Xi; zi)

li→ (B; hi)
over (A; gi). Let us put Rl= [l1; l2; : : : ; ln], the unique map from the coproduct X1 +
X2 + · · · + Xn induced by li’s. The mapping G Rl ◦ e carries each i∈Y to G Rl( Rzi)= hi.
So we have h=G Rl ◦ e, and thus d=Hh(w)=HG Rl( Rw), concluding the existence of

(
∑

Xi; Rw)
Rl→ (B; d) over (A; c).

Next we verify the morphism Rl is unique up to isomorphisms. So we suppose to
have another morphism Rl′ from (

∑
Xi; Rw) to (B; d) in el(HG). They induce mor-

phisms G Rl ◦ e and G Rl′ ◦ e from (Y; w) to (GB; d) in el(H). Hence there is an iso-
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morphism q : (Y; w) ∼→ (Y; w) in el(H) from G Rl ◦ e to G Rl′ ◦ e over (GB; d). Namely,
the equation G Rl( Rzi)=G Rl′( Rzqi) holds for each i∈Y . These equations induce morphisms
(Xi; qi)→ (B; hi) and (Xqi ; zqi)→ (B; hi) in el(G) where hi =G Rl( Rzi). Thus we have a
family of isomorphisms pi : (Xi; zi)

∼→ (Xqi ; zqi) in el(G) over (B; hi). So there is a bi-
jection r determined by (q;

∑
pi) on

∑
Xi and it holds that r is an automorphism on

(
∑

Xi; Rw) in el(HG), giving a morphism from Rl to Rl′ over (B; d).

As is easily seen, the automorphism r=(q;
∑

pi) in this proof can be described
using the wreath product of groups. Let us recall de*nition of wreath product [54].

De�nition 1.17. Let G and H be permutation groups acting on sets X and Y respec-
tively.
The wreath product GWrH is the semidirect product GY oH where GY is the

cartesian product of card Y copies of G with an obvious right action of H .

More concretely, the wreath product is the group having the cartesian product of
GY×H as its underlying set. For �; -∈GY and p; q∈H , the multiplication (�; p) ·(-; q)
is de*ned by (�q · -; qp), and the inverse (�; p)−1 is de*ned by (�−1p−1; p−1). Here
�q · - is an element of GY carrying y∈Y to �(qy) · -(y), and �−1p−1 carries y∈Y to
(�(p−1y))−1.
The wreath product GWrH acts on the cartesian product X×Y from left by (�; p) ·

(x; y)= (�(y) · x; py). We note that the wreath product turns out to be a permutation
group by this action, namely, that two elements of the wreath product give di=erent
actions.
We let GS denote the setwise stabilizer where G is a permutation group acting on a

set X and S is a subset of X . Namely, GS is the collection of p∈G satisfying px∈ S
for every x∈ S. Moreover we denote by GS

S the permutation group acting on the subset
S induced by the setwise stabilizer GS . Composition of analytic functors is described
using the wreath product as follows [64].

Corollary 1.18. Let G=
∑

i∈ I Set(Xi;−)=Gi and H =
∑

j∈ J Set(Yj;−)=Hj be ana-
lytic functors on Set.
The composition H ◦G is an analytic functor presented as follows:

H (G(A)) ∼= ∑
[e]∈HI

Set
( ∑

y∈Yj

Xe(y); A
)/

Ke

where the group Ke for e :Yj→ I is given by
∏

i∈I Gi Wr (Hj)
e−1(i)
e−1(i) (cartesian product

of wreath products) where the ith wreath product acts on Xi×e−1(i).

We need several comments for the meaning of the formula. First Xi×e−1(i) is the
sum of e−1(i) copies of Xi regarded as a subset of

∑
y∈Yj Xe(y). We recall the cartesian

product of permutation groups acts on the disjoint sum of sets. Second, if [e] = [e′]
holds (i.e., e= e′p for some p∈Hj), there is a group isomorphism (Hj)

e−1(i)
e−1(i) onto
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(Hj)
e′−1(i)
e′−1(i) by conjugate p−1(·)p for each i∈ I . Thus a group isomorphism Ke

∼=Ke′

is induced, although it is not canonical. If we identify Ke and Ke′ through a chosen
isomorphism, the formula in the right-hand side makes sense irrelevant of the choice
of the representative e.

Proof. We consider Theorem 1:16. We recall that the index set I in the formal power
series representation of G equals the set of isomorphism classes of weak normal forms
in el(G). Let (Yj; w) be a weak normal form in el(H) corresponding to the index j∈ J .
Then He(w)=He′(w) i= e; e′ :Yj →→ I are in the same orbit for the action of Hj, that
is, [e] = [e′]. So the isomorphism classes of weak normal forms in el(HG) correspond
bijectively to the set of [e]∈HI . Furthermore, if we transfer the function e in the
preceding theorem into the map (denoted by the same symbol e) carrying i∈Yj to
the index e(i)∈ I which corresponds to the weak normal form (Xi; zi) in the preceding
theorem, then the stabilizer of Rw is isomorphic to the group Ke here.

Remark. If Xi is an empty set for some i, the wreath product Gi Wr (Hj)
e−1(i)
e−1(i) has

no points to act on, although this wreath product may still be non-trivial. If this is
the case, Ke is not a permutation group. So it is more precise to say that Ke is the
permutation group induced by

∏
i∈ I Gi Wr (Hj)

e−1(i)
e−1(i).

1.5. Combinatorial species

Combinatorial species are introduced in [37] to give a foundation to the theory of
enumerative combinatorics. They are shown to be equivalent to analytic functors. To
prove this, *rst we form the category of analytic functors.
A weak cartesian natural transformation is a natural transformation 0 :F→G subject

to the condition that the square diagram

FC
0C−−→ GC

Ff

� � Gf

FD −−→
0D

GD

is a weak pullback for every morphism C
f→D. If F and G are analytic functors, we

can show that 0 preserves and reQects weak normal forms as follows:

Lemma 1.19. Let F and G be analytic functors and let F 0→G be a weak cartesian
natural transformation.
(X; x) is a weak normal form in el(F) if and only if (X; 0X (x)) is a weak normal

form in el(G).

Proof. We verify the direction (⇒) only, leaving the other to the reader. Let (Y; y′) h→
(X; 0X (x)) be a weak normal form in el(G). It su:ces to prove that h is invertible.
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Since the square diagram

FY
0Y−−→ GY

Fh

� � Gh

FX −−→
0X

GX

is a weak pullback, there is a member y∈FY such that y′ = 0Y (y) and x=Fh(y).

The latter equality means that (Y; y) h→(X; x) is a morphism in el(F). Since (X; x) is
assumed to be a weak normal form, there is a morphism (X; x) m→(Y; y) in el(F) satis-
fying hm=1X . We note that (X; 0X (x))

m→(Y; y′) is a morphism of el(G). This follows
from Gm(0X (x))= 0Y (Fm(x))= 0Y (y)=y′. Since (Y; y′) is a weak normal form, the
endomorphism mh on (Y; y′) must be invertible. Now, both hm and mh being invertible,
h is invertible.

We note that the proof uses the global property of analytic functors, that is, the
existence of weak normal forms for all objects in the category of elements.

De�nition 1.20 (of [Set;Set]AF). [Set;Set]AF is the category of all analytic functors
on Set and all weak cartesian natural transformations between them.

Let B be the category de*ned as follows: The objects are all natural numbers n, and
the morphisms from n to n are all permutations over n letters. There are no morphisms
between m and n if m �= n. Hence B is the groupoid of the disjoint sum of symmetric
groups Sn where n ranges over N. We note that B is equivalent to the (large) category
of all *nite sets and all bijections.
A combinatorial species is a functor from B to Set. A morphism between combina-

torial species is simply a natural transformation. Hence the category of combinatorial
species is nothing but the category SetB of presheaves. We denote a combinatorial
species by F[·] using square brackets while an analytic functor by F(·) using braces.
We warn that F[n] di=ers from F(n) even if n is a natural number that may be regarded
as a *nite set of n elements.
Our purpose is to verify that there is a categorical equivalence between the category

[Set;Set]AF of analytic functors and the category SetB of combinatorial species. First
we de*ne a functor from SetB to [Set;Set]AF. The object map of the functor is given
as follows. To each presheaf F[·], we associate a functor

F(A) ,
∑
n∈N

Set(n; A)×Sn F[n]

where A ranges over Set. Here Set(n; A)×SnF[n] is the quotient of the cartesian product

by equating (f; x) to (f ◦ p−1; p · x) for all p∈ Sn, where n
f→A and x is a member

of F[n].
This functor F(A) is actually an analytic functor, since we have an isomorphism

F(A)∼= ∑i Set(Xi; A)=Gi where the summation ranges over all pairs of natural numbers
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Xi and orbits oi in F[Xi], and Gi is the stabilizer subgroup of an arbitrary element in
the orbit oi. Note that the group Gi is determined up to conjugation.
For the morphism map of the functor, a natural transformation 0[·] :F[·]→G[·] in

SetB yields a natural transformation 0(·) :F(·)→G(·). For a set A, the function 0(A)

by de*nition sends (f; x) to (f; 0[n](x)) if n
f→A and x∈F[n].

We must show that 0(·) is weak cartesian. Let A k→B be a function. We prove that
the following square diagram is a weak pullback:

F(A)
0(A)−−→ G(A)

F(k)

� � G(k)

F(N ) −−→
0(B)

G(B)

Let (g; x) be a member of F(B) and (f; y) a member of G(A), and suppose that these
members are sent to the same element of G(B). Hence there is a permutation p such
that g= kfp−1 and 0[n](x)=p·y. Then (f; p−1 ·x) is an element of F(A), this element
sent to (g; x) and (f; y) by F(k) and 0(A) respectively. This veri*es that F(A) is a
weak pullback.

Theorem 1.21. There is a categorical equivalence between the category [Set;Set]AF
of analytic functors and the category SetB of combinatorial species.

Proof. We leave to the reader to show that the functor from SetB to [Set;Set]AF
de*ned above is full and faithful. It remains to show that every analytic functor F(·)
induces a combinatorial species F[·] satisfying a natural isomorphism FA∼= ∑n∈N Set
(n; A)×SnF[n].
For each natural number n, we de*ne the set F[n] as the sum of the set Sn=Autel(F)(n;

c) of cosets where the summation is over the equivalence classes of all weak normal
forms (n; c) in el(F). The symmetric group Sn acts on F[n] by the canonical left actions
on cosets.
Note that

∑
n∈N Set(n; A)×SnF[n] is naturally isomorphic to

∑
Set(Xi; A)=Gi where

i ranges over the equivalence classes of weak normal forms and, if (n; c) is a rep-
resentative, Xi equals n and Gi is Autel(F)(n; c). Furthermore a natural isomorphism∑

Set(Xi; A)=Gi
∼=F(A) is determined by the function carrying X

f→A to a member a

of F(A) given by the weak normal form (X; c)
f→(A; a).

1.6. Many variables

A theorem similar to Theorem 1.21 holds for normal functors. In this case, however,
we have a better result, that the normal functors may have additional parameters.
From this result, we can form a cartesian closed category having normal functors as
morphisms. We demonstrate this in the following.
We extend normal functors to *nitely or in*nitely many variables. Let A be a set. The

category SetA of presheaves is regarded as the cartesian product of cardA copies of Set.
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A normal functor from SetA to Set is by de*nition a coproduct
∑

i∈ I Set
A(Xi;−) of

representable functors where all Xi are *nitely presentable objects of SetA. By tupling
these functors, we can de*ne also a normal functor from SetA to SetB for sets A
and B. Namely a normal functor F from SetA to SetB is a family of normal functors
Fb :Set

A→Set where b ranges over the set B.
Let us recall that a *nitely presentable object of SetA is regarded as a *nite multiset

of members of A. If A is a *nite set n, a presheaf Z in Setn is regarded as a tuple
(Z0; Z1; : : : ; Zn−1) of sets. If a *nitely presentable object of Setn is given as a multiset �
containing 0; 1; : : : ; n− 1 with multiplicity m0; m1; : : : ; mn−1 respectively, then the value
Setn(�; Z) is exactly a monomial Z0

m0Z1
m1 · · ·Zn−1

mn−1 . For a general set A, in the
same way, we obtain monomials of cardA variables. So, as a sum of these monomials,
a normal functor from SetA to Set is a formal power series in cardA variables.
We can consider a category where a morphism is a normal functor from SetA to

SetB. First we characterize the objects. We recall the Lindenbaum–Tarski duality assert-
ing that the category of all complete atomic Boolean algebra and all homomorphisms
preserving sups and infs is equivalent to the opposite category Setop [36]. We de*ne
categories that behave similarly to complete atomic Boolean algebras.
A coproduct A=

∑
i∈ I Xi is disjoint i= every injection Xi→A is a monomorphism

and, in addition, the pullback Xi×AXj is an initial object for all i �= j. Moreover, a
coproduct A=

∑
i∈ I Xi is universal i=, for every B

g→A, the object B is a colimit of
the pullbacks B×AXi [37].
A complete atomic accessible category is a category C with *nite limits and small

coproducts that are disjoint and universal, this category C subject to the condition
that (i) the lattice Sub(1) of the subobjects of a terminal object 1 is small, and (ii)
every object is a coproduct of atomic elements in the lattice Sub(1). It follows that the
lattice Sub(1) is a complete atomic Boolean algebra. We state the following theorem
analogous to the Lindenbaum–Tarski duality.

Theorem 1.22. Let CAAccCC be the category of all complete atomic accessible cat-
egories and all functors that are both continuous and cocontinuous.
There is a categorical equivalence CAAccCC∼=Setop.

Proof (Sketch). For each set A, the category SetA is a complete atomic accessible
category. Conversely, each complete atomic accessible category C is equivalent to the
category SetAtm(C) where Atm(C) is the set of all atomic elements in the lattice Sub(1).

By this theorem, we may identify a complete atomic accessible category with a
category of presheaves over a set (with an abuse: a complete atomic accessible category
is only equivalent to a category SetA of presheaves, not identical).

We de*ne (SetA;SetB)NF as the set of all isomorphism classes of normal functors
from SetA into SetB. Hence, in this set, we do not distinguish two normal functors
that are isomorphic. Taking this as a hom-set, the following category is de*ned.
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De�nition 1.23 (CAAccNF). The (large) category CAAccNF has all complete atomic
accessible categories SetA as objects and all isomorphism classes of normal functors
as morphisms.

We may lift the category just de*ned to a 2-category by introducing the following
notion specializing weak cartesian natural transformations de*ned earlier. A cartesian
natural transformation is a natural transformation 0 :F→G subject to the condition that
the square diagram

FC
vC−−→ GC

Ff

� � Gf

FD −−→
vD

GD

is a pullback for every morphism C
f→D. However, the 2-category obtained in this

way is not so well-behaved. The trouble occurs when we prove the cartesian closed-
ness as we do in Theorem 1.24 below. In order to circumvent the problem, we have
to identify certain cartesian natural transformations. We regard two cartesian natural
transformations 0; 0′ :F→→G to be equal if and only if (X; 0X (a))∼=(X; 0′X (a)) holds in
el(G) for every normal form (X; a) in el(F). The last condition signi*es that, for every
normal form (X; a) in el(F), two elements 0X (a) and 0′X (a) in G(X ) are in the same
orbit for the action of AutC(X ). The policy behind this identi*cation is that we should
not distinguish the di=erence of choice of a representative from each orbit.
We de*ne [SetA;SetB]NF as the category having all normal functors from SetA to

SetB as objects and all cartesian natural transformations where we identify certain
cartesian natural transformations as above. For the later application to model lambda
calculi, we use sets (SetA;SetB)NF identifying isomorphic normal functors, though we
sometimes employ categories [SetA;SetB]NF to verify certain properties.

