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ABSTRACT We recently presented, in a qualitative manner, a cross-bridge model of muscle
contraction which was based on a biochemical kinetic cycle for the actomyosin ATPase
activity. This cross-bridge model consisted of two cross-bridge states detached from actin and
two cross-bridge states attached to actin. In the present paper, we attempt to fit this model
quantitatively to both biochemical and physiological data. We find that the resulting complete
cross-bridge model is able to account reasonably well for both the isometric transient data
observed when a muscle is subjected to a sudden change in length and for the relationship
between the velocity of muscle contraction in vivo and the actomyosin ATPase activity in vitro.
This model also illustrates the interrelationship between biochemical and physiological data
necessary for the development of a complete cross-bridge model of muscle contraction.

1. INTRODUCTION

Recently, we published a cross-bridge model of muscle contraction based on current
structural, biochemical, and physiological studies of cross-bridge action (1). This four-state,
single-site model of cross-bridge action, which consists of two cross-bridge states detached
from actin and two cross-bridge states attached to actin, was presented in a qualitative
manner consistent with the theoretical formalism of Hill (2, 3). However, no attempt was
made to fit current physiological and biochemical data quantitatively. The formalism is
particularly well-suited to quantitative relation of equilibrium constants and rate constants
obtained in biochemical studies to force, velocity, and elasticity measurements determined in
physiological studies. Therefore in the present paper we examine the assumptions required for
our model to quantitatively fit current biochemical and physiological data.

Perhaps the most important result of this modeling effort is that, making relatively few
assumptions, we find that we can account reasonably well for both the force transient observed
when a muscle fiber is subjected to a sudden change in length (4) and for the well-known
relationship between the velocity of muscle contraction measured in vivo and the actomyosin
ATPase activity measured in vitro (5).

2. BASIS OF THE CROSS-BRIDGE MODEL

The biochemical kinetic cycle on which our cross-bridge model is based is shown in Fig. 1 (6).
The dashed lines in Fig. 1 a represent transitions that are assumed not to occur, whereas the
heavy solid lines represent the dominant pathway (left to right) in the actomyosin ATPase
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FIGURE I Biochemical scheme on which the cross-bridge model is based. (a) Complete biochemical
scheme. Steps marked with dashed lines are assumed not to occur or to occur at a negligibly slow rate.
Steps marked with a heavy solid line represent the dominant pathway of the actomyosin ATPase activity.
The arrows show the direction in which the equilibrium constants are defined. Only the four boxed states
are assumed to occur in significant concentrations in vivo. R, N, 1, and 2 are alternative names for these
states (see text). (b) An alternative way of showing the biochemical scheme with less detailed labeling.
The arrows show the dominant pathway of the actomyosin ATPase activity. (c) Simplified four-state
biochemical scheme used as a basis for our cross-bridge model.

cycle. All of the states in this main pathway, except the four states shown in boxes, are
assumed to be transient intermediates. Therefore the model consists of two unattached
(refractory and nonrefractory) and two attached (AMt-D.Pi and AM*.D) cross-bridge
states. The arrows in Fig. 1 a indicate the directions used in defining the K's.
We can summarize the "evolution" of the actual 4-state cycle that we use in our

calculations as follows: (a) we start with the 10-state kinetic diagram in Fig. 1 a (shown also,
with less detailed labeling, in Fig. 1 b); (b) this is reduced to the single 7-state cycle indicated
by the heavy lines in Fig. 1 a or by the arrows (dominant direction) in Fig. 1 b; and, finally,
(c) this 7-state cycle is reduced further to a 4-state cycle, as shown by the boxes in Fig. 1 a and
by Fig. 1 c. The alternate notation R, N, 1, 2 that appears in Fig. 1 will be introduced in
section 4.

It should be noted at the outset that reduction of the complete kinetic model shown in Fig.
1 a to the four-state cycle shown in Fig. I c is based on the key assumption (made
quantitatively explicit below) that the cross-bridge must dissociate from actin before an ATP
molecule is hydrolyzed. This assumption of mandatory dissociation of the cross-bridge-actin
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FIGURE 2 Schematic representation of the attached cross-bridge in our model. The 900 and 450 states are
shown at three different values of x, the axial position of the actin site to which the cross-bridge is
attached. The magnitude and direction of the force exerted by the cross-bridge is indicated by the length
and direction of the horizontal arrows along the actin filament. Where the cross-bridge is shaded, it is at its
minimum free energy for that state (exerts no force).

complex upon binding of ATP is a key assumption of both the Lymn-Taylor model and the
original refractory state model of cross-bridge action (6). Recent biochemical data (see
section I 1) suggest that, in fact, this assumption may be incorrect; ATP hydrolysis appears to
occur in vitro without dissociation of the actomyosin complex. Nevertheless, in the present
cross-bridge model, we will still make the simplifying assumption that the binding of ATP
causes mandatory dissociation of the cross-bridge-actin complex.
To translate the four-state kinetic cycle shown in Fig. 1 c into a complete cross-bridge

model, the nature of the attached cross-bridge states must be described. As shown in Fig. 2,
we assume in the present model that the attached cross-bridge can exist in two different
conformational states (1). In both conformations, the cross-bridge is elastic, that is, as the
filaments slide past each other, the cross-bridge exerts either positive or negative force on the
actin filament. However, each conformational state has a different optimal attachment angle.
In the 900 conformation the cross-bridge exerts zero force when it is attached to actin at a 900
angle, whereas in the 450 conformation the cross-bridge exerts zero force when it is attached
at a 450 angle. (These angles are used as convenient generic labels; the exact values could well
turn out to be somewhat different.) As shown in Fig. 2, in both conformational states the
cross-bridge exerts positive force when it rotates to a larger angle than its optimal angle, and
negative force when it rotates to a smaller angle than its optimal angle. In the present model
we assume that state AM' * D- Pi is in the 900 conformation, whereas states AM* * D, AM, and
AM* - T are in the 450 conformation. Thus, at every angle of attachment, state AM* * D exerts
a considerably larger force than state AMt * D Pi, and the transition from state AMt- D- Pi to
AM* .D causes a marked increase in the force exerted by the cross-bridge (this can be seen
quantitatively, below, in Fig. 3 and in Eq. 5).
How does this cross-bridge model differ from that proposed in 1971 by Huxley and

Simmons (7)? In both models the cross-bridge is elastic, as was first suggested by A. F.
Huxley (8) in 1957. This is, in fact, an essential property of any cross-bridge model. However,
it is the relationship of this elasticity to the chemical changes occurring in the cross-bridge
that provides the crucial difference between the Huxley-Simmons model and our model. In
the Huxley-Simmons model, the elastic element, no matter where it is actually located, is
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FIGURE 3 Basic free energy profile for our cross-bridge model. The ordinate shows the relative basic free
energy/RT for the cross-bridge states (including ATP, ADP, and Pi in solution, as appropriate; see Table
I). The minimum basic free energy/RT of the state AM* *D is arbitrarily set at zero and all other basic
free energies are given relative to this value. The abscissa shows the value of x. A - chemical potential of
ATP hydrolysis, AuT/RT.

completely independent of any chemical changes in state occurring elsewhere in the attached
cross-bridge. Thus the elastic element must be stretched by one dimensional fluctuations
(Brownian motion) before any chemical change in state. This implies (1) that the activation-
free energy and, hence, the rates of transition between attached states are strongly related to
the positive force produced after the transition, i.e., to the amount the elastic element must be
stretched by one dimensional Brownian motion. To make these transition rates realistic, three
or more attached states are necessary in the Huxley-Simmons model.