We apply Theorem 1.21 to a normal functor F :Set→Set. For each set X , we
have F(X )∼= ∑n∈N Set(n; X )×Sn F[n]. Since F is normal, the action of the symmetric
group Sn on F[n] is free, i.e., the stabilizer of every element in F[n] is the trivial
group. Thus, if we put F̃[n] =F[n]=Sn, the set Set(n; X )×Sn F[n] has a one-to-one
correspondence to Set(n; X )·F̃[n] where (−)·(−) is the shorthand for cartesian product.
Here n is regarded to range over the *nitely presentable objects of Set, and Sn is the
automorphism group AutSet(n). Likewise, if we have a normal functor F :SetA→Set,
there is a natural isomorphism F(X )∼= ∑�∈exp A Set

A(�; X )×Aut(�) F[�]. We recall that

*nitely presentable objects of SetA are regarded as *nite multisets in expA. Since F
is normal, if we put F̃[�] =F[�]=AutSet A(�), we have the formula

F(X ) ∼= ∑
�∈exp A

SetA(�; X ) · F̃[�]:

So we might regard each F̃[�] as the coe:cient of the �th power in the formal power
series given by the normal functor. From the observation above, we have the following
theorem:
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Theorem 1.24. Bijection (SetA+B;SetC)NF∼=(SetA;Setexp B×C)NF holds for all sets A;
B and C.

Proof. We prove a stronger assertion: categorical equivalence [SetA;SetB]NF∼=
Setexp A×B holds for all sets A and B. From this, categorical equivalence [SetA+B;
SetC]NF∼= [SetA;Setexp B×C]NF follows if we note that exp(A + B)∼= expA × expB.
Thence, the identi*cation of isomorphic normal functors yield the theorem.
A functor from Setexp A×B into [SetA;SetB]NF is given by associating normal functor

Fb :Set
X →Set to each F̃ ∈Setexp A×B by de*ning Fb(X )=

∑
SetA(�; X )F̃[�; b] for

each b∈B. This association gives rise to the morphism map carrying 0̃ : F̃→ G̃ to
the cartesian natural transformation 0 :F→G de*ned by 0b;X : (�; k; x) → (�; k; 0̃�; b(x))

where � k→X and x∈ F̃[�; b]. The functor is essentially onto as proven in the paragraph
immediately before this theorem.
We prove that the functor is full. Let F and G be the normal functors induced

from F̃ and G̃. Let us take an arbitrary cartesian natural transformation F 0→G. For
every x∈ F̃[�; b], applying Lemma 1.19 to the normal form (�; (�; id�; x)) in el(Fb), we
infer that (�; 0b; �(�; id�; x)) is a normal form in el(Gb) (the lemma is proved only to the
case that the domain is the category Set, but we notice that the proof works for every
category). Hence there is a unique y∈ G̃[�; b] such that (�; 0b; �(�; id�; x))∼=(�; (�; id�; y)),
since every normal form in el(Gb) is isomorphic to this shape for a unique y. We put
this y to be 6̃�; b(x), deriving 6̃ : F̃→ G̃, which in turn induces a cartesian natural trans-

formation F
6→G. Then the isomorphism immediately above means (�; 0b; �(�; id�; x))∼=

(�; 6b; �(�; id�; x)). This implies also (Z; 0b; Z(c))∼=(Z; 6b;Z(c)) for every normal form
(Z; c) in el(Fb) by taking a normal form (�; (�; id�; x)) isomorphic to (Z; c). Hence two
cartesian natural transformations 0 and 6 are identi*ed in the category [SetA;SetB]NF,
concluding that the involving functor is full. Finally it is easy to see that the functor
is faithful.

The equivalence between [SetA;SetB]NF and Setexp A×B would fail, if we did not
identify certain cartesian natural transformations. A counterexample is given in [62].
For the normal functor F :Set→Set given by F(X )=X 2, there are two cartesian
natural transformations from F to F , the one being an identity and the other switching
the components, but the corresponding presheafs in Set! are the same.

The category SetA+B is the cartesian product of SetA and SetB. Moreover it is
easy to show that the bijection of the theorem of above is natural in SetA and SetC .
Therefore we conclude the following:

Corollary 1.25. Category CAAccNF is cartesian closed.

The extension of analytic functors to many variables is de*ned likewise. An analytic
functor from SetA to Set may be de*ned as F(X )=

∑
i Set

A(�i; X )=Gi where �i is an
element of expA and Gi is a subgroup of AutSet A(�i).
There is a subtle point, however, for this extension. For example, we consider the

analytic functor F :Set2→Set de*ned by F(X; Y )= (X 2Y 2)=G for the subgroup G of
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S2×S2 generated by (7; 7) where 7 is the generator of S2. Then, the functor GX (−),
F(X;−) for *xed X is an analytic functor, since it preserves *ltered colimits and weak
pullbacks. So there is a bijection F(X; Y )∼=GX (Y ), but it is not a natural isomorphism
in X , since the group G is not decomposed into a cartesian product of subgroups of
S2. Hence we fail to obtain cartesian closedness in this way.

1.7. Initial algebra

Let F :C→C be an endofunctor. An F-algebra is a pair of an object A and a

morphism FA
f→A of C. A morphism g between F-algebras (A; f) and (A′; f′) is a

morphism A
g→A′ of C rendering the following square diagram commutative:

FA
Fg−−→ FA′

f

� � f′

A −−→
g

A′:

An initial F-algebra 6F is an initial object of the category of F-algebras. From the uni-

versal condition of an initial object, it is derived that for an initial algebra F(6F)
f→ 6F

the morphism f is invertible. So an initial algebra is a categorical counterpart of a
least *xpoint.
Let us consider an analytic functor F . Then F preserves *ltered colimits. Hence an

initial F-algebra is given as an inductive colimit of the !-chain A0
e0→A1

e1→A2
e2→ · · · in

category Set. Here A0 is an empty set and e0 is an empty map. Moreover, recursively,
the set An+1 is de*ned by FAn and en+1 by F(en).
An analytic functor preserves monomorphisms. This is obvious from the form of

the analytic functor as a sum of quotients of representable functors. Thus all en is
monomorphic, since e0 is monomorphic as an empty map. So the initial algebras 6F
as an inductive colimit of An may be regarded as an increasing union

⋃∞
n=0 An. Hence,

for each element a∈ 6F , there is the least index n such that a is a member of An.

Notation. For each member a∈ 6F , we let p(a) denote the least index n such that
a∈An.

We consider an initial algebra of an analytic functor in several variables. For ex-
ample, if F(X; Y ) is an analytic functor on Set2, we may regard an initial algebra
6Y:F(X;Y ) with respect to the second argument. The initial algebra 6F(X )=6Y:F(X;Y )
is a functor in X , since initial algebras are given as colimits of !-chains of bifunctors.
We want to show that 6F(X ) is actually an analytic functor.

Lemma 1.26. The category [Set;Set]AF is cocomplete; and colimits are pointwise.

Proof. The *rst statement is immediate from the equivalence [Set;Set]AF∼=SetB, since
the latter is cocomplete. A colimit colim

→
Fi in [Set;Set]AF is de*ned to correspond to
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the colimit colimit
→

Fi[·] in the category SetB of presheaves. To show that the colimit

is pointwise, we note that

(colim
→

Fi)(A) ∼=
∑
n
Set(n; A)×Sn colim→

Fi[n]

colim
→

(Fi(A)) ∼= colim
→

∑
n
Set(n; A)×Sn Fi[n]:

But sum
∑

n, product Set(n; A)× (·), and the quotient of Sn-sets all preserve colimits,
since they are left adjoint. Hence we must have (colimit

→
Fi)(A)∼= colimit

→
(Fi(A)).

Remark. The category [Set;Set]AF is also complete, since so is SetB. But limits are
not pointwise.

Proposition 1.27. Let F :SetA × Set→Set be a binary analytic functor.
The initial algebra 6F turns out to be an analytic functor from SetA to Set.

Furthermore; if F is normal then 6F is normal.

Proof. For each object Y of SetA, the initial algebra 6F(Y ) is de*ned as the colimit
of An(Y ) where A0(Y )= ∅ and An+1(Y )=F(Y; An(Y )). We let (�n)Y :An(Y )→ 6F(Y )
denote the colimiting cone. By Lemma 1.26, �n is a weak cartesian natural transforma-
tion. We must verify that each object (B; b) of el(6F) has a weak normal form. There
is an index n and b0 ∈An(B) such that b=(�n)B(b0). Hence, if we take a weak normal

form (Z; c0)
f→ (B; b0) in el(An), then, for c=(�n)Z(c0), the morphism (Z; c)

f→ (B; b)
is a weak normal form in el(6F) by Lemma 1.19 since �n is weakly cartesian.

2. Divisibility orderings and recursive path orderings

In this section, we show that analytic functors provide a foundation to the theory
of well-partial-orderings including tree-embeddings, and the theory of recursive path
orderings. The former developed in graph theory, and the latter in the theory of term
rewriting system in theoretical computer science.
We de*ne the divisibility ordering which is a generalization of the notion of the

same name introduced by Higman [32], and the recursive path ordering which is a
generalization of the one introduced by Dershowitz [14]. We note that the topological
or syntactical parts in these notions are taken place by the weak normal forms developed
in the last section.

2.1. Well-partial-order

Well-partial-order is a generalization of well-order, which is a linear order with no
in*nite strictly decreasing sequences. A well-partial-order is by de*nition a poset that
has neither in*nite strictly decreasing sequences nor in*nite antichains. We recall that
an antichain is a set where every pair of its members is incomparable. A further
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generalization is a well-quasi-order, which is simply a quasi-order that turns out to
be a well-partial-order if we collapse it by the equivalence relation induced by the
quasi-ordering.
The notion of well-partial-order frequently appeared in the literature. It started being

known after the work by Higman [32] who showed that a family of the sets of *nite
trees with bounded number of immediate successors are endowed with well-partial-
orders, and by Kruskal [41] who showed that the set of all *nite trees is a well-partial-
order with respect to the topological embedding, settling Vazsonyi’s conjecture. This
result, now known as Kruskal’s theorem, is given a short proof by Nash-Williams
[48]. An important result in graph theory is a series of results including an extension
of Kuratowski’s theorem to general surfaces by Robertson and Seymour [53]. In this
theorem, it is proved that certain classes of graphs form well-partial-orders with respect
to the graph-minor relation.
The well-quasi-order has a simple de*nition, if we introduce the notion of bad

sequences. A bad sequence in a quasi-ordered set is a *nite or in*nite sequence
〈a0; a1; : : :〉 of its members subject to the condition ∀i¡j: ai 5 aj.

De�nition 2.1. A well-quasi-order is a quasi-ordered set that has no in*nite bad se-
quences.

In the following proposition, a strictly decreasing sequence in a quasi-ordered set is
de*ned to be a sequence 〈a0; a1; : : :〉 satisfying ai D ai+1 but ai 5 ai+1 for all i.

Proposition 2.2. A quasi-ordered set A is a well-quasi-order i? A has neither in4nite
antichains nor in4nite strictly decreasing sequences.

Proof. (⇒) is obvious. For (⇐), we assume that A has an in*nite bad sequence
〈a0; a1; : : :〉. We color the set [N]2 of all subsets of natural numbers of cardinality
two by blue and red. For each {i; j} with i¡j, we color it by blue if ai D aj, and by
red if ai and aj are incomparable. Then an in*nite Ramsey theorem [25] implies the
existence of an in*nite subset S ⊆N such that [S]2 is monochromatic. Let us consider
the subsequence 〈ak(0); ak(1); : : :〉 where k(n) enumerates the set S in the increasing
order. According to which the color, blue or red, the set [S]2 has, the subsequence is
either strictly decreasing or an antichain.

The following lemma is immediate by de*nition of well-quasi-orders.

Lemma 2.3. Let E and E′ be two quasi-orderings on the same set A; these quasi-
orderings satisfying that aE b implies aE′ b.

If (A;E) is a well-quasi-order; then (A;E′) is a well-quasi-order.

The linearization of a poset (A;E) is a linear order ¡ on the set A satisfying that
aE b implies a6b, where 6 is the reQexive closure of the strict linear order ¡. Since
a linear order that is a well-partial-order at the same time is exactly a well-order, the
next corollary follows.
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Corollary 2.4. A linearization of a well-partial-order is a well-order.

Let Bad(A) be the tree of all *nite bad sequences in a quasi-order A. The tree
Bad(A) is well-founded if and only if A is a well-quasi-order. We can assign an
ordinal to a well-founded tree by the following procedure. Let T be a well-founded
tree. For each node s, we assign the ordinal |s| that is the supremum of |t|+ 1 where
the nodes t range over all immediate successors of s. In particular, every leaf has the
ordinal 0. The ordinal assigned to the tree T itself is de*ned as the ordinal assigned
to the root of T . We denote this ordinal by |T |.
In particular, if A is a well-order, the ordinal assigned to A as above is exactly

the same as the order type of well-ordered-sets in the usual sense, that is, the ordi-
nal isomorphic to A. If E and E′ are well-quasi-orders on the same set A satisfying
aE b⇒ aE′ b, then the ordinal assigned to Bad(A;E′) is less than or equal to the
ordinal assigned to Bad(A;E). In particular, the order type of a linearization of a well-
partial-order A is less than or equal to the ordinal of Bad(A). De Jongh and Parikh
[13] proved that there is a linearization achieving this upper bound.

Theorem 2.5. Let A be a well-partial-order. A has a linearization of the order type
equal to |Bad(A)|.

2.2. Divisibility ordering

We let QO denote the category of all quasi-ordered sets and all order-preserving

functions, that is, those functions A
f→B satisfying that aE a′ implies f(a)Ef(a′).

Some of analytic functors behave as functors on QO. For example, let us consider
the functor expX . If A is a quasi-order, we can endow expA with the quasi-order
de*ned as follows: Let 8= {s1; s2; : : : ; sm} and 9= {t1; t2; : : : ; tn} be multisets in expA.

Then 8E9 is de*ned to hold i= there is a one-to-one function [m] k→ [n] such that
siEtk(i) holds in the quasi-order A for each i=1; 2; : : : ; m. If we regard A as the set
of variables x1; x2; : : : ; and if we identify a multiset {xi1 ; xi2 ; : : : ; xin} with a monomial
x8 = xi1xi2 · · · xin , then 8 E 9 holds if and only if the monomial x8 divides the monomial
x9. So we call this quasi-ordering on expA the divisibility relation.
A lifting of an analytic functor F0 to the category QO of quasi-orders is a functor

F :QOn→QO rendering the square diagram

QOn P−−→ QO� �
Setn −−→

P0

Set

commutative, where the vertical arrows are the functors forgetting the structure of quasi-
orders. We note that F0 is uniquely determined by F . For simplicity, we may sometimes
let the same symbol F denote the functors on both QO and Set. An inclusion in the

category QO is an order-preserving map A
f→B between quasi-orders subject to the

condition that f(a)Ef(a′)⇒ aE a′ for all a; a′ in A.
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Two simple examples of lifting are disjoint sum + and direct product ×. The disjoint
sum of two quasi-orders is simply the quasi-ordered set with the copies of quasi-
orderings A and B , and with no ordering between the members of A and the members
of B. The direct product A×B of quasi-orders is obviously de*ned. The functor expX is
another example of lifting, as mentioned above. Moreover, we note that these functors
preserve inclusions.

Lemma 2.6. Let F :QOn→QO be a lifting of an analytic functor on Set. If F
preserves inclusions; then F preserves 4ltered colimits in QOn.

Proof. For simplicity, we deal with the case when F is an unary functor. Let An be a
*ltered diagram in QO. There is a commutative diagram in QO

where cn and Rcn are colimiting cones. We note that the forgetful functor QO→Set
creates *ltered colimits. So g is a bijection as a function between sets, since F is a
lifting of an analytic functor preserving *ltered colimits by de*nition. Hence it su:ces
to verify that the inverse g−1 is a homomorphism between quasi-orders.
To this end, let us take two elements a and a′ in F(colim

→
An) satisfying aE a′. Since

g is a bijection, there are b and b′ in some FAn such that a=Fcn(b) and a′ =Fcn(b′).

Let (X; z)
f→(An; b) and (X ′; z′)

f′
→(An; b′) be weak normal forms in el(F), and we set

the quasi-order C to be the restriction of An to the union of images Im(f)∪ Im(f′).
Since the underlying set of C is *nite, there is An

e→Ap such that the restriction of
colim

→
An to the image of C ,→ An

cn→ colim
→

An is order isomorphic to the restriction of

Ap to the image of C ,→ An
e→Ap. Namely, if we put RC to be the restriction of Ap to

the image of C under e, then RC ,→ Ap
cp→ colim

→
An is an inclusion. Since F preserves

inclusions, we have Fe(b)EFe(b′) in F RC. Noting Rcn = Rcp ◦e, this implies Rcn(b)E Rcn(b′),
that is g−1(b)E g−1(b′).

Higman introduced divisibility orderings in [32] on a family of sets of *nite trees
with bounded number of immediate successors. We provide an abstract de*nition of
divisibility orderings using analytic functors, so that our de*nition covers Higman’s
de*nition as well as the topological embedding on trees.

De�nition 2.7. Let F :QO→QO be a lifting of an analytic functor. Moreover, we
suppose that F preserves inclusions.
The divisibility ordering on the initial algebra 6F is an !-inductive limit in the

category QO of the diagram A0
e0→A1

e1→· · · where A0 is the empty quasi-order and e0
is an empty map. Moreover we de*ne An+1 and en+1 as follows:
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(i) The underlying set of An+1 equals the underlying set of F(An). The quasi-ordering
on An+1 is the transitive closure of the union of the following two relations: The
one is the quasi-order F(An), and the other is the collection of all a◦ E a for

each weak normal form (X; z)
f→(An; a) in el(F) and each a◦ in the image of

X
f→An

en→An+1.
(ii) en+1 :An+1→An+2 is simply F(en).

Remark. Since the empty map e0 is an inclusion, every en is an inclusion as well. As
an !-inductive limit of inclusions, each morphism An

cn→ 6F of the colimiting cone is
an inclusion.

One may regard a◦ occurring in this de*nition as a subterm or a subtree of a. See
the example after Lemma 2.9 below.

Lemma 2.8. The functions en :An→An+1 in De4nition 2:7 are homomorphisms be-
tween quasi-orders.

Proof (By induction on n): If n=0, an empty map e0 is a homomorphism between
quasi-orders. So we verify that en+1 :An+1→An+2 is order-preserving, provided that en
is so. Let us take a; a′ ∈FAn, and put Ra= en+1(a) and Ra′ = en+1(a′). If aE a′ in FAn,
then RaE Ra′ holds since Fen :FAn→FAn+1 preserves order. If a◦ E a where a◦ is in the

image of X
f→An

en→An+1 for a weak normal form (X; z)
f→(An; a), Lemma 1.5 implies

that (X; z)
enf→(An+1; Ra) is a weak normal form. So if we put Ra◦ = en+1(a◦), we have

Ra◦
E Ra, since Ra◦ is in the image of X

enf→ An+1
en+1→ An+2 for the weak normal form enf.

We note that the divisibility ordering on 6F di=ers from the initial F-algebra in the
category QO, since we include the relation a◦ E a in the de*nition above. For example,
if F(X ) is de*ned by 1 + X , the initial algebra is an antichain of countable elements
whereas the divisibility ordering is isomorphic to the ordinary order of natural numbers.

Lemma 2.9. Let F be a lifting of an analytic functor; this F preserving inclusions.
Moreover; we suppose the initial algebra 6F is endowed with the divisibility ordering.
Let � :F(6F) ∼→ 6F be the canonical bijection in Set. Then � is order-preserving;

i.e.; a morphism of QO.

Proof. Since F preserves *ltered colimits of quasi-orders, if aE a′ holds in F(6F),
then there is An such that aE a′ in F(An). Hence aE a′ holds in An+1, implying aE a′

in 6F .

Remark. We note that the inverse �−1 of the canonical bijection is not order-preserving,
in general.
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The divisibility ordering on 6X: expX is exactly the tree-embedding between *nite
unordered trees with root. Here an unordered tree is such that the order of imme-
diate subtrees of each node is irrelevant. We denote the tree t with immediate sub-
trees t1; t2; : : : ; tn of the root by span(t1; t2; : : : ; tn). The tree t is a member of some
Ak+1 = expAk with weak normal form

(X; {z1; z2; : : : ; zn}) g→(Ak; {t1; t2; : : : ; tn})
where X is the set of pairwise distinct elements z1; z2; : : : ; zn and the function g car-
ries each zi to ti. Hence the subterms ti of t correspond to the elements in the
image of the function g occurring in the weak normal form. Therefore, for a tree
u= span(u1; u2; : : : ; up), we have t E u by the divisibility ordering i= either the divisi-
bility relation {t1; t2; : : : ; tn}E {u1; u2; : : : ; up} holds between multisets, or some ti embeds
into u. This is exactly the tree-embedding between *nite trees.
Another example 6X :1+X 2 is the divisibility ordering which gives a tree embedding

on binary trees respecting the order of immediate subtrees. Moreover, the set List(A),
6X :1+A×X is regarded as the set of all *nite lists of members of A. The divisibility
ordering on List(A) is the Higman ordering [32, 60, 47].

Theorem 2.10. Let F :QO→QO be a lifting of an analytic functor; this F preserving
inclusions.
If F sends well-quasi-orders to well-quasi-orders; then the divisibility ordering on

6F is a well-quasi-order.

Proof. By the standard minimal bad sequence argument. We recall that p(a) denotes
the least index n such that a∈An for each a∈ 6F . Towards contradiction, we as-
sume that there is an in*nite bad sequence in 6F . Then there is a bad sequence
〈a0; a1; : : :〉 minimal in the following sense: If 〈b0; b1; : : :〉 is an in*nite bad sequence,
and a0 = b0; a1 = b1; : : : ; ai−1 = bi−1 hold, then p(ai)6p(bi) holds. Induction on i
proves the existence of such a sequence 〈a0; a1; : : :〉 where, at the ith induction step,
we choose ai as the one with the smallest possible value p(ai).

For each i, let (Xi; zi)
fi→ (Ap(ai)−1; ai) be a weak normal form in el(F). We put

the quasi-order S to be the restriction of 6F to the union of images
⋃
Im(fi). We

verify that S is a well-quasi-order. Let us assume that S has an in*nite bad se-
quence 〈b0; b1; : : :〉, for contradiction. Suppose that b0 is in Im(fi0 ). Since the union
Im(f0)∪ Im(f1)∪ · · · ∪ Im(fi0−1) is *nite, without loss of generality we may assume
that no bi belongs to this union, by eliminating *nitely many bi’s if necessary. Let us
consider an in*nite sequence 〈a0; a1; : : : ; ai0−1; b0; b1; : : :〉. This sequence must be good
in 6F since p(b0) must be strictly smaller than p(ai0 ). Hence there are indices j¡i0
and k such that aj E bk in 6F . We have bk ∈ Im(fl) for some l where i06l by the
assumption above. So both aj E al and j¡l hold, contradicting the assumption that
〈a0; a1; : : :〉 is bad. Therefore S is a well-quasi-order.

Now F(S) is a well-quasi-order, since F preserves well-quasi-orders. So the se-
quence 〈a0; a1; : : :〉 must be good in F(S), thus in F(6F). Since the canonical bijection
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F(6F) ∼→ 6F preserves orders, the sequence is good also in 6F , contradicting that
〈a0; a1; : : :〉 is bad.

Remark. In the usual proof of Kruskal’s theorem, the minimal bad sequence is de*ned
to be minimal by the lexicographic comparison of the indices p(ai). This does not work
in our case, however. In fact, the sets An may be in*nite, thus KTonig’s lemma to *nd
an in*nite path cannot be applied.
We may apply the construction of divisibility orderings iteratively. For example, we

discuss the divisibility ordering on 6X16X2 · · · 6Xn: exp(X1 + X2 + · · ·+ Xn) later. For
this iteration to behave well, we must prove the following lemma.

Lemma 2.11. Let F(X1; X2; : : : ; Xn; Y ) be a lifting of an analytic functor. We suppose
F preserves inclusions.
The divisibility ordering on 6Y :F(X1; X2; : : : ; Xn; Y ) yields a functor on QOn that

is a lifting of an analytic functor and preserves inclusions.

Proof. The proof is the same for all n¿1, so we prove the case when n=1. By Propo-
sition 1.27, the underlying functor of G(X )= 6Y :F(X; Y ) on Set is an analytic functor.
The initial algebra G(X ) is obtained as an inductive limit of Gn+1(X )=F(X;Gn(X )).

We show that, for each A k→B in QO, the function Gn+1(k)=F(k; Gn(k)) is order
preserving. Once we prove this, the assertion of lemma follows easily, since G(X ) is
an inductive limit and the colimiting cone consists of inclusions.
If aE a′ in F(A;Gn(A)), then obviously RaE Ra′ in F(B;Gn(B)) where Ra=Gn+1(k)(a)

and Ra′ =Gn+1(k)(a′). Next let us suppose a◦ E a where a◦ is in the image of Z
f→Gn(A)

→Gn+1(A) where (Z; z)
f→(Gn(A); a) is a weak normal form in el(F(A;−)). We note

that F(k; Z) is a weakly cartesian natural transformation between the functors F(A; Z)

and F(B; Z) in Z , since F preserves weak pullbacks. Hence (Z; z′)
f→(Gn(A); a′) is a

weak normal from in el(F(B;−)) by Lemma 1.19 where z′ =F(k; Z)(z) and a′ =F(k;

Gn(A))(a). Since (Gn(A); a′)
Gn(k)→ (Gn(B); Ra) in el(F(B;−)), we have a weak normal

form (Z; z′)
Gn(k)f→ (Gn(B); Ra) by Lemma 1.5(ii). Hence Ra◦

E Ra holds in Gn+1(B) where
Ra◦ =Gn+1(k)(a◦).

Employing the observation so far, we have a class of well-partial-orders generated
by simple operations.

De�nition 2.12. An algebra A is generated by the following Backus-Naur form:

A ::= ∅ | 1 |X |A+ A |A× A | 6X :A

where X is a variable taken from a given countable set.

We handle algebras as syntactic objects. But we can interpret these constructs as
operations of posets in an obvious way: ∅ is an empty poset, 1 is a singleton, A + B
is a disjoint sum, A×B a direct product, and 6X :A a divisibility ordering.
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The terms in algebras are generated by the following rules:

∗ ∈ 1

a ∈ A
<a ∈ A+ B

b ∈ B
<′b ∈ A+ B

a ∈ A b ∈ B
〈a; b〉 ∈ A× B

a ∈ [(6X :A)=X ]A
�a ∈ 6X :A

Here [(6X :A)=X ] is the substitution of 6X :A for X . We write the substitution as a
pre*x operator. Moreover, we often write AB in place of A×B.
To be precise, we should annotate the constructors of terms such as < and � by

involving algebras so that we can determine the algebras where they belong. For ex-
ample, the notation <A;B may be better to keep track of the information of algebras.
But, to avoid cumbersome notations, we omit the annotations if confusions are unlikely.
Furthermore, we often omit < and <′ if they are clear from the context.
The substitutions occurring in the initial algebra construction is canonically deter-

mined by the form of the initial algebras. Namely, if a∈A[D1; D2; : : : ; Dn] occurs in the
derivation tree of terms for an algebra A[X1; X2; : : : ; Xn] and its ground substitution, the
substituted algebras Di are determined by the form of A. So we associate the canonical
substitution =A to each algebra A (precisely speaking, to each subalgebra A occurring
in a *xed closed algebra) as follows: For a given algebra A, we start with the empty
substitution =A = ∅. If A= 6Xn :B, we put =B = =A[A=Xn]. For the other constructors, the
canonical substitutions do not change. For example, if A=B+ C, both =B and =C are
set to equal =A. Here the concatenation of substitutions has an obvious meaning. For
example, if == [A=X ][B[X ]=Y ] then =C[X; Y ] =C[A; B[A]].

Example. Let us consider the algebra T = 6X6Y :1+XY , where we put F[X ] = 6Y :1+
XY . We start with =T = ∅. After stripping the outermost 6X , we have =F[X ] = [T=X ].
Finally, inside the scope of the operator 6Y , the canonical substitution becomes [T=X ][F
[X ]=Y ]. Hence, if we put the last substitution to be =, we have =(1+XY )= 1+TF[T ].
So a canonical substitution should have the form [D1=X1][D2=X2] · · · [Dn=Xn] where

D1 is a closed algebra, D2 may have a free variable X1, and Dn is in X1; X2; : : : ; Xn−1.
Later we use also partial applications of the canonical substitution, =(k)A , [Dk+1=Xk+1]
· · · [Dn=Xn]. For simplicity, we often omit the su:x recording the algebra, and let
simply = denote the involved canonical substitution.
Let A be an algebra where all free variables are given su:xes as X1; X2; : : : : We

de*ne the cardinality card A by >n with the highest n such that Xn is free in A. If A
is closed, we put card A=>0.

Remark. There is no straightforward relation of this cardinality to the set-theoretic one.
But the variables Xn behave somehow as cardinals >n used in the traditional ordinal
notations [9, 51]. In particular, there seems to be a close analogy to the Bachmann–
Isles’ hierarchy [20, 34].
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We replace every bound variable by one of Xn by the following procedure: We start
from a given algebra where its cardinality is well-de*ned, and decompose it until initial
algebras are encountered. If 6X :A[X ] is of cardinality >n, then we set 6Xn+1 :A[Xn+1]
and the procedure goes to the next turn where A[Xn+1] is manipulated. For example,
we transfer

6X6Y :(6Z:1 + XZ)(6Z:1 + YZ)

 6X16X2:(6X2:1 + X1X2)(6X3:1 + X2X3):

We note that the left 6Z is replaced by 6X2 while the right by 6X3. The basic idea is
to use the smallest number that has not yet been used in the scope of the 6-operator.
We often add a su:x to the constructor � associated to initial algebras as follows:

We write �na for members of =(6Xn :A) for an initial algebra 6Xn :A of cardinality
>n−1.

De�nition 2.13. Let a be a term in A= =Xk for some variable Xk and its canonical
substitution =. Moreover, let b be a term in an algebra =B.

The subterm relation, written a⊆ b in symbols, is generated by the following rules:

a⊆ a
a⊆ b
a⊆ <b

a⊆ c
a⊆ <′c

a⊆ b
a⊆〈b; c〉

a⊆ c
a⊆〈b; c〉

a⊆ b
a⊆ �nb

if k ¡ n

Moreover, for two terms a and a′ = �k(b′) in the algebra A= =Xk , we say that a is a
subterm of a′ and write a⊂ a′ if and only if a⊆ b′.

Remark. The assertion that a is a subterm of a′ makes sense, either if the cardinality
of the algebra where a′ belongs is greater than that of the algebra where a belongs,
or if a and a′ are members of the same initial algebras. Which one we intend will be
clear from the context.

The sole important point in de*nition of subterms is the side condition k¡n in the
last rule. For example, let us consider the algebra T = 6X16X2:1 + X1X2. The associ-
ated canonical substitution = equals [T=X1][F[X1]=X2] where F[X1]= 6X2:1+X1X2. We
consider a term a= �2〈�1a′; a′′〉 where a; a′ and a′′ are members of =X2 =F[T ]. Then
both a′ and a′′ occur as subexpressions of a. However, we have a′′⊂ a whereas a′ �⊂ a
since a′* �1a′ by the side condition.
The following proposition asserts the connection between normal forms and subterms.