In contrast, we assume (1) that the elasticity and the chemical change in state are
intimately tied together. In effect, each of the attached states has its own elastic and chemical
properties. Therefore the rate of the transition between the two attached states can be chosen
arbitrarily. At the molecular level, two features are required in this kind of model. First, the
two attached states should differ by a conformational change in the cross-bridge that affects
both the free energy of the attached cross-bridge and the optimal angle of attachment. This
conformational change may be localized near the part of the cross-bridge that makes intimate
contact with actin on attachment, or it could be more extensive. Second, the conformational
change should directly relate the state of the nucleotide at its binding site to the force exerted
by the cross-bridge. For example, in Fig. 2, release of P, should be directly converted into a
distortion of the elastic portions of the cross-bridge, without the cross-bridge going over a large
free energy barrier, as in the Huxley-Simmons model. There are many detailed molecular
changes that could accomplish what is needed; a particular commitment will require more
information about the structure of the cross-bridge-actin complex.
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3. FREE ENERGY PROFILE

We turn now to the quantitative assumptions we use in our model. Column 2 of Table I gives
the in vitro equilibrium constants for all of the transitions shown in the kinetic diagram in Fig.
I a, except K,3. No value is given for K,3 because we assume that AM** *D * Pi does not occur
in vivo or in vitro. That is, we assume, first, that k6 and k -6 are negligibly slow so that ATP
hydrolysis does not occur when the cross-bridge is attached to actin and, second, that k,3,
k_13, k8, and k -8 are negligibly slow so that the refractory state is unable to bind to actin. The
values in Table I marked with an asterisk are based on experimental data, whereas the three
values shown in boxes in column 2 are assumptions we are making in this model. Kg is then
determined as 7.06 M by using 4.71 x I05 M for the equilibrium constant for ATP hydrolysis
(19) (30C, AGO = -7.17 kcal mol -'); the remaining entries in column 2 are then established
by exploiting the redundant pathways in the kinetic diagram in Fig. 1 a or 1 b (biochemists
usually refer to this as using "detailed balance").
To convert the horizontal in vitro equilibrium constants in Fig. 1 a (equilibrium constants

not involving attachment or detachment of actin) to the in vivo equilibrium constants shown in
column 3 of Table I, we make a fundamental approximation, used throughout our modeling
effort. We assume that the equilibrium constant between any two unattached states or
between any two attached states at their minimum free energies are the same in vivo and in
vitro. The former assumption (unattached states) is probably very accurate and the latter (see

TABLE I
EQUILIBRIUM CONSTANTS AND FREE ENERGY VALUES IN FIG. 1 a

(Ligand) In vitro In vivo Basic K Basic AG
(at minima) (at minima) (at minima)

K,(T) *2.00 x 10'0 M -' (9, 10) t2.00 x 1010 M 6.00 x 10I

K2(A) *1.00 x 107M-' (11, 12) 9.95 xI107 9.95 x 107

K3(A) 100 x jj,M-] 9.95 x 10-' 9.95 x 10-'

K4(T) 2.00 x 102 M- t2.00 x 102M-' 6.00 x 10-'
K5 *1.00 x 10' (13, 14, 15) t1.00 x 10' 1.00 x 10'
K6Ks 5.48 x 102 t5.48 x 102 5.48 x 102

K| 3.3l3x 10-2 | t3.33 x 10-2 3.33 x 10-2 -1.87 (RN) kcal
mol -

K9(Pj) 7.06 M t7.06 M 1.46 x 103
K,o(Pi) 4.29 x 104 M t4.29 x 104 M 8.89 x 106 8.78 (12)
K,,(D) *1.00 x 10-5M (16, 17) t1.00 x 10-, M 3.33 x 10-'
K,2(D) *1.00 x 10-4M (17, 18) t1.00 x 10-4M 3.33

K,4(A) 1.65 x 102 M-1 1.64 x 103 1.64 x 103 4.06 (Ni)

K,5(A) 1.00 x 106 M-' 9.95 x 106 9.95 x 106

AGOT = -RTQn (*4.71 x 105 M) = -7.17 kcal mol ' (19); 30C. AIAT = RTn (*9.75 x 109) = 12.63 kcal mol-' (3).
[ATP] = *3.00 x 10-3 M (20), [ADP] = *3.00 x 10-5 M (20), [Pj] = 4.83 x 10-3 M (20). T- ATP, D - ADP,
A actin. Although, for consistency, three significant figures are used throughout this table, many of the data values
are known much less accurately than this.
*Experimental data values. Box = assumption.
tFundamental approximation.
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section 11) reasonably accurate (5% in free energy?). By using this approximation we can
obtain from column 2 all of the in vivo constants marked with a double dagger in column 3.

In vitro equilibrium constants involving attachment of the S-1 to actin (K2, K3, K,4, and
K15; vertical in Fig. 1 a) cannot be converted to in vivo constants without making a further
assumption. In vitro, the binding of S-I to actin is a second-order process whose rate depends
on actin concentration. On the other hand, the in vivo attachment of the cross-bridge to actin
is a first-order process since a particular cross-bridge, fixed in the myofilament structure, sees
only one or a few actin monomers at a time (one, in the present model). Because of this, as
indicated by the boxed value of K2 in column 3 of Table I, we must assume a value for K2, the
first-order binding constant of the nucleotide-free cross-bridge to actin in vivo. Note that K2
has this value only when the cross-bridge-actin complex is at its minimum free energy, i.e.,
when the cross-bridge is attached to actin at a 450 angle. Once a value for K2 in vivo is
assumed, the other in vivo binding constants in column 3 of Table I involving attachment of
the cross-bridge to actin (K3, K14, and K15) are found by detailed balance. Note that these
equilibrium constants have these values only when the cross-bridge is attached to actin at an
angle where it exerts no force (see below): 900 for K14 and 450 for K2, K3, and K15.
Column 4 of Table I ("basic K") includes the products of the in vivo ligand concentrations

(or reciprocals) and the equilibrium constants in column 3 for transitions involving the
binding or release of ATP, ADP, or Pi. The other entries in column 4 are the same as in
column 3.
The quantity A/T in Table I (bottom), and Eq. 4 below, is the decrease in basic free energy

on hydrolysis of ATP, at in vivo ligand concentrations.
To avoid unduly complicated notation, we are using the same symbol K,, in column 1 of