Let us recall that, if a canonical substitution = is given by [D1=X1][D2=X2] · · · [Dn=Xn],
then the partial substitution =(k) denotes [Dk+1=Xk+1] · · · [Dn=Xn]. Hence =(k)A is a nor-
mal functor in X1; X2; : : : ; Xk for algebra A[X1; X2; : : : ; Xk ; : : : ; Xn].
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Proposition 2.14. For an algebra A[X1; X2; : : : ; Xn] and its canonical substitution =; let
F(Xk) be the functor =(k)A in variable Xk (as well as X1; X2; : : : ; Xk−1; which are 4xed

here; however). Moreover let (Y; z)
f→(=Xk ; b) be a normal form in el(F).

A term a∈ =Xk is in the image of f if and only if a is a subterm of b.

Proof. (⇐) By induction on the derivation of a⊆ b. We prove the case deriving a⊆ �nb
from a⊆ b where �nb is a member of =A for A= 6Xn: B. For a partial substitution
=(k) = [Dk+1=Xk+1] · · · [Dn−1=Xn−1][A=Xn], let us put =′ to be the substitution without
the last component [A=Xn]. Then, provided k¡n, we have =(k)B= =′[A=Xn]B, which
turns out to equal [(6Xn: =′B)=Xn](=′B). This is bijective to 6Xn: =′B, i.e., =(k)(6Xn: B)
by de*nition of initial algebra. Moreover, this bijection �n is natural in X1; X2; : : : ; Xk .

Regarding =(k)B to be a functor G(Xk), let us take a normal form (Y; z)
f→ (=Xk ; b) in

el(G). By induction hypothesis, a is in the image of f. Since the natural isomorphism

�n : =(k)B
∼→ =(k)(6Xn: B) must be cartesian, also (Y; �nz)

f→ (=Xk ; �nb) is a normal form.
Hence the assertion of proposition holds also for a⊆ �nb, namely, a is in the image of
f giving the normal form of �nb.
(⇒) By induction on construction of B. If A= 6Xn: B with k¡n, we have =(k)A=

=(k)B. So the image of the function f of normal forms does not change. If A=B×C,
a normal form of 〈b; c〉 has the form (Y + Y ′; 〈 Rz; Rz′〉) where (Y; z) and (Y ′; z′) are
normal forms of b and c, and Rz is the image of z under the function determined by
the injection Y →Y + Y ′, and likewise for Rz′. Hence a must be in either the image of
the normal form of b or the image of the normal form of c. The case A=B + C is
easy. If A=Xk , the element a must equal b.

Lemma 2.15. Let us consider three algebras A; B[X ] and C[Y ] and three terms a∈A;
b∈B[A] and c∈C[B[A]].
If a⊆ b and b⊆ c; then a⊆ c.

Proof. Obvious by the preceding proposition and Theorem 1:16.

We de*ne the embeddability relation aEA a′ for a; a′ in A where A is the ground
instance of some algebra by its canonical substitution.

∗E1∗

aEAa′

<aEA+B<a′
bEAb′

<′bEA+B<′b′

aEAa′ bEBb′

〈a; b〉EA×B〈a′; b′〉

bE[A=Xn]Bb
′

�nbEA�nb′
aEAa◦

aEAa′
if a◦⊂ a′:
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In the last two rules, we assume that A is the initial algebra 6Xn: B. These rules are
the same as those in [27], except that, in the last rule, the subterm relation a◦⊂ a′

does not simply mean that a◦ is a subexpression of a′.

Lemma 2.16. Let A and B[X ] be algebras; and let a be a term of A and b; b′ terms
of B[A].
If a⊆ b and bEB b′; there is a term a′ ∈A such that a′⊆ b′ and aEA a′.

Proof. By induction on construction of the algebra B[X ]. The sole non-trivial case is
when B[X ] is an initial algebra 6Y: C[X; Y ]. The divisibility ordering on 6Y:C[A; Y ] is
the transitive closure of two patterns. The one is the condition that b= �c and b′ = �c′

with c EC c′. In this case, we have a⊆ c. By hypothesis on C, there is a term a′

such that aEA a′ and a′⊆ c′, the latter implying a′⊆ b′. The other is b⊂ b′. In this
case, a⊆ b⊆ c′ if we write b′ = �c′. So, by Lemma 2.15, we have a⊆ c′, thus a⊆ b′.
By taking the transitive closure of these, we prove the assertion of lemma for initial
algebras.

Let us recall that the constructors of algebras have natural meaning as operators
on posets. For simplicity of notation, we abuse the same symbols for both syntactic
objects and their interpretations. The next theorem shows that the embeddability relation
is equal to the intended partial order.

Theorem 2.17. Let a and a′ be terms of A that is the ground instance of an algebra
by its canonical substitution.
The embeddability relation aEA a′ holds i? aE a′ in the poset interpreting A.

Proof. The inference rules of the embeddability relation are nearly word-by-word trans-
lation of the corresponding de*nition of the operations on posets, except that the infer-
ence by the subterm relation a◦⊂ a′ is restricted to the right-hand side of EA while the
corresponding divisibility ordering, which is de*ned as the transitive closure of two
patterns, allows this anywhere in the sequence of these patterns. So we must verify
that the use of a◦⊆ a′ can be postponed to the rightmost of the sequence. To this
end, we assume that a◦⊂ a holds, and that aEA a′ is derived from bE[A=X ]B b′ where
a= �b and a′ = �b′. Then we have a◦⊆ b. So, by Lemma 2.16, there is a◦ EA a′◦ such
that a′◦⊆ b′, from which a′◦⊂ a′ follows. Hence one can collect all applications of
subterm relation to the rightmost of the sequence.

Corollary 2.18. Let A be the ground instance of an algebra by its canonical substi-
tution.
The embeddability relation EA on the set of terms in A is a well-partial-order.

The divisibility ordering on an iterated initial algebra gives a version of the em-
bedding between labeled trees with the gap condition [59, 19]. As an example, let us
consider the algebra 6X16X2 · · · 6Xn:List(X1 + X2 + · · ·+ Xn) where List(A) is de*ned
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by 6Y: 1 + AY . We put

D1 = 6X1: D2[X1];

D2[X1] = 6X2: D3[X1; X2];
...

Dn[X1; X2; : : : ; Xn−1] = 6Xn: D∞[X1; X2; : : : ; Xn−1; Xn];

D∞[X1; X2; : : : ; Xn−1; Xn] = List(X1 + X2 + · · ·+ Xn−1 + Xn):

With the shorthand R�it= �i�i+1 · · · �nt, the members of =D∞ are written as lists 〈R�k1 t1;
R�k2 t2; : : : ; R�km tm〉. It is helpful to regard the list as the tree

with edges labeled by natural numbers in 1; 2; : : : ; n, where the order of immediate
subtrees t1; t2; : : : ; tm must be the same as the order occurring in the list.

For each pair of s and t in =D∞, it holds that R�isE R�it by the divisibility ordering
on =Di i= either (1) there is a proper subtree t◦ of t where the edge to the root of t◦

is labeled by i and the edges occurring on the path from the root of t to the root of t◦

are labeled by some j¿i except the last one, and where t◦ satis*es R�isE R�it
◦ in =Di,

or (2) it holds that R�i+1sE R�i+1t in =Di+1, where if i= n we put i + 1=∞. Unfolding
the part R�isE R�it

◦ in (1) iteratively by these two patterns (increasing the index i if
the pattern (2) is applied), we conclude R�isE R�it i= t has a subtree t◦ (possibly equal
to t) such that the edges occurring on the path from the root of t to the root of t◦

have labels j¿i, this t◦ satisfying sE t◦ in =D∞, namely, by the Higman embedding
between lists.
Hence, for s= 〈R�j1s1; R�j2s2; : : : ; R�jmsm〉 and t= 〈R�k1 t1; R�k2 t2; : : : ; R�kp tp〉 in =D∞, that is,

for two trees

it holds that sE t i= there is a strictly order-preserving function [m] e→ [n] such that
ji = ke(i) for all i=1; 2; : : : ; m, and, for each i, we have R�ji si E R�ke(i) te(i), that is, there is
a subtree t◦ of te(i) with all edges to the root of t◦ having labels equal to ji or more,
and furthermore t◦ satis*es si E t◦ in =D∞.
In this example, we regard the trees where the order of immediate subtrees is re-

spected. Replacing List by exp as

6X16X2 · · · 6Xn: exp(X1 + X2 + · · ·+ Xn);
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we can de*ne the edge-labeled trees where the order of immediate subtrees is irrelevant.
This is a modi*cation of the tree embedding with the gap condition [59] to the trees
where the edges are labeled. We note that the type of embedding used in [52] is akin
to the embedding of edge-labeled trees discussed here.

2.3. Recursive path ordering

Let LO be the category of all linearly ordered sets and all strictly order-preserving
maps. Similarly to the case of quasi-orders, some of analytic functors are regarded as
functors on LO.
Given a linearly ordered set A, the multiset ordering [15] is the linear ordering on

expA de*ned as follows: For multisets 8; 9∈ expA, and s1; s2; : : : ; sn; t ∈A with n¿0,
we de*ne

{s1; s2; : : : ; sn} ∪ 8 ¡ {t} ∪ 9

if 869 and si¡t in A for every i. As an alternative characterization, it holds that
{s1; s2; : : : ; sm}6{t1; t2; : : : ; tn} in the multiset ordering i= there is a function k : [m]→ [n]
such that si6tk(i) for every i and, in addition, if the equality si = tk(i) holds then
k(i)= k(i′) implies i= i′. It is easy to see that, endowed with the multiset ordering,
expX turns out to be functorial, and that it satis*es the commutative square diagram

LO
exp−−→ LO� �

Set −−→
exp

Set

Furthermore, the multiset ordering on expA is a linearization of the divisibility relation
on it. This fact is proved easily if one uses the alternative characterization of the mul-
tiset ordering. Therefore, as a linearization of a well-partial-order, the multiset ordering
on expA is a well-order, provided that A is a well-ordered set.
The multiset ordering is not a unique way to lift the functor expX to the category

LO. We may compare two multisets 8 and 9 *rst by the number of members with
multiplicity taken into account, and second by the multiset ordering if the numbers are
equal. If we regard the members of A as variables x1; x2; : : : equipped with a linear order
on them, and if we identify a multiset {xi1 ; xi2 ; : : : ; xin} with a monomial xi1xi2 · · · xin ,
then this ordering compares the total degrees of monomials *rst and after arranging
the variable in the monomials in the descending order, compare two monomials by the
lexicographic ordering. This ordering is called the total degree-lexicographic ordering
in [5]. By this means, we have a functor li*ng expX to LO. Also this is a linearization
of the divisibility relation, thus the total order-lexicographic ordering is a well-order,
provided that A is a well-order.
The recursive path ordering is introduced by Dershowitz [14] as a machinery to

prove termination of term rewriting systems. The recursive path ordering is a well-
ordering on the set of trees. Since terms are regarded as trees with nodes labeled by
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function or constant symbols, this method has an advantage that the termination is
proved directly.
To de*ne the recursive path ordering, we assume to have a well-ordering ≺, called

a precedence order, on the set of function and constant symbols. The multiset path
ordering s¡t for terms s=f(s1; s2; : : : ; sm) and t= g(t1; t2; : : : ; tn) is de*ned by either
(i) s6tj for some subterm tj, or (ii) both si¡t for all subterms si and either f ≺ g for
the top function symbols or f= g and {s1; s2; : : : ; sm}¡◦{t1; t2; : : : ; tn} by the multiset
ordering ¡◦ induced by the multiset path ordering ¡ itself. We can deal with function
symbols of variable arity.
A typical application is the proof of termination of the following term rewriting

system to compute the disjunctive normal form [14]:

¬¬ x → x
¬(x&y) → ¬ x ∨ ¬y
¬(x ∨ y) → ¬x&¬y
x&(y ∨ z) → (x&y) ∨ (x&z)
(x ∨ y)&z → (x&z) ∨ (y&z):

An appropriate precedence order to prove termination is

∨ ≺ & ≺ ¬:
Then, for each rewriting rule l→ r and each ground substitution 7, one can see in sec-
onds that 7l¿7r by the multiset path ordering. For example, to see ¬ s∨¬ t¡¬(s& t),
*rst we compare the topmost symbols ∨ and ¬. Since the latter is greater in the prece-
dence order, we turn to check ¬ s¡¬(s& t) and ¬ t¡¬(s& t), decomposing the left
hand side. Since the topmost symbols are the same ¬, we should check s¡s& t for
the former and t¡s& t for the latter. But these are true since s and t are subterms
of s& t. Since the multiset path ordering is a well-order, the relations 7l¿7r imply
that this term rewriting system enjoys the strong normalization property. Namely every
rewriting sequence terminates in *nite steps.
There are many variations of the multiset path ordering. The lexicographic path

ordering is obtained by modifying the phrase (ii) in de*nition of the multiset path or-
dering, replacing the multiset ordering {s1; s2; : : : ; sm}¡◦{t1; t2; : : : ; tn} by 〈s1; s2; : : : ; sm〉
¡lex〈t1; t2; : : : ; tn〉 where ¡lex is the lexicographic ordering induced by the ordering ¡
we are de*ning. In this case, we assume that each function symbol has a *xed arity.
More generally, we can mix up the multiset and the lexicographic path orderings to
the so-called the recursive path ordering with status [44].
One of frequent users of well-orders is the proof theoretician. After a celebrated work

by Gentzen proving the consistency of Peano arithmetic by ordinal @0, well-orders are
employed as a measure of the power of proof systems. The proof-theoretical ordinal
of a proof system is de*ned as the least ordinal the well-orderedness of which cannot
be proved in the system. For consistency proofs, we must form a term notation for a
fragment of the class of ordinals, rather than set-theoretic abstract ordinals as transitive
sets. Hence, it is not surprising that proof theoreticians are forerunners of computer
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scientists in use of well-orders. For example, the ordering by Ackermann [1] is nothing
other than a special case of the recursive path ordering with status. A more elaborate
ordinal notation for a larger fragment is Takeuti’s ordinal diagrams [61]. We discuss
this topic extensively later.
A functor F :LOn→LO is a lifting of an analytic functor F0 i= the square diagram

LOn F−−→ LO� �
Setn −−→

F0

Set

commutes, where the downward arrows are the functor forgetting the structures of
linear orders.

Example. (i) The disjoint sum (·) + (·) has a lifting to linear orders. The linear order
A+B is given by the copies of linear orders A and B as well as the relations asserting
that every member of B is greater than all members of A. We note that the operator
+ on linear orders is non-commutative.
(ii) The direct product (·)× (·) has a lifting to linear orders. The linear order A×B

is the inverse lexicographic ordering. Namely, 〈a; b〉¡〈a′; b′〉 holds i= either b¡b′ or
both b= b′ and a¡a′. One may prefer the ordinary lexicographic ordering. This is a
matter of choice, but traditional ordinal notations adopt the inverse lexicographic path
ordering. The operator × on linear orders is non-commutative.
(iii) As mentioned above, the functor expX has a lifting to linear orders by the

multiset ordering.

We introduce an abstract version of the recursive path ordering as a linear order on
the initial algebra 6X: F(X ), provided that F is a lifting of an analytic functor to linear
orders.

De�nition 2.19. Let a functor F :LO→LO be a lifting of an analytic functor.
The recursive path ordering is a linear order on the initial algebra 6X: F(X ), this

linear order de*ned as the inductive limit of the !-chain A0
e0→A1

e1→ · · · in the category
LO, where A0 is an empty linear order with an empty map e0, and An+1 and en+1 are
de*ned by induction as follows:
(i) The underlying set of An+1 equals the underlying set of F(An). The linear order

on An+1 is de*ned by the following: For members a and b in An+1, let their weak

normal forms in el(F) be (X; z)
f→ (An; a) and (Y; w)

g→ (An; b). Then the ordering
a¡b holds i= either
(1) It holds that a6b◦ in An+1 for some b◦ in the image of the composite Y

g→
An

en→An+1, or
(2) It holds that a¡b in the linear order F(An) and, in addition, a◦¡b holds in

An+1 for every a◦ in the image of the composite X
f→An

en→An+1.
(ii) en+1 :An+1→An+2 is de*ned simply by F(en).
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Remark. We note that, in the condition (2) above, a¡b is a comparison by the linear
order F(An) while a◦¡b by the linear order An+1 we are de*ning. Likewise a¡b◦

in the condition (1) is by the linear order An+1. So de*nition of the recursive path
ordering uses an inner induction on p(a)+p(b). We recall that p(a) is the least index
n satisfying a∈An if we regard 6X: F(X ) as the increasing union of An.