Table I (and in the text below) to represent several different kinds of equilibrium constants. In
column 2 there are: first-order (isomeric) constants, with no units; second-order binding
constants, with units M- 1; and second-order dissociation constants, with units M. In column 3
the four actin binding constants are now true first-order constants, with no units. In column 4
the six T, Pi, or D equilibrium constants are now pseudo-first-order constants, with no units.
Thus there are two different constants in Table I for each Kn concerned with A, T, Pi, or D.
The particular one being referred to in the text (below) can be determined by the context or by
the units (M -', M, or none).
The basic free energy differences between pairs of states at their minimum free energies in

vivo is shown in the last column of Table I. These quantities are found from RTQn (column 4).
It is these differences between pairs of states at their minimum free energies that determine
the relative levels of the free energy curves for each of the four states in our cross-bridge
model. These free energy curves are presented in the free energy profile shown in Fig. 3
(mathematical details are given later, in section 5). Here the basic free energy of each of the
cross-bridge states in vivo is shown as a function of x. The variable x (1-3, 8) is a measure of
the position of the actin site relative to the cross-bridge of interest. Because the free energies of
the unattached cross-bridge states are independent of the position of the actin site, the free
energies of the refractory and nonrefractory states, M* * . D-Pi and Mt. D- Pi, are indepen-
dent of x. On the other hand, the free energies of the two attached cross-bridge states,
AMI.D.Pi (the 900 state) and AM*.D (the 450 state), depend on x. The slope dG,/dx of a
free energy curve for an attached state i, at any value of x, is equal to the force Fi exerted on
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the actin filament by the cross bridge in state i, at that x. Of course, Fi is zero where Gi has a
minimum.
We now discuss why we chose the minimum levels for the free energy curves shown in Fig.

3 and how these minimum levels are related to the four assumptions (boxed values) made in
Table I.

Discussion ofAssumptions in Table I

Consider, first, our assumption in Table I that K2 has a value of - 108 in vivo. This assumption
is made for two reasons. The first is to achieve a good thermodynamic efficiency for the
model. As can be seen in Fig. 3, we have a free energy change of only 1.65 kcal mol 'in the
transition from AM* .D at 450 to M** . D. F,, that is, in the detachment of the cross-bridge
after it has performed its work. This small free energy loss is necessary to keep the efficiency
high. Because this free energy change is 1.65 kcal mol -', K12K4K5/K3 must equal 20.1.
Furthermore, because experimental data (Table I) show that K,2 is 3.33 and K5 is 10.0 in
vivo, it follows that K4/K3 must be 0.603 in vivo. By detailed balance we then deduce that
K, /K2 must also equal 0.603 in vivo. Because there is experimental evidence that
K, = 6.00 x 107 in vivo, it follows that we must assume that K2 = 9.95 x I07 in vivo, as
shown in Table I. Thus, to obtain a good efficiency for the model, the binding constant of the
cross-bridge to actin at 450 in vivo (basic K2 in Table I) must be assumed to be approximately
equal to the binding constant of ATP to myosin in vivo (basic K1 in Table I). It has, in fact,
generally been recognized that the strength of binding of ATP and actin to myosin in vivo
should be about the same (1, 21, 22).

Our assumption that K2 in vivo is -108 implies that the binding constant of the cross-bridge
to actin at 450 in vivo is equal to the effective binding constant of S- I to actin in vitro when the
actin concentration is -10 M (see K2, column 2), an extremely high actin concentration which
is of course unobtainable. By the same argument, if we assumed that the binding constant of
the cross-bridge to actin at 450 in vivo were equivalent to the effective binding constant in vitro
when the actin concentration was, say, 1 x 10 -3M, then the binding constant in vivo would be
K2 = 104. This would be 104 lower than the binding constant of ATP to myosin in vivo, which
would make the free energy drop on detachment of the cross-bridge in our model 6.7 kcal
mol - '. Thus our cross-bridge model would be quite inefficient.
The second reason for assuming that K2 has a value of -108 in vivo is to make K15, the

binding constant of M* *D to actin at x = 0, have a value of _107 . K15 is determined indirectly
by K2 because experimental data (17) show that K II/K12 is -0.1 and, by detailed balance,
K1/K12 = K15/K2. The reason it is important that K15 have a value of ~-107 or more is
related to the fact that the free energy curves for AMt * D. Pi and AM* *D intersect at x = 80
A (Fig. 3); hence, at and just less than x = 80 A, AM* *D is the major force-producing state in
our model. If K15 were <107, M* .D would be more stable than AM* .D at x 80 A, and the
cross-bridge would detach at this x, with loss of force production. Therefore we require:
K15 > Klo = 9 x 106.

Note that our assumption of a value of _108 for K2 may have implications for the rate of
attachment of the cross-bridge to actin at a 450 angle in the absence of nucleotide. If the rate
constants for detachment of the cross-bridge from actin at x = 0 in vivo were similar to the
rate constant for detachment of S-I from actin in vitro, - 0.1 s-' (23), then the rate constant
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for attachment of the cross-bridge to action in vivo at x = 0 would have to be - 107 s-'. This,
of course, is a very high rate of attachment.
The second assumption we make in Table I is that K3 = 1 x 10' M-1 in vitro and

therefore, by detailed balance, K3 =1 in vivo at x = 0. The rate of the transition from AM*. T
to M**.D.Pi at x = 0 is = k5/(1 + K3) (assuming a fast equilibrium between M*. T and
AM*. T) (24). Clearly, the larger K3, the slower the cross-bridge will detach after it reaches
450. To keep this rate reasonably fast, we have made K3 - 1 in vivo at x = 0.
Note that already this model has made two specific biochemical predictions that can be

tested experimentally. First, we have introduced the value K3 (in vitro) = 1 x 10- M'-. Thus,
unless the actin concentration approaches 10 M, M*. T should not bind to actin in solution.
Second, by detailed balance, the model predicts that K4, the binding constant of ATP to
actomyosin, in vitro, is 2 x 102 M-'. We do not mention these predictions to imply that they
are verified by current experimental data (see section 11) but only to emphasize the
relationship between cross-bridge behavior in vivo and biochemical data in vitro.
The third assumption we make is that K7 = 3.33 x 10-2 in vitro, that is, the equilibrium

between the refractory and nonrefractory states is shifted toward the refractory state. As will
be seen below, this guarantees that during isotonic contraction the cross-bridge must make the
rate-limiting transition from the refractory to the nonrefractory state before the cross-bridge
can attach to actin. This in turn limits the rate of ATP hydrolysis at high velocities of
contraction.
Our fourth assumption about the equilibrium constants is that K14 = 1.65 x 102M-Iin

vitro. By detailed balance (in column 3) it then follows that K,4 = 1.64 x 103 in vivo, which in
turn implies that K7KI4 = 55 in vivo. In effect, K7KI4 is the equilibrium constant between
M**.D.P, and AAt.D.P, at x = 80 A. Therefore, the value of K7K,4 determines the
fractions of cross-bridges in states AMY. D. Pi and M** *D * P,, in the isometric state, at x > 80
A. For example, if we assumed K7K14 in vivo were equal to 1, almost no cross-bridges would be
attached to actin in the isometric state, at x > 80 A; they would be in the refractory state. As
we will explain in Section 7, this would make it almost impossible for the model to fit the
experimental T, and T2 curves of the isometric transient ( 14). For this reason we assumed that
K14 = 1.65 x 102 M- in vitro.

Assuming a value for K,4 in vitro leads to another biochemical prediction. As we shall show
below, Kj4 is a key determinant of the value of Kapp that is obtained experimentally from a
double reciprocal plot of ATPase rate vs. actin concentration.

Further Assumptions of the Model
The equilibrium constants between states shown in Table I establish only the relative levels of
the free energy curves in Fig. 3. Further assumptions are required to specify the free energy
profile completely. First, we assume that each cross-bridge can interact with only one actin
monomer per repeat of the actin helix, i.e., per 360 A (this is a "single-site" model). This
single-site assumption is very likely incorrect because the azimuthal flexibility of the
cross-bridge will probably allow it to interact with several adjacent actin monomers along the
actin filament. However, we are making this assumption in the present paper to keep the
model simple. If a cross-bridge could interact with several actin monomers along the thin
filament, a separate set of free energy curves (for attached states) would have to be included
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for each actin monomer (25). Note that since we assume that only one actin monomer is
available with which a cross-bridge can interact, it follows that, in this model, only one
cross-bridge head at a time can interact with actin.

In future work we plan to use multiple actin sites and also, in place of 360 A, a repeat
distance of 7 x 55 = 385 A.
To complete the free energy profile shown in Fig. 3, we also assume that the two attached

states have parabolic free energy curves with the same curvature (force constant). In addition,
we assume that the two parabolas intersect at the point where the 900 state has its minimum
free energy. Finally, we have chosen 80 A as the distance between free energy minima of the
two attached states to obtain T1 = 0 (4) for a release of =40 A (26) (see section 7).
The assignment (section 2) of the approximate angles 900 and 450 to the two attached

states, with free energy minima separated by 80 A, implies something about the length of S- 1.
But at the present time this length and both angles are not known with great accuracy, so it is
difficult to check the 80-A figure for self-consistency. Nevertheless, it is probably not an
unreasonable choice (1).

4. VALUES OF THE INDIVIDUAL RATE CONSTANTS

Thus far in this paper we have discussed the equilibrium assumptions required to convert the
kinetic model, shown in Fig. 1 c, into the free energy profile, shown in Fig. 3, but we have not
yet specified the individual rate constants as functions of x. Our assumed functions for these
first-order rate constants are shown in Fig. 4. This figure introduces new simplified notation to
describe the four states in our model: R = M**.D.Pi (refractory state); N = Mt.D. P
(nonrefractory state); 1 = AMt.D.Pi (900 state); 2 = AM*.D (450 state). For each of the
four pairs of in vivo transitions in our model, R . N, N. 1, 1 - 2, and 2 - R, we can then
define a set of in vivo first-order rate constants: aRN, aNR; aNI, alN; a12, a21; and a2R, aR2,
respectively. In general, the values of these in vivo rate constants are functions of x; the in
vitro rate constants, of course, are not functions of x.

For in vitro rate constants, we shall use the notation ki/k i = Ki. For example, for the in
vitro transition between R and N, the forward and reverse rate constants are k7 and k_7,
respectively. The relationship between the values of the in vitro and in vivo rate constants will
be discussed below.

For each of the four pairs in vivo transitions, once we assume a value for either the forward
or reverse rate constant at a given value of x, the other rate constant is determined. This is
because the free energy curves in Fig. 3 specify the in vivo equilibrium constants, aij/aji,
between any two states i and j at a given value of x. Note that the equilibrium constants given
in column 4 of Table I are always between the minimum free energies of the in vivo states.
Therefore only in special cases are they equal to ail/aji at a particular value of x. For example,
K7 = aRN/INR at all values of x, K,4 = aNl/alN at x = 80 A, and Klo = a12/a21 at x = 40 A.

Before going into details about the rate constants, two general comments may be helpful.
First, because the calculated isometric transients occur on a very fast time scale (4), they are
virtually unaffected by several rate constants to which the force-velocity curve is very
sensitive. Therefore we were able to use two of the eight rate constants (a12 and a2,) to fit the
isometric transient data and then use the other rate constants to fit the force-velocity curve
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FIGURE 4 The first-order rate constants for the transitions between the cross-bridge states as a function
of x, in our model.
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(see sections 7 and 8 for details). Second, during the course of this work we calculated the
properties of our model with -20 different sets of rate constant choices. The discussion below
relates to our final rate constant selection. Improved agreement with experimental data could
have been achieved by further minor alterations of the rate constants, but in our judgment this
would have gone beyond the point of diminishing returns for this type of model.
Our first specific rate constant assumption is a value of 28.1 s- 'for aRN, the constant for the

rate-limiting transition from R to N. Since aRN/INR = K7 = 3.33 x 10-2 (Table I and Fig. 3),
aNR then has a value of 842 s-'. Because the value of aRN effectively determines the rate of
attachment of the cross-bridge to actin, it is of crucial importance in determining the
force-velocity curve. Note that 28.1 s-' is the value of ap- for a cross-bridge with two heads.
This rate constant per cross-bridge head or for S- 1 would be 14 s
We next assume that aN1, the actual attachment rate of the cross-bridge to actin, is very

large, with a value of 4.26 x 104 s-' at x = 80 A, where the cross-bridge attaches to actin at a
900 angle. We further assume that this rate constant decreases as the angle of attachment
either increases or decreases; concomitantly, the reverse rate constant aIN increases. Other
than assuming that aN, is large near x = 80 A and aIN iS large near x = 0 and 160 A, the exact
values of these rate constants are not crucial. The decrease in aNI for x below 30 A does have
an effect on the probability of state 1 (the 900 state) in the isometric state. But in fact both aNI
and aIN could be increased greatly without having a marked effect on calculated properties.
The third set of rate constants in our four-state model is a12 and a21, the rate constants for

the transitions between states 1 (900) and 2 (450); state 2 is the major force-producing state.
At x = 80 A, where both the 900 and 450 states are at 900 and have the same free energy,
a12 = a21 = 438 s-'. This value of these rate constants and their x dependence have been
chosen to give a suitable rate of force recovery in isometric transients (see section 5).
The fourth transition in our four-state model is the overall transition from the major

force-producing state 2 back to state R. As can be seen in Fig. 1 a, this overall transition
involves a number of different steps: ADP release, rebinding of ATP, detachment from actin,
and the initial Pi burst. Thus, at x = 0, a2R/aR2 = K,2K4K5/K3, where these equilibrium
constants are taken from column 4 of Table I. In the present model we assume that the
rebinding of ATP, detachment from actin, and the initial Pi burst are rapid compared to the
rate of ADP release so that AM* *D (state 2) is the only 450 state that occurs to a significant
extent in vivo. This assumption also implies that a2R is essentially a measure of the rate of
ADP release in vivo (but aR2 is not the rate constant for ADP binding).
As can be seen in Fig. 4 b, we assume that the value of a2R has a very specific dependence on

x. At values of x > 10 A, i.e., where state 2 (450) is at an angle > 450 and is thus exerting
positive force, a2R is very small. We assume it has a value of only 8.77 s-', approximately
one-third the value of aRN. Since aRN determines the rate of attachment of the cross-bridge,
whereas a2R determines its rate of detachment, by making a2R less than aRN in the region
where the cross-bridge exerts positive force, we make certain that the cross-bridge is usually
attached in this region. On the other hand, at values ofx < -10 A, where state 2 is at an angle
<450 and is therefore exerting considerable negative force, we assume a2R = 456 s-'. Here the
cross-bridge detaches quite rapidly. The basic assumption that the cross-bridge detaches
slowly where it exerts positive force but very rapidly where it exerts negative force was first
proposed by A. F. Huxley in 1957 (8). It is difficult to imagine a cross-bridge model without
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this assumption but, as yet, there is no in vitro evidence for it. In our model, the origin of the x
dependence of a2R lies in the detailed molecular structure of state 2 as its angle with actin
changes. Such a structural alteration could easily affect the rate of ADP release. Note again
the intimate relationship between the elasticity of the cross-bridge and its chemical behavior
in our model.