Lemma 2.20. (i) en+1 :An+1→An+2 in De4nition 2:19 is strictly order preserving.
(ii) The recursive path ordering on the initial algebra 6F is a linear ordering.

Proof. To prove these two assertions, we have to prove that each An is a linear order
and en :An→An+1 is strictly order preserving. Then the recursive path ordering as the
inductive limit in category LO turns out to be a linear order.
First we show that An is a linear order. We must show (a¡b)∨ (a= b)∨ (a¿b)

and the disjunctions are exclusive. The proof is left to the reader. We show that the
order ¡ is transitive. Suppose that a¡b and b¡c holds in An+1. The proof is by
induction on p(a)+p(b)+p(c). If b6c◦ for some c◦, then a¡c◦ holds by induction
hypothesis, so a¡c. Otherwise b¡c in F(An), which is a linear order (by induction
on n), and b◦¡c for all b◦. If a6b◦ then a¡c by induction hypothesis. If a¡b in
F(An) and a◦¡b for all a◦ then a¡c in F(An) and a◦¡c by induction hypothesis, so
a¡c. In all cases, we have a¡c.
Second we prove that en is strictly order preserving by induction on n. The base

case n=0 is obvious. We verify that a¡a′ in An+1 implies Ra¡ Ra′ in An+2 where
Ra= en+1(a) and Ra′ = en+1(a′) by inner induction on p(a) + p(a′). Suppose that a¡a′

is derived by the condition (2) of De*nition 2.19. Then we have Ra¡ Ra′ in FAn+1,
since en is strictly order-preserving by induction hypothesis on n, thus so is Fen.

Furthermore, if (X; z)
f→(An; a) is a weak normal form, Lemma 1.5(ii) induces that

(X; z)
enf→(An+1; Ra) is a weak normal form. Hence, for every c◦ in the image of X

enf→
An+1

en+1→ An+2, there is a◦ in the image of X
f→An

en→An+1 such that c◦ = en+1(a◦).
Applying inner induction hypothesis to a◦¡a′, we have c◦¡ Ra′. Therefore Ra¡ Ra′ holds.
We use Lemma 1.5(i) for the case that a¡a′ is derived the condition (1).

We have shown that, in Theorem 2.10. the divisibility ordering is a well-quasi-order
if the involving functor preserves well-quasi-orders. A similar theorem holds for the
recursive path ordering. The proof is parallel to the one of that theorem, and is omitted
(see [31]).

Theorem 2.21. Let F be a lifting of an analytic functor to the category of linear
orders. If F sends well-orders to well-orders; the recursive path ordering on 6F is a
well-order.

Example. (i) Since the product on linear orders is non-commutative, we have two
natural recursive path orderings 6X :1+XA and 6X :1+AX on the set List A of *nite
lists of members of A. The former is the monadic path ordering [55, 46], and the latter
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compares the lengths of lists *rst and inverse lexicographic order second. This may be
regarded as the total degree-lexicographic ordering on monomials for non-commutative
variables.
(ii) The recursive path ordering on 6X :1+X 2+X is the lexicographic path ordering

on the set of terms generated by a constant a, a binary function symbol f, and a unary
function symbol g, with precedence a≺f≺ g. One can employ this ordering to prove
the termination of the rewriting system of free groups, a well-known application of the
Knuth–Bendix completion algorithm:

(xy)z → x(yz) e−1 → e
xe → x (x−1)−1 → x
ex → x x(x−1y) → y
xx−1 → e x−1(xy) → y
x−1x → e (xy)−1 → y−1x−1:

The unit e is a constant, the multiplication is a binary function, and the inverse is a
unary function. By the precedence e≺×≺ (·)−1, we can easily see that 7l¿7r for
each rule l→ r and each ground substitution 7.
(iii) The recursive path ordering on 6X :1 + X 3 + expX is equal to the recursive

path ordering with status [44] on the set of terms generated by a constant a, a ter-
tiary function symbol f, and a function symbol g of variable arity, with precedence
a≺f≺ g.

All of these examples are well-orders (for the *rst example, provided that A is a well-
order), as derived from the following observation: The involving functor F :LO→LO
makes sense also as a functor on the category QO of quasi-orders, and it sends well-
quasi-orders to well-quasi-orders. For each linear order A, the linear order F(A) as the
image of the functor on LO is a linearization of the partial-order F(A) as the image
of the functor on QO. Since a linearization of a well-partial-order is a well-order, we
can conclude that if A is a well-order then F(A) is a well-order. Hence Theorem 2.21
implies that the recursive path ordering on 6X :F(X ) is a well-order.
We de*ned the class of algebras in De*nition 2.12 and well-partial-orders on them.

They behave also as well-orders by considering the recursive path ordering. Namely,
if we de*ne the linear order on =A for each algebra A with its canonical substitution
= as follows, the linear order turns out to be a well-order.
(i) In =(A+ B), it holds that <a¡<a′ if a¡a′ holds in =A. Likewise <′b¡<′b′ holds

if b¡b′ holds in =B. Moreover <a¡<′b for every a∈ =A and every b∈ =B.
(ii) In =(A×B), it holds that 〈a; b〉¡〈a′; b′〉 if either b¡b′ holds in =B or b= b′

and a¡a′ in =A.
(iii) In =(6Xn :B), for terms a= �nb and a′ = �nb′, it holds that a¡a′ if either of the

following holds: (1) there is a subterm a′◦⊂ a′ such that a6a′◦. (2) b¡b′ holds in
=B and furthermore a◦¡a′ holds for all subterm a◦⊂ a.
Below we determine the supremum of the order types of the well-orders on A which

ranges over all closed algebras.
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2.4. Logical complexity

We have a class of well-ordering de*ned on each closed algebra as discussed above.
We show that the order types of these well-orderings surpass any ordinals smaller than
the proof-theoretic ordinal A>!0 of (B1

1 -CA)0 [10].
Takeuti de*ned ordinal diagrams [61] as a system of ordinal notation to prove the

consistency of a fragment of second-order arithmetic. We give a slightly adapted de*-
nition of the ordinal diagram. Later we show that it is nothing but the recursive path
ordering on an initial algebra.

De�nition 2.22. Let n be a positive integer.
An ordinal diagram is a member of O(n; 1) inductively generated by the following:
(i) A pair (i; t) is an ordinal diagram for i¡n, provided t is an ordinal diagram.
(ii) A *nite multiset of ordinal diagrams of the form (i; t) is an ordinal diagram. We

write the multiset (i1; t1) ] (i2; t2) ] · · · ] (im; tm), and 0 for the empty multiset. We
identify a singleton multiset of (i; t) with (i; t) itself.

Remark. The empty diagram 0 satis*es t=0 ] t. This di=ers from the original de*ni-
tion where 0 ] t behaves as the successor of t. Takeuti de*ned O(n; k) in general, but
we need the case k =1 only.

It is helpful to regard an ordinal diagram t=(i1; t1) ] (i2; t2) ] · · · ] (im; tm) as an
edge-labeled tree

recursively unfolding t1; t2; : : : ; tn. The empty ordinal diagram 0 is regarded as the tree
consisting of a single node.
An i-section of an ordinal diagram t is a subdiagram u subject to the following

condition: if u occurs as

t = · · · ](i0; t1)] · · ·
tk = · · · ](ik ; tk+1)] · · · for k =1; 2; : : : ; m− 1
tm = · · · ](im; u)] · · ·

for some m¿1, then the labels should satisfy i0; i1; : : : ; im−1¿i and moreover im = i.
Equivalently, an i-section is de*ned as a subtree u where the edges on the path from the
root of t to the root of u have labels i0; i1; : : : ; im in this order satisfying i0; i1; : : : ; im−1¿i
and moreover im = i.
We de*ne the linear order ¡0 on the set O(n; 1) of ordinal diagrams. To de*ne this

order, we need auxiliary ordering ¡1;¡2; : : : ;¡n−1 and ¡∞.



R. Hasegawa / Theoretical Computer Science 272 (2002) 113–175 151

De�nition 2.23 (of ¡0;¡1; : : : ;¡n−1;¡∞). On the set O(n; 1) of ordinal diagrams,
we de*ne ¡i for natural numbers i¡n as well as ¡∞ in the following way:
(i) s¡it holds i= either of the following two conditions is satis*ed: (1) s6it◦ for

some i-section t◦ of t, or (2) s◦¡it for all i-section s◦ of s and furthermore
s¡i+1t holds. If i= n− 1, we set i + 1 to be ∞.

(ii) s¡∞t is de*ned *rst for ordinal diagrams of the form s=(i; s′) and t=(j; t′),
in which case s¡∞t i= either i¡j, or both i= j and s′¡i t′. Then this ¡∞ is
extended to multisets by the multiset ordering induced by this.

Remark. In the de*nition above, we apply the multiset ordering only to ¡∞ while
Takeuti did to all of ¡i and ¡∞ in the original de*nition. According to this modi*-
cation, we extend the de*nition of i-sections to all ordinal diagrams, not only to those
of the form (j; s).

We prove that the ordinal diagrams and the orderings on them are exactly the recur-
sive path orderings on the iterated initial algebra 6X16X2· · ·6Xn : exp(X1+X2+· · ·+Xn).
Namely, we put

D1 = 6X1:D2[X1];

D2[X1] = 6X2:D3[X1; X2];
...

Dn[X1; X2; : : : ; Xn−1] = 6Xn: D∞[X1; X2; : : : ; Xn−1; Xn];

D∞[X1; X2; : : : ; Xn−1; Xn] = exp (X1 + X2 + · · ·+ Xn−1 + Xn):

The canonical substitution is given by == [D1=X1][D2=X2]· · ·[Dn=Xn]. We denote the
partial substitution [Dk+1=Xk+1]· · ·[Dn=Xn] by =(k). The members of =D∞ are multi-
sets {R�i1 t1; R�i2 t2; : : : ; R�im tm} where R�it is the shorthand of �i�i+1· · ·�nt. We identify these
multisets with ordinal diagrams

(i1 − 1; t1)](i2 − 1; t2)] · · · ](im − 1; tm):

The decreasing by 1 is simply because of the di=erence of the conventions of labeling.
An empty multiset { } is identi*ed with the ordinal diagram 0. We show *rst that
i-sections are characterized by weak normal forms.

Lemma 2.24. The partial substitution =(i+1)D∞ is an analytic functor in Xi+1 as well
as in X1; X2; : : : ; Xi. We 4x the latter variables; and put this functor F(Xi+1). Let t
be a member of =D∞.

R�i+1u is in the image of f for a weak normal form (Y; z)
f→ (=Xi+1; t) in el(F) if

and only if u is an i-section of t.

Proof. We can characterize the image of f of a weak normal form by the subterm
relation ⊆ analogously to De*nition 2.13 for algebras. The condition on labels ik in
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de*nition of i-sections corresponds to the condition on cardinalities in de*nition of the
subterm relation.

Lemma 2.25. Let s and t be ordinal diagrams.
(i) s¡∞t holds i? s¡t by the multiset ordering on =D∞.
(ii) s¡i−1t holds i? R�is¡R�it by the recursive path ordering on =Di; for each i=1; 2;

: : : ; n.

Proof. By de*nition and Lemma 2.24.

Therefore the principal ordering ¡0 on ordinal diagrams is exactly the recursive
path ordering on the initial algebra 6X16X2· · ·6Xn: exp(X1 + X2 + · · ·+ Xn). The char-
acterization by the analytic functor clari*es the reason we need auxiliary ordering,
¡1;¡2; : : : ;¡n−1 and ¡∞. Moreover, the rather syntactic de*nition of i-sections is
justi*ed by weak normal forms.
Since the operation exp(·) is not a part of the syntax of algebras, we embed the

recursive path ordering on 6X16X2· · ·6Xn: exp(X1 +X2 + · · ·+Xn) to the recursive path
ordering on

6X1 :1 + 6X2:X1 + 6X3:X2 + · · ·+ 6Xn−1:Xn−2 + 6Xn:Xn−1 + Xn
2:

Namely, we de*ne the algebra E1 by the following:

E1 = 6X1:1 + E2[X1];

E2[X1] = 6X2:X1 + E3[X2];

E3[X2] = 6X3:X2 + E4[X3];
...

En−1[Xn−2] = 6Xn−1:Xn−2 + En[Xn−1];

En[Xn−1] = 6Xn:E∞[Xn−1; Xn];

E∞[Xn−1; Xn] = Xn−1 + Xn
2:

We denote the canonical substitution [E1=X1][E2=X2]· · ·[En=Xn] by =′ to distinguish it
from the canonical substitution associated to Di above.
The mapping (·)[ : =D∞→ =′E∞ is de*ned as follows: Let t= {R�k1 t1; R�k2 t2; : : : ;

R�km tm} be a member of =D∞. We assume without loss of generality that R�k1t16R�k2t26
· · ·6R�km tm in the poset =(X1 + X2 + · · ·+ Xn)= =D1 + =D2 + · · ·+ =Dn. In particular,
it holds that k16k26· · ·6km since the right component is prior by de*nition of sum
+ of linear orders. Let us write t= t′ ∪ {R�km tm}. Then we de*ne

t[ = 〈�nt′[; RR�km t[m〉 (where RR�l = �n · · · �l+1�l�l+1 · · · �n)
which is in the right component of =′E∞ = =′En−1+(=′En)2. As for the empty multiset
{ }, we put { }[ = �n−1· · ·�2�1∗ in the left component.
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Lemma 2.26. If R�k t is a subterm of R�ku in =Dk; then R�k t
[ is a subterm of R�ku

[ in
=′Ek; for every k =1; 2; : : : ; n.

Lemma 2.27. (i) If t¡u holds in =D∞; then t[¡u[ holds in =′E∞.
(ii) If R�k t¡R�ku holds in =Dk; then R�k t

[¡R�ku
[ holds in =′Ek; for every k =1; 2; : : : ; n.

The proof is by induction on construction of terms. By this lemma, we have a strictly
order-preserving map from D1 into E1. Therefore the following corollary holds:

Corollary 2.28. The order type of the algebra E1 is greater than or equal to the
order type of the set D1 of ordinal diagrams.

Arai proved that, using the well-order O(n; 1) of ordinal diagrams, Feferman’s system
IDn−1 of iterated inductive de*nition is consistent [18]. We refer the reader to [18]
for the general theory of systems IDn. Although we modify de*nition of the ordinal
diagrams, we can apply the same proof after appropriate adjustment. For example, the
original proof uses t ]0 as the successor of the ordinal diagram t, while t ]0= t in our
de*nition. So we should replace it by t]1 where 1 is the second least element {R�1{ }}
in O(n; 1). Hence, by Corollary 2.28, the order type of the algebra E1 is greater than
or equal to the proof theoretical ordinal of IDn−1.
It is well-known that the proof-theoretical ordinal |(B1

1 -CA)0|= A>!0 is the supre-
mum of the proof-theoretical ordinals of IDn for n=1; 2; : : : . Therefore, if we let |A|
denote the order type of the well-ordering on the algebra A, we have the inequation

|(B1
1-CA)0|6 sup|A|

where A ranges over all closed algebras. Next we show the reverse inequation of
ordinals. To this end, it su:ces to prove that the well-orderedness of each algebra is
derived in system (B1

1 -CA)0 of second-order arithmetic.
System (B1

1 -CA)0 [58] of second-order arithmetic is given as follows. The language
is that of the usual arithmetic with set variables X . The axioms are those of Peano
arithmetic where the induction is restricted to the following form:

∀X:X (0)& (∀x:X (x)→ X (x′))→ ∀x:X (x):

Moreover this system has the axiom scheme of B1
1 -comprehension, Fwhich is the source

of the name of the system:

∃X∀x:’(x)↔ X (x)

where ’(x) is a B1
1 -formula that does not contain X but may contain other set param-

eters. We note that the induction principle is applied to only B1
1 -predicates.