5. SOME DETAILS OF THE CALCULATIONS

In this section we digress to give a few mathematical details. We use notation that is convenient for this
purpose. The basic free energy functions in Fig. 3 are:

GN/RT =23.401, GR/RT = 20.000, (1)

G,/RT= 16.000 + [(x - 80)2/2a2], (2)

G2/RT=x2/2a2, (3)

A/.ALT/RT = 23.000, (4)

where x is in A and ff2 = 200 A2. The force functions for the two attached states are then:

Fla2/RT= x-80, F2cI2/RT= x. (5)

The final first-order rate constants used (Fig. 4), which must be consistent with the free energy
functions, are as follows:

aRN = 28.06s',aNR = 841.9s',aNR/aRN = 30 (6)

aNI = 1052.4 exp [(GN - G1)/2RT] s-' (7)

axlN= 1052.4 exp [(G1 - GN)/2RT] s-'. (8)

Thus aNI is a Gaussian function and aIN is a reciprocal Gaussian. The free energy difference GN - GI is
"split" evenly between the two rate constants. (Attachment is a first-order process here; it is not a
diffusion-controlled, second-order process as it is in solution.)
The rate constant a2R is taken as a step function with a nonvertical step (Fig. 4 b):

a2R = 456.0 s' (x . - A10 ) (9)
= 8.77 s-' (x - 10 A)
= 228.0 - 22.8xs-' (-10A <x<loA).

Then aR2 (Fig. 4 b) is determined by

a2R*/aR2 = exp [(G2- GR + ART)IRT]. (10)

The a12 curve in Fig. 4 a cannot be represented by an analytical expression. Except for minor
modifications, we obtained the shape of aI2(x), relative to a12(0), by: (a) starting with the shape of the
Ford-Huxley-Simmons (FHS) (4) tl/2 curve in Fig. 8; (b) making simplifying assumptions about the
state probability distributions (26); and (c) solving numerically an integral equation in a12 (x) that
relates a12 (x) to the averaged (over x) quantity, tj/2(y), where y is the step length in an isometric
transient. The determination of the absolute magnitude of a12 (x) (and the other rate constants) will be
discussed in sections 7 and 8.
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Fig. 4 a shows a21 (x) also. The small peak in a21 at x = 85 A was found necessary to make t2 in Fig.
8 continuous in slope at y = 0. These two rate constants are related by:

al2/a2l = exp [(GI - G2)/RT]. (11)

The general computational procedure (see reference 2, 110-117, or reference 3, 284-291) is to solve
an appropriate set of differential equations in the state probabilities pi(x, t) or p1(x; v), where i = R, N,
1, 2, and then to calculate the mean force F or flux J from:

F= (l/d) 2 [p1(x)Fj(x) + p2(x)F2(x)]dx ( 12)
-d2

J = (lId) f [aRNPR(X) - aNRPN(X)]dX, ( 13)

where d is the repeat distance, 360 A. The flux equation is used only under steady conditions; any one of
the other three transition pairs (NI, 12, 2R) could also be used as the integrand (2, 3).
The efficiency t, in a steady contraction at velocity v, is (2, 3):

n1 =FV/J-TT (14)

The mean number of completed cycles per pass of an actin site past a given cross-bridge is r = Jd/v
(3, 27).
The differential equations applicable to the isometric transients were solved for the pi(t), at 5 A

intervals in x, using the standard matrix method. These are linear first-order equations with constant
coefficients. The same interval was then used in the numerical integration of Eq. 12 to obtain F(t). For a
steady contraction at a given v, the differential equations were solved by starting with the known solution
(R and N at equilibrium) at large positive x and then extending the solution, step-by-step and
numerically, to large negative x, using finite steps on the x axis adjusted in size to the velocity (except for
a region of analytical integration at the end of the process). Then F(v) and J(v) were obtained from Eqs.
12 and 13 using numerical integration with 5-A intervals in x.

6. DOUBLE RECIPROCAL PLOT OF ATPASE RATE VS.
ACTIN CONCENTRATION

The free energy profile in Fig. 3 combined with the rate constant assumptions in Fig. 4 can
now be used to fit the steady-state and presteady-state physiological data (4, 28, 29) obtained
from frog muscle at 30C (sections 7 and 8). However, it is of interest to examine first an
important biochemical prediction that can be made from our rate constant assumptions. We
made the fundamental approximation, above, that equilibrium constants between states at
their minimum free energies are the same in vivo as in vitro. This approximation can be
extended to individual rate constants by assuming that the in vitro rate constant for a
transition from a state of higher minimum free energy to a state of lower minimum free
energy is equal to the in vivo rate constant for this transition at the point where the state of
higher minimum free energy is at its minimum free energy. For example, in this approxima-
tion, klo in vitro would be equal to a12 in vivo at x = 80 A, where state 1 is at its minimum free
energy. The value of k lo in vitro would then be approximated by kl1/K10. On the same basis,
k7 and k.7 in vitro would be equal to aRN and aNR in vivo, respectively. Of course, as with
equilibrium constants (see section 3), this assumption does not apply to the rate of attachment
of the cross-bridge to actin.

This approximation is probably accurate for k7 and k_7. However, it is presumably
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FIGURE 5 The probability distribution of the cross-bridge states calculated from our model, as a function
of x, in the isometric state and at various times after a 45-A release. (a) The isometric distribution, To
(dotted curves), and the distribution after a 45-A release, T, (solid curves), are identical except for a shift
of 45-A on the abscissa. (b) Distribution when the force has recovered one-half of the way to its T2 value.
(c) Distribution when the force has recovered to its T2 value (see text for description of how T2 is
defined).

somewhat in error for klo: in moving on the free energy surface from state 1 to state 2 (see Fig.
6 of reference 1), a lower saddle point is available in vitro than in vivo because x is constrained
to be constant in vivo, but not in vitro. Thus we would expect klo (in vitro) > a12 (in vivo)
atx = 80A.

Nevertheless, on the basis of this approximation, we can use the in vivo rate constants
shown in Fig. 4 to make a rough prediction of a double reciprocal plot of ATPase rate vs. actin
concentration in vitro (30). Provided k5 is not rate limiting and K3 = 1 x 10-'M-', as was
assumed earlier, it can easily be shown that, on the basis of Fig. 1 a, a linear double reciprocal
plot should be obtained with V.,, = k7 and Kapp = k71/kloK14. (Note that we used the symbol
V.,, for the maximum actin-activated ATPase rate in vitro and the symbol vm, below, for the
maximum velocity in the force-velocity curve.) Therefore, Vmax = 28 s-' per two myosin heads
or.14 s-' per S-I because k7 = ap = 28 s-' (Fig. 4). Likewise, Kapp = 1.16 x 10-2M because
k-7 = aNR = 842 s-' (Fig. 4), klo = a12 = 438 s-1 at x = 80 A (Fig. 4), and K14 = 1.65 x
102M- (column 1, Table I).
How do these values compare with experimentally obtained values for Vmax and Kapp? Only

one biochemical study on frog myosin has been reported, and in this study denaturation was a
major problem because the myosin lost 25% of its activity each day (31). Thus a large
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correction had to be applied to the S-I data. No reciprocal plot could be obtained but the
authors reported a Vmax of 4.5 s 'per S-I at 1°C. This is approximately one-third the value we
are using for k7 = Vmax (per S-1). However, in view of the large correction that had to be
applied for denaturation, our value of 14 s ' per S- I does not seem to be unreasonable. As will
be seen below, we chose this value to obtain a realistic force-velocity curve.
The value for Kapp predicted by our model does not agree as well with experimental data.

No value for Kapp was reported with frog S-I but with rabbit S-I at 00c, at very low ionic
strength, Kapp - i0-' M (32), and at 50 mM ionic strength, Kapp i10-4 M (33). Assuming a
further increase in Kapp with increasing ionic strength, an experimental value of - 5 x 10-4 M
for Kapp at 0.15 M ionic strength seems likely. The value of 1.2 x 10-2 M estimated from our
model for Kapp therefore appears to be too large.

7. ISOMETRIC TRANSIENTS

We next examine how our model fits the isometric transient data (4) obtained with frog
muscle at 30C. In attempting to fit these data, we assume that the experimental phenomena
observed are all due to cross-bridge behavior. That is, we assume that all of the elasticity
shown by active muscle resides not in a series elasticity, e.g., the thin filaments, but in the
cross-bridges themselves (7). If there were a considerable amount of series elasticity, it would
make interpretation of the isometric transient data much more complex (25). Corresponding-
ly, we make the usual assumption that no significant motion of the filaments takes place in the
isometric state.
The calculated isometric distribution ofcross-bridges, pi (x), is shown as the dotted curves in

Fig. 5 a. The more detailed solid curves are identical, but are shifted by 45 A (see below). This
same isometric distribution is shown as the dashed curves in Fig. 11 a, and is also indicated
schematically by the heavy solid lines in Fig. 3. As can be seen for x > 80 A, i.e., at angles of
attachment >900, most of the cross-bridges are attached in state 1 (900 state), whereas for
x < 80 A, most of the cross-bridges are attached in state 2 (450 state), the major
force-producing state. The reason for this is obvious from the free energy profile in Fig. 3
where, for x > 80 A, the free energy of state 1 is markedly lower than the free energy of state
2, whereas for x < 80 A the opposite is the case.
What determines the range over which the cross-bridges are attached? For cross-bridges

attached at angles >900 (x > 80 A), the free energy of state 2 is so much higher than the free
energy of state 1 that almost no cross-bridges make the transition from state 1 to state 2. Thus
the cross-bridges attached at angles >900 do not cycle and hydrolyze ATP to a significant
extent. Rather, an equilibrium occurs between states R and 1 and a simple Boltzmann
distribution determines the range over which the cross-bridge is attached. As shown in Fig. 3,
for x > 120 A the equilibrium shifts toward state R and very few cross-bridges are attached.

Cross-bridges attached at angles <900 (x < 80 A) do cycle and hydrolyze ATP because
state 2 is at a lower free energy than state 1. Here the distribution of attached cross-bridges is
determined by the relative rates at which cross-bridges enter and leave state 2. Because a,2 iS
very large, the effective rate constant with which they enter state 2 is aRNaNl/(aN1 + aNR),
whereas the rate constant with which they leave state 2 is a2R (see Fig. 1 a). So long as

aN, >> aNR, the entering rate constant is ap. (28 s-'), whereas the departing rate constant is
a2R = 8.8 s-'. Thus, between x = 20 and 80 A, most of the cross-bridges are attached and in
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state 2. For x < 20 A, aNI <cNR and thus the number of cross-bridges attached in state 2
decreases markedly.

Fig. 6 shows the time-courses of force changes calculated from our model after releases or
stretches of various lengths y. These isometric transients are quite similar to the experimental
transients observed by FHS. After an instantaneous increase or decrease in force, the force
rapidly returns almost to its original level. As indicated at the bottom of Fig. 6, the "early"
isometric transient is partially characterized by two parameters: TI, the level the force reaches
immediately after the change in length; and T2, the level to which the force first recovers (4).
As is clear from FHS, the location of the experimental T2 level is somewhat arbitrary. We

used the following procedure, which is also arbitrary. In the computer print-out for a given y,
either p, (t) or P2(t) passes through a maximum as t increases from t = 0 whereas the other
passes through a minimum. The time at which the second of these two extrema occurs
(whether maximum or minimum) is taken as the T2 point, i.e., taken to be the conclusion of
the first (fast) phase of the transient. We made no attempt in this model to fit the later portion
of the isometric transient that occurs after T2. At the present time the experimental data for
this slower portion of the transient is somewhat variable (4), which is why, even experimental-
ly, it has been difficult to define the T2 level.

Fig. 5 a-c show the change in cross-bridge distribution that occurs during an isometric
transient after a 45-A release. Immediately after the release, in which x is decreased by 45 A,

t (Ms)

FIGURE 6 Change in force, calculated from our model, as a function of time after a sudden stretch or
release. The thick arrows on the ordinate show the direction of the force change during the stretch or
release. The small arrows show the points defined as T2 in our model for end of the transients (see text).
y - magnitude of the sudden stretch or release.
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TABLE II
FRACTION OF ATTACHED CROSS-BRIDGES AT T2

Y Pi P2 PI +P2

A
-60 0.011 0.197 0.208
-45 0.018 0.196 0.214
-30 0.041 0.186 0.227
-15 0.075 0.165 0.240
- 5 0.097 0.145 0.242

0 (To) 0.106 0.135 0.241

+ 5 0.112 0.125 0.237
+15 0.113 0.111 0.224

all of the attached cross-bridges have been forced to rotate to angles at which they exert less
force than in the isometric state (Eq. 5 shows that both F1 and F2, the forces exerted by the 900
and 450 states, respectively, decrease if x is decreased). This is shown in Fig. 5 a, where the
isometric distribution (dotted curves) has been shifted to the left 45 A (solid curves, T,
distribution) but otherwise not altered. In our model the recovery of force then occurs as
cross-bridges at angles <900 (x < 80 A) transform from state 1 where they exert negative
force to state 2, where they exert positive force. This change in state can be seen in Figs. 5 b
(t = t1/2, the time to half-recovery to T2) and c (t = time at which T2 is reached).
Note that few cross-bridges attach or detach during the early transient. Almost all of the

change in force is due to the transition from the 900 state to the 450 state. In a stretch
transient, the same is true except that here the 450 state transforms to the 900 state.