We show that we can carry out in system (B1
1 -CA)0 the proof of Theorem 2.10

asserting that the divisibility ordering is a well-quasi-order, provided that the involving
functor F can be encoded in the language of arithmetic. This is the case if F is the
functor occurring as an algebra in De*nition 2.12.
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Lemma 2.29. System (B1
1 -CA)0 proves the following: If F is an endofunctor on QO

preserving inclusions and is a lifting of an analytic functor; and if in addition F
preserves well-quasi-orders; then 6F is a well-quasi-order.

Proof. Towards contradiction, we assume that there is an in*nite bad sequence g
in A. Let T be the tree of the *nite initial segments of all in*nite bad sequences
in A. Namely, 〈a0; a1; : : : ; an−1〉 is in T i= there is f∈A! such that f is bad and
ai =fi for all i=0; 1; : : : ; n − 1. This formula is H1

1 in A. So we can assert the ex-
istence of T using the B1

1 -comprehension axiom, from which H1
1-comprehension is

derivable. We de*ne the subtree T ′ of T as follows: 〈a0; a1; : : : ; an−1〉 is in T ′ i= it
is in T and, moreover, for every 〈b0; b1; : : : ; bk−1〉 in T and every i¡min{n; k} such
that a0 = b0; a1 = b1; : : : ; ai−1 = bi−1, it holds that p(ai)6p(bi). The de*nition of T ′

is arithmetic in T , so exists provably in (B1
1 -CA)0. The least number principle im-

plies that T ′ is non-empty and every path in T ′ is in*nite. We note that the involving
set on which the least number principle is applied is arithmetic in T ′. Let us take a
path h in T ′. Since every path in T ′ is in*nite, it su:ces to take the leftmost path
that can be de*ned arithmetically in T ′. Then h is an in*nite bad sequence such that
〈p(h0); p(h1); : : :〉 is minimal lexicographically among all in*nite bad sequences.
Now we de*ne S as the set of the immediate subterms of all hi. As shown earlier, S

is a well-partial-order, which can be formalized easily. So induction hypothesis implies
F(S) is a well-partial-order, contradicting that h is bad.

Corollary 2.30. Let A be an algebra with its canonical substitution =.
System (B1

1 -CA)0 proves that the partial order EA on =A is a well-partial-order.

Proof. This is obtained by applying the previous lemma iteratively.

We note this corollary asserts that, if we *x an algebra, system (B1
1 -CA)0 proves that

the associated partial order is a well-partial-order. We cannot prove in system (B1
1 -CA)0

that every algebra is a well-partial-order with respect to the associated partial order.
Namely there is no uniform proof of well-partial-orderedness applied to all algebras in
system (B1

1 -CA)0.

Corollary 2.31. Let A be an algebra with its canonical substitution =.
System (B1

1 -CA)0 proves that the linear order ¡A on =A is a well-order.

Proof. The linear order ¡A is a linearization of the partial order EA. So ¡A is a
well-order. Obviously this argument can be carried out in system (B1

1 -CA)0.

The proof-theoretical ordinal of a logical system is the least ordinal the well-
orderedness of which cannot be proved within the system. Hence the corollary in-
duces the in equation |A|¡|(B1

1 -CA)0| where we recall that |A| is the order type of
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the linear order ¡A on the closed algebra A. Therefore

sup |A|6|(B1
1-CA)0|:

The reverse inequation has already been veri*ed above. So we can conclude the fol-
lowing.

Theorem 2.32. The supremum of the order types |A| of the linear orders on algebras
A equals the proof-theoretical ordinal |(B1

1 -CA)0|= A>!0.

It is known that a large part of mathematics can be formalized in system (B1
1 -CA)0.

So we have fairly strong well-partial-orders and well-orders by the divisibility ordering
and the recursive path ordering.

3. Fixpoint, trace, and inversion

Relation between lambda calculi and cartesian closed categories is well-known [43].
The lambda calculus is introduced in mathematical logic as a syntax of type theory by
Church. Later it is employed as a foundation of functional programming language in
computer science, and developed in both theory and practice. The link between lambda
calculus and categories follows after Lambek’s and Lawvere’s work, accompanying the
development of the theory of categorical logic. We refer the reader to [2, 43] for these
subjects.
We veri*ed that category CAAccNF of complete atomic accessible categories and

normal functors is cartesian closed (Corollary 1.25). Hence we can form a model of
simply typed lambda calculus in this category.
Category CAAccNF shares many good properties with the categories of partial orders

used in domain theory [26], although the former is not of partial orders. For example,
we pointed out in Section 1 the similarity of categories SetA of presheaves to complete
atomic Boolean algebras. The most important is that we can solve domain equations in
category CAAccNF. Theorem 1.24 shows that the exponential in this category is given
by Setexp B×C , interpreting function type B⇒C. A remarkable point is that, although
B is the negative occurrence in the type, the corresponding interpretation expB×C is
a covariant functor. In fact, this is an analytic functor in B and C. Hence one can
solve domain equations by the initial algebra construction, or by the terminal algebra
construction (each analytic functor F preserves !-inverse limits [4]).
In particular, from a solution of the domain equation A∼=expA × A, we can form

a model of the untyped lambda calculus in SetA [23]. This object of CAAccNF sat-
is*es the isomorphism SetA∼= [SetA;SetA]NF. Hence one can interpret terms of the
lambda calculus as formal power series in card A variables. We show in another pa-
per [30] some properties of this model. In particular, if A is an initial algebra of the
analytic functor exp(−)×−, the formal power series interpreting the terms have *nite
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coe:cients only. So they are regarded as formal power series in non-negative integer
coe:cients.
In this paper, we give a model of system PCF [50, 49] of typed lambda calculus

in category CAAccNF. This system is a variation of simply typed lambda calculus
augmented with elementary arithmetic and Boolean operations as well as the *xpoint
combinator.
The interpretation of the *xpoint combinator is especially interesting. We give a

concrete formula computing the interpretation of the *xpoint combinator. To this end,
we pass through the intuitionistic linear logic with the *xpoint combinator and its
model using categorical trace by Joyal et al. [40]. It is shown by Hasegawa that giving
a trace in a cartesian category is equal to giving a *xpoint operator [28]. Hence, the
computation of a *xpoint operator is reduced to the computation of trace subject to
certain axioms.
A *xpoint operator in the context of formal power series has already appeared in

the literature. It is known as the Lagrange–Good inversion formula [21]. The for-
mula for formal power series in a single variable dates back to the end of eighteenth
century, and is attributed to Lagrange. Many celebrated mathematicians tried to ex-
tend the formula to several variables, and obtained partial solutions. The currently
known formula is *nally established by Good. The traditional proof of the formula
is the use of residues in analysis [24, 33]. Recently several new proofs are produced,
employing enumerative combinatorics. They include [37, 21, 16, 11]. Here we give a
new proof of the Lagrange–Good inversion formula based on the interpretation of
the *xpoint combinator of lambda calculus. This is an application of the ideas devel-
oped in the theory of lambda calculus in theoretical computer science to pure mathe-
matics.

3.1. PCF

We de*ne system PCF of typed lambda calculus with *xpoint combinator as well
as arithmetic and Boolean operations. The types 7 of PCF are given by the following
Backus–Naur form:

7 ::= < | o | 7⇒ 7:

The type < is regarded as the type of natural numbers, and the type o as that of Boolean
values. The terms M are given by the following syntax:

M ::= x |MM | Jx7:M | fixM
| succM | predM | zero?M
| condMMM | t | f | n:

Here x is a variable from a *xed countable set, and n ranges over the set of natural
numbers 0; 1; : : : . The typing rules are obvious and we omit them. We consider the
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following reduction rules:

(Jx7:M)N → M [N=x]

fixM → M (fixM)

succ n → n+ 1

pred n+ 1 → n pred 0 → 0

zero? n+ 1 → t zero? 0 → f

cond tMN → M cond fMN → N:

We give a model of PCF in the category CAAccNF. Types are interpreted as sets by
the following de*nition:

<<= = !

<o= = 2

<7⇒ K= = exp <7= × <K=

where ! is the set of natural numbers and 2 is the set {0; 1}. The interpretation of
function type corresponds to Theorem 1.24.
For the interpretation of a term, we de*ne it as a function of the pairs of environ-

ments L= x1 : 71; x2 : 72; : : : ; xn : 7n and a term M : K such that L � M : K is a correct
typing judgement. The interpretation <M =̃x is a normal functor from SetA1+A2+···+An to
SetB where Ai = <7i= and B= <K=. The de*nition of <M =̃x is by induction on construction
of terms. What is the most interesting is the interpretation of the *xpoint combinator.
But we start with easy ones.
The interpretation of the fragment of ordinary typed lambda calculus is induced from

the structure of CAAccNF as a cartesian closed category:

<xi =̃x (̃t) = ti

<MN =̃x (̃t) = ev(<M =̃x (̃t); <N =̃x (̃t))

<Jy7:M =̃x (̃t) = lam(<M =̃x;y (̃t;−))

where ev :Setexp A×B×SetA→SetB is the counit of cartesian closedness and lam is the
isomorphism [SetA; SetB]NF

∼→Setexp A×B.
The interpretations of arithmetic and Boolean operations are given next. The numerals

of type < are interpreted as the singletons of the corresponding numerals in !. Namely,
<n= for each numeral n is the singleton multiset {n}, which means the presheaf in Set!

carrying n to 1 and all other members of ! to ∅. Likewise the Boolean values t and
f are interpreted as

<t= = {1}; <f= = {0}:



158 R. Hasegawa / Theoretical Computer Science 272 (2002) 113–175

The operations succ and pred are interpreted as presheaves in Setexp!×! carrying

<succ= : [{n}; n+ 1] → 1

<pred= : [{n+ 1}; n] → 1

<pred= : [{0}; 0] → 1

and taking the value ∅ for all other members. In other words, for example, <succ= is
the normal functor from Set! to Set! (so !-indexed family of formal power series)
satisfying that the nth component is simply monomial xn+1. Likewise the zero-test
zero? is interpreted as a presheaf in Setexp!×2 carrying

<zero?= : [{n+ 1}; 1] → 1

<zero?= : [{0}; 0] → 1

and taking ∅ for all other members. Finally cond for type 7 is interpreted as a presheaf
in Setexp 2×exp A×exp A×A for A= <7=, carrying

<cond= : [{1}; {a}; { }; a] → 1

<cond= : [{0}; { }; {a}; a] → 1

for all members a∈A, and taking the value ∅ for all other members of exp 2×
expA×expA×A.

The interpretation of, for example, succ operates as follows: Let t be a presheaf
in Set!, regarded as a multiset of members of !. Then <succ=(t) equals the multiset
{n+1 |n∈ t}. In particular, if t= <n=, i.e., the singleton {n}, we have <succ=(t)= <n+1=,
validating the reduction succ n→ n+1. It is easy to see that all other --reductions are
sound by the interpretations just given.
What remains is the interpretation of the *xpoint combinator. It is given by ini-

tial algebra construction. We recall that, for each normal functor f :Set→Set, there
is an initial f-algebra 6f. This easily generalizes to a normal functor f from SetX

to SetX . So the initial algebra constructor f → 6f yields a mapping from Setexp X×X

into SetX . We show that this mapping is actually a normal functor. By cartesian
closedness of CAAccNF, there is a normal functor ev :Setexp X×X×SetX →SetX car-
rying (f; x) to f(x) as the counit of the adjunction of cartesian closedness. If we
generalize Proposition 1.27 to initial algebras in the category SetX of presheaves and
apply it, we obtain a normal functor from Setexp X×X to SetX carrying f to 6f. Hence
we de*ne the interpretation of the *xpoint combinator by

<fixM =̃x (̃t) = 6(<M =̃x (̃t));

which is a normal functor in t̃. (With a slight abuse, we do not distinguish a normal
functor f :SetX →SetX from the presheaf f̃∈Setexp X×X of its coe:cients, where the
notation f̃ is given in section 1 before Theorem 1.24).

Theorem 3.1. The model of PCF in category CAAccNF is sound. Namely; if M→N;
then <M =̃x = <N =̃x as normal functors.
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3.2. Trace

We de*ned the interpretation of the *xpoint combinator by the initial algebra con-
structor 6. This is not convenient, however, to compute the actual form of the inter-
pretations of PCF-terms as formal power series. We want to give the concrete form
of the initial algebra constructor. To this end, we recall the relation between *xpoint
operator and trace.
Categorical trace is introduced by Joyal et al. as a generalization of several concepts

including the usual trace in linear algebra [40]. It is given as an operation satisfying
natural axioms of trace in a balanced monoidal categories [39]. We need only symmetric
monoidal categories and, indeed, our main interest is in the case that the monoidal
structure is given by the cartesian product.

De�nition 3.2. A traced monoidal category is a symmetric monoidal category en-
dowed with a family of operations

A⊗ X
f→B⊗ X

A
trX f→ B

subject to the following conditions:

(vanishing) trIf = f for A⊗ I
f→B⊗ I;

trX (trYf) = trX⊗Yf for A⊗ X ⊗ Y
f→B⊗ X ⊗ Y;

(superposing) trX (1⊗ f) = 1⊗ trXf for A⊗ X
f→B⊗ X;

(yanking) trX c = 1 for X ⊗ X
c→X ⊗ X

(left-tightening) trX (f(g⊗ 1)) = (trXf)g for A⊗ X
f→B⊗ X and A′ g→A;

(right-tightening) trX ((g⊗ 1)f) = g(trXf) for A⊗ X
f→B⊗ X and B

g→B′;

(sliding) trX ((1⊗ g)f) = trY (f(1⊗ g)) for A⊗ X
f→B⊗ Y and Y

g→X;

where c= cX is the symmetry. We omitted canonical isomorphisms, which should be
clear from the context. For instance, the right-hand side of the *rst rule of vanishing
should be N−1

B ◦ f ◦ NA with canonical isomorphisms NA :A→A⊗ I and NB.

Remark. In the balanced monoidal category, we modify the axiom of yanking by the
following equations:

(trX c)A−1 = 1X = (trX c−1)A

where c :X ⊗ X →X ⊗ X is the crossing and A :X →X is the twisting [40].

The axioms of traced monoidal category are simulated by graphs. A morphism is
drawn as a directed graph where the vertices are labeled by primitive morphisms and

the edges are labeled by objects. For example, the composite of two morphisms A
f→B
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and B
g→C is given by the cascade of two graphs:

where the directions on edges are omitted. The symmetry c : A⊗B→B⊗A is given
by the crossing

Since we are interested in only symmetric monoidal categories, which string is upper
to the other is irrelevant. If one deals with a braided monoidal category, two ways of
laying two strings must be distinguished. The naturality is simply moves of links. For
instance, the naturality of the crossing c amounts to the equation between two graphs

meaning c◦(f⊗ g)= (g⊗f)◦c. We note that these two graphs denote the topologically
same graph.

The trace A
tr X f→ B is denoted by a loop connecting two edges of X :

The axioms of trace monoidal category are transformed into graphs so that the both
sides of the equalities do not change the topological structure of graphs, except two
vanishing rules. The superposing and the left and right tightening rules are drawn by
the following graphs respectively:

Both sides of these rules are denoted by the same graphs. For example, the super-
posing rule means that trace after tensor equals tensor after trace. The sliding rule and
the yanking rule are more interesting. They amount to the following equalities between
graphs:
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Both sides of two vanishing rules do not give topologically same graphs. If we insist
on drawing them in the form of *gures, they may be written as

In this paper, we handle these rules implicitly. Namely, we ignore the loop on the unit
I and identify a loop on tensor with decomposed two loops.
We consider the traced monoidal categories where the monoidal structures are carte-

sian products. For cartesian product, there are diagonal maps OA :A→A×A and unique
morphisms !A :A→ 1 to the terminal object. Conversely, if a monoidal category has
natural transformations OA :A→A⊗A and !A :A→ I , then ⊗ is cartesian product and
I is a terminal object. We denote OA diagramatically by

We de*ne a *xpoint operator in a cartesian category.

De�nition 3.3. A 4xpoint operator in a cartesian category is an operation (·)†

A× X
f→X

A
f†→X

of morphisms, natural in A and dinatural in X , this operation subject to the condition

that f† is equal to the composite A OA→A× A
1×f†
→ A× X

f→X

As a condition on a *xpoint operator, we de*ne BekiXc’s formula, which asserts that
a *xpoint of a binary function is equal to iteration of *xpoints in one of the arguments
*xing the other.

De�nition 3.4. We consider a cartesian category with *xpoint operator (·)†. Given two

morphisms A×X ×Y
f→X and A×X ×Y

g→Y , we put h :A×X →X as A×X
OA×X→ A×

X × A× X
1A×X×g†→ A× X × Y

f→X where O is the diagonal.
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Fig. 1. Fixpoint combinator from trace.

BekiCc’s formula is the equality 〈f; g〉† = 〈h†; g†〈1A; h†〉〉 between morphisms from A
to X × Y .

Remark. It would be easier to understand, if we informally write h as h(a; x)=f(a; x;
g†(a; x)) where a and x are parameters from A and X .
Hasegawa [28] proved that, in a cartesian category, giving a trace is equivalent to

giving a *xpoint operator satisfying BekiXc’s formula.

Theorem 3.5. Let C be a cartesian category.
The category C is a traced cartesian category i? C has a 4xpoint operator satis-

fying BekiCc’s formula.

We give a sketch of a proof of (⇒). For a morphism A × X
f→X , the *xpoint

operator f† : A→X is given by trace as shown diagrammatically in the following:

The proof that f† is a *xpoint of f is given as in Fig. 1. The *rst equation is the
naturality of diagonal. The second is the sliding of f, and the third is the naturality
of crossing. Finally, the yanking concludes that f† is the *xpoint of f.

We leave to the reader the proof of BekiXc’s formula. It amounts to derive the
following equality between two graphs.
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Table 1
Term assignment for linear natural deduction

x : A � x : A

L; x : A � e : B
L � (JxA:e) : (A ( B)

L � e : (A ( B) O � f : A
L; O � (apply e to f) : B

� ∗ : I
L � e : I O � f : A

L; O � (let e be ∗ in f) : A

L � e : A O � f : B
L; O � (e⊗f) : (A⊗B)

L � e : (A⊗B) O; x : A; y : B � f : C
L; O � (let e be x⊗ y in f) : C

L � e : (!A)
L � (derelict e) : A

L � e : (!A) O � f : B
L; O � (discard e in f) : B

L � e : (!A) O; x : (!A); y : (!A) � f : B
L; O � (copy e as x; y in f) : B

Li � ei : (!Ai) (i=1; : : : ; n) x1 : (!A1); : : : ; xn : (!An) � f : B
L1; : : : ; Ln � (promote e1; : : : ; en for x1; : : : ; xn in f) : (!B)

3.3. Intuitionistic linear logic

By the observation above, in order to *nd a *xpoint in a cartesian category, we
only have to *nd a trace. So we want to de*ne a trace in the cartesian category
CAAccNF of complete atomic accessible categories and normal functors. To this end,
it is informative to consider the intuitionistic linear logic. We can re*ne the model
of PCF by CAAccNF into a model of intuitionistic linear logic. In this model, the
interpretations of terms are given by a kind of matrices. Hence an analogy to linear
algebra helps to *nd the trace we are looking for.
We de*ne the intuitionistic linear logic, which is given as a system of typed calculus

[6]. The types A are generated by the following form:

A := 8 |A⊗ A | I |A( A | !A

where 8 ranges over atomic types. For example, for the system to correspond to PCF,
we may let 8 be either < or o.
A typing judgement is, as usual, of the form L � e :B where e is a term, B is a

type, and L is an environment x1 :A1; x2 :A2; : : : ; xn :An that is an assignment of types
to a sequence of pairwise distinct variables. The derivation rules for typing judgements
are given in Table 1, which de*nes the terms of intuitionistic linear logic at the same
time.
The reduction rules for the term calculus of intuitionistic linear logic are

not completely established. See [8], for example. It does not matter which ones we
take, for miscellaneous rules. The core rules are the 9-reductions given by the
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following six:

apply (JxA:e) to f → f[e=x]
let ∗ be ∗ in f → f
let d⊗ e be x ⊗ y in f → f[d=x; e=y]
derelict (promote ẽ for x̃ in f) → f[̃e=̃x]
discard (promote ẽ for x̃ in f) in g → discard ẽ in g
copy (promote ẽ for x̃ in f) as y; z in g → copy ẽ as ṽ; w̃ in g[c=y; d=z]:

In the last rule, we put c to be (promote ṽ for x̃ in f) and d to be (promote w̃ for
x̃ in f). Here we use shorthands

discard e1; e2; : : : ; en in g = discard e1 in (discard e2 in · · · (discard en
in g) · · ·)
copy e1; e2; : : : ; en as ṽ; w̃ in g = copy e1 as v1; w1 in (copy e2 as v2; w2

in · · · (copy en as vn; wn in g) · · ·)
where in the latter the vector of variables ṽ= v1; v2; : : : ; vn and w̃=w1; w2; : : : ; wn are
used.
There is a standard translation of simply typed lambda calculus into intuitionistic

linear logic. A type A⇒ B of typed lambda calculus is translated into the type !A( B
of intuitionistic linear logic. We denote this translation by A  A∗. Accordingly, we
have the translation of typing judgements as

x1 : A1; x2 : A2; : : : ; xn : An � e : A

 x1 : !A∗
1 ; x2 : !A

∗
2 ; : : : ; xn : !A

∗
n � e∗ : B∗

for an appropriate translation e  e∗ of terms (to be precise, de*nition e∗ depends
also on the environment).
A model of intuitionistic linear logic is given by the category C ful*lling the fol-

lowing structures: The multiplicative fragment ⊗ ; I and ( are interpreted by a sym-
metric monoidal closed category [45]. The exponential ! is interpreted as a symmetric
monoidal functor [17], which is given as a triple (!; ’̃; ’0) where ! : C→C is a functor,

!A⊗ !B
’̃A; B→ !(A⊗B) is a natural transformation, and I

’0→ !I is a morphism. To interpret
discard and copy, we assume that each object of the form !A is endowed with a com-

mutative comonoid structure (!A; eA; dA) where !A eA→ I and !A dA→ !A⊗ !A are monoidal
natural transformations. To interpret derelict and promote, we assume that the functor

! takes part of the comonad (!; @; -) where !A @A→A and !A -A→ !!A are monoidal natural
transformations. Moreover, we need several coherence conditions to make this model
sound. See, for example, [8].
We modify the model of PCF in the category CAAccNF to construct a model of

intuitionistic linear logic. In this model, morphisms should interpret linear terms. So
we need the following de*nition:

De�nition 3.6. A linear normal functor from SetA to SetB is a functor preserving
all pull-backs and all colimits. The category CAAccLNF of complete atomic accessi-



R. Hasegawa / Theoretical Computer Science 272 (2002) 113–175 165

ble categories and the ismorphism classes of linear normal functors is induced as a
subcategory of CAAccNF.

Alternatively, linear normal functors are those normal functors SetA
f→SetB where,

for every normal form (X; a) in el(fb) for a member b∈B, the underlying *nitely
presentable object X ∈ SetA corresponds to a singleton in exp A. Hence, if we de-
note by [SetA;SetB]LNF the category of linear normal functors and cartesian natural
transformations, we have the categorical equivalence [SetA;SetB]LNF ∼= SetA×B.

A presheaf in SetA×B is regarded as a matrix with the columns indexed by the
members of A and the rows indexed by the members of B such that each entry is
a set. If we have two matrices M ∈ SetA×B and N ∈SetB×C , the composite of the
corresponding linear normal functors is represented by multiplication of matrices NM
where the entry of index (a; c)∈A×C is the set

∑
b∈B N [b; c]M [a; b]. Here coproduct

in SetA×C is denoted by
∑

and cartesian product by concatenation.
We show that the category CAAccLNF forms a model of intuitionistic linear logic.

First, we de*ne the symmetric monoidal closed structure. Tensor of SetA and SetB is
given by SetA×B, and unit I by Set1 where 1 is a singleton. The right adjoint of tensor
is given also by product as SetA ( SetB =SetA×B.
The monoidal functor to interpret the exponential ! is de*ned as follows: On objects,

!A is the set expA of all *nite multisets of members of A. On morphisms, we de*ne the
following operation associating the matrix ˝M ∈Setexp A×exp B to a matrix M ∈SetA×B.
First, we note the categorical equivalence [SetA;Set]NF ∼= Setexp A. The mapping g →
g ◦ tM de*nes a functor from [SetA;Set]NF to [SetB;Set]NF where tM is the usual
transpose of the matrix M . This functor is linear (although the proof is not so trivial as
it looks, since we identify certain cartesian natural transformations). Hence it determines
a linear normal functor ˝M from Setexp A to Setexp B. By de*nition, it is obvious that
˝ is functorial, preserving identities and composition. This construction ˝M appears
in the tensor representation in a polynomial ring [56].
In the level of matrices, we have the following direct description of ˝M . Suppose

we are given a matrix M in SetA×B. For each �= {a1; a2; : : : ; am}∈ expA and each
-= {b1; b2; : : : ; bn}∈ expB, the entry of ˝M at the �th column and the -th row is
given as, if m= n,

˝M [�; -] =
∑

〈ap(1) ;ap(2) ;:::;ap(n)〉
M [ap(1); b1]M [ap(2); b2] · · ·M [ap(n); bn]

where the summation is over all linear orderings 〈ap(1); ap(2); : : : ; ap(n)〉 of members of
�, identifying two orderings determined by p and q in Sn if it holds that ap(i) = aq(i)

for all i=1; 2; : : : ; n. If m �= n, then ˝M [�; -] is always ∅. One may write as follows
instead: Let H� be the underlying set of � distinguishing two ai’s even if they are

the same as members of A. That is to say, H� is the set f!(�) where SetA
f!→Set is

associated to a unique function A
f→ 1 to a singleton 1. Furthermore, let (H�; H-)=Aut(�)

be the quotient set of all bijections from H� onto H- divided by the equivalence class
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Table 2
Functions for natural transformations in linear category

f∗ corresponding function f

’0 exp 1→ 1
{∗; ∗; : : : ; ∗} �→∗

’̃A; B exp(A×B)→ expA× expB
{〈a1; b1〉; 〈a2; b2〉; : : : ; 〈an; bn〉}

�→ 〈{a1; a2; : : : ; an}; {b1; b2; : : : ; bn}〉
@A A→ expA

a �→ {a}
-A exp(expA)→ expA

{{a11; : : : ; a1n1}; {a21; : : : ; a2n2}; : : : ; {am1; : : : ; amnm}}
�→{a11; : : : ; a1n1 ; a21; : : : ; a2n2 ; : : : ; am1; : : : ; amnm}

eA 1→ expA
∗ �→{}

dA expA× expA→ expA
〈{a1; a2; : : : ; am}; {a′1; a′2; : : : ; a′n}〉
�→ {a1; a2; : : : ; am; a′1; a′2; : : : ; a′n}

determined by the action of the group Aut(�) of all automorphisms on � in SetA. Then
˝M [�; -] may write

˝M [�; -] =
∑

k∈(H�;H-)=Aut(�)

∏
b∈H-

M [k−1(b); b]:

Remark. The isomorphism ˝(MN ) ∼= ˝M˝N of matrices holds in the category
Setexp A×expC if MN ∈SetA×C . However, the isomorphism is not canonical. If we work
in the 2-categorical setting, the operation ˝ is not even a pseudo-functor, although this
problem does not occur since we work with categories, identifying isomorphic ones.
The natural transformations involved in linear category are given as the inverse image

f∗ of appropriate function f. The inverse image f∗ :SetB→SetA is a linear normal
functor, and its matrix M ∈SetB×A satis*es the condition that M [b; a] equals 1 if
f(a)= b; otherwise equals 0. For instance, the morphism ’̃ : !A⊗ !B( !(A⊗B) is the
functor f∗ in [Setexp A×exp B;Setexp(A×B)]LNF corresponding to the function exp(A×B)
f→ expA× expB carrying {〈a1; b1〉; 〈a2; b2〉; : : : ; 〈an; bn〉} to the pair of {a1; a2; : : : ; an}
and {b1; b2; : : : ; bn}. The functions to de*ne natural transformations are given in Table 2.

The category CAAccNF of normal functors is equivalent to the coKleisli category
over the category CAAccNF of linear normal functors by the comonad exp(·). One
can prove this assertion by direct computation, using the concrete form of ˝M given
above.

3.4. Trace of normal functors

As observed above, the model of intuitionistic linear logic has similarity to linear
algebras, although the entries of matrices are sets rather than numbers. So we can de*ne
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the trace of a linear normal functor SetA
f→SetA by the diagonal sum

∑
a∈A M [a; a]

where M is the matrix in SetA×A associated to f. With this de*nition, the category
CAAccLNF of linear normal functors turns out to be a traced monoidal category.
However, what we want to have is the trace in the category CAAccNF of normal

functors. A normal functor SetA→SetA corresponds to a matrix in Setexp A×A. We
cannot take the diagonal sum, since this is not a square matrix. In the following, we
show how to modify the trace of linear normal functors to the trace of normal functors.

A straightforward idea is the following. If we have a normal functor A
f→A, that

is, a linear normal functor !A
f
(A, we have the promotion !A

pf
( !A, corresponding to

a square matrix in Setexp A×exp A. Hence we can take the diagonal sum.
More generally, if a normal functor in [SetA+X ;SetB+X ]NF is given, we may write

it a pair of !A⊗ !X
h
(B and !A⊗ !X

f
(X , employing the terminology of intuitionistic

linear logic. Promoting the latter, we have pf : !A⊗ !X ( !X . Hence, h⊗pf preceded
by canonical morphism from !A⊗ !X to !A⊗ !X ⊗ !A⊗ !X yields a linear map from
!A⊗ !X to B⊗ !X . We de*ne 7h(f) as the diagonal sum of this linear map with re-
spect to !X . Writing down everything in normal functors, we have the following: The

promotion !A⊗ !X
pf→ !X corresponds to the normal functor in [SetA+X ;Setexp X ]NF such

that, for each �∈ expX , the �th formal power series is given by f(a; x)�. Hence, the
normal functor in [SetA+X ;SetB×exp X ]NF given by h⊗pf preceded by the comultipli-
cation on !A⊗ !X corresponds to the system of formal power series hb(a; x)f(a; x)�

where (b; �) ranges over B× expX . Hence, taking the diagonal sum with respect to
�∈ expX , we obtain the following de*nition.

De�nition 3.7 (of 7h(f)). Let Set
A+X f→SetX and SetA+X h→SetB be normal functors.

The normal functor 7h(f) from SetA to SetB is de*ned by
∑

[x�]h(a; x)f(a; x)�

where the summation is over all �∈ expX . Here the notation [x�]g(x) denotes the
coe:cient of x� in power series g(x).
Unfortunately, this 7h(f) does not satisfy the axioms of traced monoidal categories.