Table II confirms that with this model there is little change in the number of attached
cross-bridges during the early transient (the To or Y0 value of p' + P2 is the starting value in
all cases). This feature of the model was chosen to agree with the experimental data of Huxley
and Simmons (34), which indicated that almost no change in stiffness occurs during the
transient. Since stiffness should be proportional to the number of attached cross-bridges
(assuming there is very little series elasticity) these data suggested, first, that there is no
significant difference between the number of cross-bridges attached in the isometric state and
the number attached at the T2 level and, second, that all attached cross-bridge states have the
same stiffness. By making the force constants of states 1 and 2 identical, we guarantee that no
change in stiffness occurs as attached cross-bridges change state.

Fig. 7 shows the calculated T1 and T2 as functions of the magnitude of the release or stretch
(y). For comparison, the FHS experimental values are also shown. As can be seen, the
theoretical T, and T2 curves are quite similar to the experimental curves except that, at large
releases, the theoretical T2 curve decreases more rapidly than the experimental curve. The T,
and T2 values predicted by our model are, in a sense, equilibrium values determined almost
entirely (Fig. 2 b) by the free energy profile shown in Fig. 3. This is because the rates of
attachment or detachment of the cross-bridge to or from actin are much slower than the
time-course of the transient to T2. Furthermore, the transition from state 1 to state 2 has not
started at T, but is essentially complete at T2. Therefore the specific values of a12 and a21 do
not affect significantly the T, and T2 curves. The other rate constants in Fig. 4 affect these
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FIGURE 7 Computed and experimental values of T, / To and T2/ To as functions ofy (amount of release or
stretch). Solid lines and open circles, computed values; dashed lines, experimental values (FHS) (4).

curves only in so far as they influence the probability of state 2 occurring at x < 80 A in the
isometric state.
The free energy curves in Fig. 3 for states 1 and 2 were made parabolas because the

corrected experimental T, curve is linear (4). The 80-A interval between free energy minima
insures that T, = 0 at y -40 A (actually, at y = -35.6 A). The isometric distribution of
cross-bridges between states 1 and 2 (Fig. 3) guarantees that the T2 curve will have an
essentially zero slope at y = 0. We have described in detail (Figs. 1 and 2 b) the approximate
requirements to obtain this property. Qualitatively, although the cross-bridge distribution
changes markedly between the isometric state (Fig. 5 a) and the time at which the T2 level is
reached (Fig. 5 c), the average force exerted by the cross-bridges must remain the same. This
puts quite stringent requirements on the isometric distribution of states 1 and 2. It is to satisfy
this requirement that we gave K7K,4, the in vivo equilibrium constant between states R and 1
at x = 80 A, a value of 55 (Table I). A value of 55 allows a significant number of cross-bridges
to occupy state 1.
The distribution of cross-bridges in the isometric state not only explains the zero slope of the

T2 curve at y = 0 but also predicts that T2 will equal zero at y -80 A. In fact,
experimentally, T2 = 0 at approximately y = -140 A. This discrepancy may arise because, in
our model, after a large release, cross-bridges in state 2 detach relatively slowly and thus exert
negative force at T2. In reality the cross-bridges exerting negative force may detach more
rapidly, which would have a tendency to increase the value of T2 after large releases since
fewer cross-bridges would be exerting negative force. A small amount of such detachment
could occur without significantly affecting the measured stiffness.

In our model the time-courses of the force changes in isometric transients are almost
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TABLE III
SCALING OF FORCE RECOVERY CURVES

t/2 (a) t /lo (Ca) 11 /2 (FHS)
y

t /2 t /10 t /2

A
-60 1.118 0.979 0.825
-45 1.134 1.001 0.987
-30 1.133 1.019 1.033
-15 1.124 1.030 0.982
- 5 1.154 1.043 0.907
+ 5 1.241 1.051 0.779
+15 1.688 1.142 0.686

completely determined by the magnitudes and x dependences of a12 and a2, (Fig. 4). These
rate constants have been adjusted to fit as closely as possible the data of FHS, as already
described (section 5). One of the features of the experimental data is that the rate of the
return of the force to the T2 level increases markedly as the size of the release increases.
Furthermore, the time dependence of this process is not a simple exponential. However, the
time dependences do seem to scale along the force and time axes. That is, although the
recoveries are not exponential, if the force and time scales are adjusted linearly, all of the
recoveries have the same shape. A feature of this shape is that the early part of the quick
recovery of force (to T2) is much faster than the later part.

Table III is concerned with the scaling of our theoretical isometric transients. The rate
constant, a, in this table has been found from the initial slope (near t = 0) of a computed force
recovery curve, assuming that a simple exponential recovery is followed to the T2 level. The
reciprocal time for half-recovery to T2, following this hypothetical simple curve, would then be
t1/2 (a) a/Qn 2. Column 2 of Table III gives the ratio of this quantity to tI /2 obtained from
the actual computed force recovery curve. In effect, for all y except y = + 15 A, the initial rate
constant a is -15% larger than the half-recovery rate constant. Column 3 presents an
equivalent calculation for the time: I/o recovery. This column shows (excluding y = + 15 A)
that a simple exponential is essentially followed to tll/o. Columns 2 and 3 together show that
from y = -60 A to +5 A our computed force recovery curves have the same qualitative
scaling (force and time) property that FHS observe. However, unlike FHS, the initial rate of
recovery of our curves is not much faster than the later stage (to t1/2). Because the behavior of
our model is rather complicated, including x averaging, we could not find any simple
explanation for the scaling phenomenon.
The last column in Table III indicates that the rate of the computed force recovery (based

on t1 /2) can be adjusted to give close to the same rate as found by FHS for steps of varying
sizes. In fact, we adjusted the scale of the relevant rate constants of the model to agree in this
respect with the FHS average for y = 15, -30, -45 A. The calculated absolute values of t1/2
are plotted in Fig. 8 together with the FHS experimental curve.

8. STEADY-STATE PHYSIOLOGICAL PROPERTIES

We next examine how our model fits the steady-state physiological data obtained with frog
muscle (28, 29). Fig. 9 a shows how the calculated force-velocity curve (solid line) compares
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FIGURE 8 Computed and experimental values of the rate of recovery of force in the isometric transient as
a function of y (amount of release or stretch). The ordinate gives 1 /112 as a measure of the rate constant
for force recovery where t1/2 iS the time when the force has recovered one-half of the way to its T2 value.
(0) computed values; (----) experimental values (FHS) (4).

with the experimental curve (29) for frog muscle at 1.20C (dashed line). As can be seen, the
fit is quite good.