We give an improved de*nition later. Before that, we exploit several properties of
7h(f).

Remark. (i) We may regard the coe:cients f̃[(8; �); x] for (8; �)∈ expA× expX and
x∈X as indeterminates. Let R denote the ring of all polynomials in these indeterminates
with integer coe:cients. If the coe:cients of h(a; x) are all *nite, then 7h(f) may be
regarded as a formal power series over the ring R[[a]].
(ii) To prove equality f= g between normal functors in (SetA;SetB)NF, it is su:-

cient and necessary to prove equalities f̃[�; b] = g̃[�; b] between coe:cients for every
(�; b) in expA×B. In particular, if we know, in some way, that all coe:cients are
*nite, we may regard f(x) and g(x) to be families of formal power series in Z[[x]],
and we may apply an analytic or algebraic method to the formal power series ring (e.g,
division which exists in certain cases) to obtain the equality as formal power series,
thus obtaining the equalities between coe:cients.
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Lemma 3.8. Let h; h′ :SetA+X →SetB and SetA+X →SetX be normal functors.
The equality 7h×h′(f)× 71(f)= 7h(f)× 7h′(f) holds; where h× h′ and 1 are nor-

mal functors from SetA+X to SetB; the former carrying the argument (a; x) to the
product h(a; x)× h′(a; x) and the latter to the terminal presheaf 1 irrelevant of the
argument.

Proof. Let z be a sequence of fresh variables of the same length as x. We verify
7h×h′(zf)× 71(zf)= 7h(zf)× 7h′(zf) as formal power series in a and z. We note that
7h(zf) is linear in h. Hence, it su:ces to prove the case where h is a monomial x9.
The coe:cient of z� in 7x9(zf)× 7h′(zf) equals∑

([x-]x9f(a; x)-)([x-
′
]h′(a; x)f(a; x)-

′
)

where the summation is over all pairs (-; -′) satisfying -+-′ = �. Furthermore, we can
assume 9⊆ - as multisets. Then

[x-]x9f(a; x)- = [x-−9]f(a; x)-;

[x-
′
]h′(a; x)f(a; x)-

′
= [x-

′+9]x9h′(a; x)f(a; x)-
′
:

Therefore the coe:cient of z� in 7h(zf)× 7h′(zf) equals the coe:cient of z� in
7x9×h′(zf)× 71(zf). Finally, if we put z=1, the lemma is derived.

As mentioned above, the diagonal sum 7h(f) does not satisfy the axioms of traced
monoidal categories. So we “normalize” it as in the following de*nition. We verify
that, with this Kh(f), the category CAAccNF turns out to be a traced cartesian category.

De�nition 3.9 (of Kh(f)). Let Set
A+X h→SetB and SetA+X f→SetX be normal functors.

The family Kh(f)(a) of formal power series is de*ned by 7h(f)(a)=71(f)(a) where
the division notation means that the ith series of the numerator is divided by the ith
series of the denominator.

We may regard all coe:cients f̃[(8; �); x] of f(a; x) as indeterminates, and we let R
be the ring of all polynomials over integers in these indeterminates. Then the normal
functor f(a; x) may be regarded to lie in the ring R[[a; x]] of the formal power series.
If g is of the form z ·f(a; x) with z ∈SetX , the denominator

71(g)(a; z) =
∑

�∈exp X
z�[x�]f(a; x)�

of Kh(g)(a; z) is of the shape 1 + P(a; z) where P(a; z) is a formal power series in
the ring R<a; z= with no constant term. Noticing the formal power series of this form
is invertible for multiplication, the expression Kh(g)(a; z) makes sense as an element
of the ring R[[a; z]] (supposed the coe:cients of h(a; x) are *nite). We postpone the
veri*cation that Kh(g)(a) is meaningful for all g. This will be proved by observing that
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only the polynomials of non-negative coe:cients in R are involved. For the moment,
we deal with only the case where g is of the form zf(a; x).
The next lemma shows that all Kh(f) is computed if we know the case where h is

the projection from SetA+X onto SetA. So we introduce the following notation:

Notation. We write Kx:f(a; x)= Kh(f)(a; x) in case that SetA+X h→SetA is the projec-
tion. This operator K binds the variable succeeding, so the 8-convertible expressions
are identi*ed.

Lemma 3.10. Let SetA+X h→SetB and SetA+X f→SetX be normal functors.
The equality Kh(f)(a; x)= h(a; Kx:f(a; x)) holds.

Proof. Since Kh(f) is linear in h, it su:ces to verify the case where h is a monomial
x9 = xi1xi2 · · · xin . By the previous lemma, 7x9(f)× 71(f)n−1 = 7xi1 (f)× 7xi2 (f)× · · ·×
7xin (f). Hence, we have Kx9(f)= 7xi1 (f)× 7xi2 (f)× · · ·×7xin (f)=71(f)

n = Kxi1 (f)×
Kxi2 (f)× · · ·× Kxin (f), that is, K(f)

9.

We start the proof that Kh(f) satis*es the axioms of traced monoidal categories. The
axiom of traced monoidal category translates into the following equations: First of all,
tightening and superposing are direct consequences of Lemma 3.10. The rest turns out
to be

(vanishing) K(x; y): (f(x; y); F(x; y))

= (Kx:f′(x); Ky: F(Kx:f′(x); y))

where f′(x), f(x; Ky: F(x; y))

(sliding) g(Ky:f(g(y))) = Kx:g(f(x))

(yanking) Ky: x = x:

In the original axiom of sliding, f may depend on the parameter from A whereas g
may not. However, the extended sliding rule where also g may depend on A is derived
from the axioms of the traced cartesian category. Hence the *xpoint equation

Kx:g(x) = g(Kx:g(x))

is an immediate consequence of the extended sliding rule by setting f to be an identity,
irrelevant of whether g depends on parameters.
We verify the equality of vanishing. Let us put f′(x),f(x; Ky: F(x; y)) and h′(x),

h(x; Ky: F(x; y)). We verify the following equation:

7h(f; F) = h′(Kx:f′(x))× 71(F)(Kx:f′(x))× 71(f′):

The left-hand side is by de*nition equal to
∑

� [x
�]
∑

- [y
-]hf�F- where � ranges over

expX and - over expY . The sum
∑

[y-]hf�F- is equal to the de*nition of 7hf�(F)(x),
which turns out to equal the multiplication Khf�(F)(x)× 71(F)(x). Since Lemma 3.10
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yields

Khf�(F)(x) = h(x; Ky: F(x; y))× f(x; Ky: F(x; y))�;

7h(f; F) above equals
∑

[x�]h′(x)f′(x)�71(F)(x). The last is by de*nition equal to
7h′·71(F)(f

′). We write this Kh′·71(F)(f
′) · 71(f′). A further application of Lemma 3.10

implies that the left factor equals

h′(Kx:f′(x))× 71(F)(Kx:f′(x)):

Hence the claimed equation follows. Now we consider Kh(f; F), the de*nition of which
is 7h(f; F)=71(f; F). We recall that we deal with only the case where the involving
formal power series are members of a ring, which is an integral domain. Hence the
cancellation of non-zero factors holds, yielding Kh(f; F)= h′(Kx:f′(x)), that is,

h(Kx:f′(x); Ky: F(Kx:f′(x); y)):

Taking projections as h, the due equation of vanishing is derived. The idea of this
proof comes from [12].
Next we verify the equality of sliding. First we recall the following. Each normal

functor SetX
f→SetY is regarded as a linear map !X (Y . The promotion pf : !X ( !Y

corresponds to the matrix Mpf in Setexp X×exp Y given by Mpf[�; -] = [x�]f(x)-. If, in ad-
dition, we have h : !X (B, the linear map (h⊗pf) : !X ( (B⊗ !Y ) corresponds to the
matrix Mh⊗pf in Setexp X×(B×exp Y ) de*ned by Mh⊗pf[�; (b; -)]= [x�]hb(x)f(x)- where
b is a member of B.
It su:ces to consider h of type !X ( I , i.e., a normal functor from SetX to Set.

We compute 7h(g ◦f)=
∑

� Mh⊗p(g◦f)[�; �] where the comultiplication on !X is omitted
after h⊗p(g ◦f). Since the term in the sum equals [x�]h(x)g(f(x))� and g(f(x))� =∑

- f(x)
-[y-]g(y)�, we have

7h(g ◦ f) =
∑
�;-

[x�y-]h(x)f(y)-g(x)�:

(We remark the last is equal to 7h(g; f) where the endofunctor (g; f) on SetX+Y is de-
*ned by (x; y) → (g(y); f(x)).) On the other hand, we want to compute 7h◦g(f ◦ g)=∑

- M(h◦pg)⊗p(f◦g)[-; -] where the comultiplication is omitted. Since the linear map
(h ◦pg)⊗p(f ◦ g) from !Y to !X is equal to the composite (h⊗pf) ◦pg (again co-
multiplication is omitted), the term in the sum equals

∑
� Mh⊗pf[�; -]Mpg[-; �]. It is

easy to see that also this is equal to 7h(g; f). Therefore we have 7h(g ◦f)= 7h◦g(f ◦ g).
Since h is arbitrary, we have also 71(g ◦f)= 71(f ◦ g). Hence the equality Kh(g ◦f)=
Kh◦g(f ◦ g) holds. If we take projections as h, we can infer Kx:g(f(x))= g(Ky:f(g(y))).
This veri*es the equality of sliding.
It is easy to show the soundness of yanking. For the *rst and second projection

#1; #2 :Set
X+X →→SetX , we have Ky: x= K#2 (#1)(x)= x. Hence the trace of the symme-

try equals an identity.
Summarizing the observations above, we obtain the following theorem.
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Theorem 3.11. The category CAAccNF is a traced cartesian category where the trace
is given by Kh(f).

Proof. We have proved above that Kh(f) satis*es the axiom of trace if all coe:cients
of f are indeterminates and f has the shape z ·f(x) with fresh indeterminates z.
As proven in Theorem 3.12 below, this case implies that Kh(f) is a normal functor,
namely, that all involved coe:cients are non-negative. Hence the proof above gives
a valid veri*cation of equalities between normal functors. Finally, if we set z=1 and
substitute arbitrary coe:cients for indeterminates of f, we can conclude that the axioms
of trace are satis*ed for all normal functors.

3.5. Lagrange–Good inversion

By Theorem 3.11, we can induce the *xpoint operator from trace. The following
theorem asserts that the induced *xpoint operator is actually the least *xpoint operator.

Theorem 3.12. Let f :SetA+X →SetX be a normal functor.
Kx:f(a; x) coincides with the initial algebra 6x:f(a; x). In particular; Kx:f(a; x) is

a normal functor.

Proof. The argument of the preceding subsection implies that, if we regard all co-
e:cients of f as indeterminates and we consider z ·f(a; x) with new indeterminates
z ∈SetX , then Kx: zf(a; x) makes sense as formal power series and gives a *xpoint
x= z ·f(a; x).

We prove that the *xpoint x= z ·f(a; x) is unique. Let us de*ne g0(a; z)= 0 and
gn+1(a; z)= z ·f(a; gn(a; z)). We claim that, if x= h(a; z) is a *xpoint x= z ·f(a; x),
then the equation [z�]h(a; z)= [z�]gn(a; z) between coe:cients holds for all �∈ expX
satisfying cardH�6n. For n=0, the constant term of h must be 0 by the equation
h= zf(a; h). For induction step, if the claim holds for n, then [z�]f(a; h(a; z))= [z�]f(a;
gn(a; z)) also holds for every � such that cardH�6n, since the coe:cient of z� depends
only on those terms of powers of �′ such that cardH�′6n in h and gn. Multiplying by
z and noticing h= zf(a; z), we have [z-]h(a; z)= [z-]gn+1(a; z) for all - of cardinality
n+1 or less. So the claim is veri*ed. Hence h(a; z) must equal colim

→
gn(a; z), that is,

6x: zf(a; x), showing that the *xpoint is unique.
By uniqueness of *xpoints, we must have Kx: zf(a; x)= 6x: zf(a; x). In particular,

Kx: zf(a; x) is a normal functor, since so is the initial algebra. Thus, we can put z=1,
concluding Kx:f(a; x)= 6x:f(a; x).

We can write down the *xpoint by the formal power series as follows. For each

normal functor SetX h→Set, we have the formula

h(f†(a)) =

∑
�[x

�]h(x)f(a; x)�∑
�[x

�]f(a; x)�

where a and x are parameters from SetA and SetX .
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As a special case of the formula above yielding *xpoints, we consider the solution
x of the equation x= z · g(x) where x and z are vectors of disjoint variables of the
same length and g(x) is a formal power series. Namely we want to *nd the *xpoint
f†(z) if we put f(z; x)= z · g(x). This special case is particularly interesting, since it
can be used to *nd the inverse of formal power series. Let us consider a system of
formal power series z= k(x). If we put f(z; x)= zx=k(x) (that is, g(x)= x=k(x)), then
the *xpoint f†(z) gives the compositional inverse of z= k(x), provided that it exists.

The Lagrange–Good inversion is the formula to *nd the solution of this special case
x= zg(x). By substituting zg(x) for f(a; x) in the general formula above for *xpoints,
we have the following form:

h(f†(z)) =

∑
� z

�[x�]h(x)g(x)�∑
� z

�[x�]g(x)�
:

Although this formula is di=erent from the standard Lagrange–Good inversion formula
occurring in the literature, we can verify that this is equal to the standard one, apply-
ing Jacobi’s residue formula. We recall Jacobi’s residue formula. Let F1; F2; : : : ; Fn be
formal Laurent series in n variables of the shape Fi(x1; x2; : : : ; xn)= aix

bi1
1 xbi22 · · · xbinn +

(higher degree terms). Then, for an arbitrary Laurent series h(x1; x2; : : : ; xn), the formula

det(bij) Res h(x) = Res
(
h(F(x))

@(F1; F2; : : : ; Fn)
@(x1; x2; : : : ; xn)

)

holds, where the residue Res(f(x1; x2; : : : ; xn)) is de*ned as the coe:cient of (x1x2 · · ·
xn)−1 in Laurent series f. Following [21], we show

∑
� z

�[x�]g(x)� =det (E − M (z;
f†(z)))−1 where M (z; x) is the square matrix (zi(@gi(x)=xj)), if we can restrict the in-
volving formal power series to have *nite coe:cients. First we take the partial deriva-
tives of f†(z)= zg(f†(z)), obtaining

@f†
i (z)
@zk

= -ikgi(f†(z)) + zi
∑
j

@gi

@xj
(f†(z))

@f†
j (z)

@zk
:

Namely we have

∑
j

@f†
i (z)
@zk

(
-jk − zi

@gi

@xj
(f†(z))

)
= -ikgi(f†(z)):

Since the left hand side is the multiplication of matrices, taking the determinants of both
sides, det(@f†

i (z)=@zk) det(E−M (z; f†(z)))= g(f†(z))1̃ is derived, where z1̃ = z1z2 · · · zn
for z= z1; z2; : : : ; zn. Hence [z�] det(E−M (z; f†(z)))−1 = [z�]det(@f†

i (z)=@zj)=g(f
†(z))1̃.

The latter equals

Res
1

z�+1̃g(f†(z))1̃
det

(
@f†

i (z)
@zj

)
= Res

g(f†(z))�

f†(z)�+1̃
det

(
@f†

i (z)
@zj

)
:

But this is equal to Res g(x)�=x�+1̃, that is, [x�]g(x)� by Jacobi’s residue formula, notic-
ing that f†

i (z) has the form zi+(higher term) as observed from the shape of the equa-
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tion f†(z)= zg(f†(z)). So [z�]det(E − M (z; f†(z)))−1 = [x�]g(x)� holds as claimed.
Therefore, the standard Lagrange-Good inversion formula

h(f†(z))
det(E −M (z; f†(z)))

=
∑
�
z�[x�]h(x)g(x)�

is derived.
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