Fig. 10 presents the calculated ATPase rate and thermodynamic efficiency as a function of
velocity (see Table IV for J0). Also included is r, the mean number of ATP cycles per pass of
an actin site past a cross bridge. As can be seen, the ATPase rate increases as the velocity
increases, and is beginning to level off at high velocity at a rate approximately seven times
higher than the isometric ATPase rate. Experimentally, both the rate of heat plus work
production and the ATPase rate, measured directly, show a similar increase as the velocity of
contraction increases (28, 35). However, the rate of heat plus work production reaches a
maximum at approximately two-thirds maximal velocity and then decreases as the velocity
increases still further (28, 36). Our model does not duplicate this behavior. It does, however,
predict a quite reasonable efficiency. The efficiency rises rapidly as the velocity increases and
then remains near 50% (37) over a broad range of velocity.

Table IV compares the calculated and experimental values of the isometric force, isometric
flux, maximal efficiency, and vm. In calculating these properties, we have assumed that there
are three myosin molecules per "crown" of the myosin filament (38). As can be seen, the
theoretical value for P0 is approximately one-half the experimental value and the theoretical
value of the ATPase rate in the isometric state is approximately one-third the experimental
value. On the other hand, the calculated values of vm and the maximal efficiency are in good
agreement with their experimental values.
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FIGURE 9 Comparison of experimental force-velocity curve with force-velocity curves calculated from
our model. (a) (----) experimental curve for frog at 1.20C (29); (-) curve computed from our model; (0)
computed assuming a 10-fold increase in aNI and. alN from the values given in Fig. 4; (0) computed
assuming a 10-fold reduction in the values of apN and aNR (note that this assumption also leads to a
reduction in the value of P0-see text). (b) Change in the force-velocity curve with changes in the values
assumed for a2R at x s-10 A. (-) a2R = 456 s-', the value given in Fig. 4; (0) a2R = 421 s-'; (0) a2R =
526 s ;(A) a2R= 1,052 s
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FIGURE 10 ATPase rate and efficiency calculated from the model as a function of velocity. J = ATPase
rate: J0 = ATPase rate in isometric state (see Table IV for magnitude); n = efficiency (maximum = 1.0); r
= mean number of ATP molecules hydrolyzed as an actin site available for attachment passes by a cross

bridge.

TABLE IV
FUNDAMENTAL CONTRACTION PARAMETERS

Property Theory Experiment

Isometric force (P0, To, FO) 1.63 x 10-7 dyn 2.95 x 10-7 dyn (38, 39)
Isometric ATP flux (J0) 1.15 s-' 3.0 s-' (40)
Isotonicvnax 19.8 A ms ' 21.0 A ms '(29)
Maximal efficiency (,,ax) 0.545 0.45 to 0.66 (37)

We made no attempt to increase our calculated isometric force and ATPase rate to the
actual experimental values. Clearly the isometric force and ATPase rate will depend strongly
on the number of cross-bridges attached to actin in the isometric state. Since we assume in our
single-site model that only approximately one-seventh of the actin monomers are available for
cross-bridge attachment, most of the cross-bridges (76%) are not attached to actin in the
isometric state (Table II). In our model, a cross-bridge can attach over a range of - 100 A in
every 360-A period; even over this range of 100 A, all of the cross-bridges are not attached.
Thus, only about one-fourth (24%) of the cross-bridges turn out to be attached. If, as seems
very likely, three or four actin monomers per turn of the actin helix are available for
attachment of cross-bridges, at least twice as many cross-bridges would be attached to actin in
the isometric state. This, in turn, would certainly bring both the theoretical isometric force
and ATPase rate close to their experimental values. Thus, in view of the fact that we have
used a single-site model (for simplicity), our values for the isometric force and ATPase rate
are not unreasonable.

9. RELATIONSHIP BETWEEN ATPASE RATE AND THE
FORCE-VELOCITY CURVE

It is of interest to consider the key features of our model that are responsible for the
steady-state properties shown in Figs. 9 a and 10. In particular, the force-velocity curve is
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important because of the correlation (see Table VI, below) between the velocity of contraction
and the actomyosin ATPase activity. This correlation between ATPase rate in vitro and
velocity in vivo is the only relationship between muscle biochemistry and physiology that has
thus far been documented (5).

In 1957, A. F..Huxley proposed (8) that many of the steady-state properties of muscle
could be explained by having cross-bridges attach at a moderate rate (f ), detach very slowly
(g) in the region where they exert positive force, and detach rapidly in the region where they
exert negative force. An analysis of the Huxley model shows that most of the force-velocity
curve, from P0 to approximately P0/4, is practically determined by the value off. Only when
the velocity is close to vm is the shape of the curve affected by the detachment rate in the
region of negative force. The value of vim itself depends only on this detachment rate in the
Huxley model.
Why, in the Huxley model, is most of the force-velocity curve determined by the rate of

attachment of the cross-bridge? A key point that any cross-bridge model must explain is the
decrease in positive force exerted by the muscle as the velocity of contraction increases. This
decrease in positive force can be due to a decrease in the number of attached cross-bridges
that exert positive force, to an increase in the number that exert negative force, or to a
combination of these effects. Which, if either, of these effects dominates in a particular model
depends crucially on the rate of attachment. For example, in the Podolsky-Nolan model
(27, 41), where attachment is postulated to be very rapid, there is very little decrease in the
number of attached cross-bridges that exert positive force as the velocity increase. As the
filaments slide past each other, cross-bridges that move out of the region where they exert
positive force are replaced by others that attach rapidly. In their model the force decreases as
the velocity increases because detachment of the cross-bridges that exert negative force is
assumed to be quite slow. In addition, the force constant of the cross-bridge increases in the
region where it exerts negative force. However, because the cross-bridges attach rapidly, the
model predicts that the number of attached cross-bridges will increase as the velocity of
contraction increases.
On the other hand, in the 1957 Huxley model, where attachment of the cross-bridge is

postulated to be relatively slow, there is a marked decrease in the number of attached
cross-bridges that exert positive force as the velocity increases. There is also a slight increase
in the number that exert negative force, but this effect does not predominate until the velocity
is close to vm. Thus, in this model, the decrease in force with increasing velocity is due
primarily to the relatively slow attachment rate. Consequently, this model predicts that the
number of attached cross-bridges will decrease as the velocity increases. Furthermore, the
slower the rate of attachment, the lower the force will be at a given velocity.

Fig. 11 shows the distribution of cross-bridges in our model as a function of velocity. We
have divided the figure into two parts to avoid too many overlapping curves; the v = 1.75 A
ms-' case provides a "bridge" between the two parts. As can be seen, our model is clearly of
the Huxley type. As the velocity increases, the number of cross-bridges exerting positive force
decreases markedly while the number exerting negative force increases to a much lesser
extent. (State 1 has a negative force for x < 80 A, state 2 for x < 0.) Only at very high velocity
does the number exerting negative force approximately equal the greatly reduced number
exerting positive force. It would therefore be expected that the total number of attached
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FIGURE 11 The probability distribution of cross-bridge states calculated from our model as a function of
velocity. (----) isometric distribution (see also Fig. 5). Other velocities as labeled. v 5 1.75 A ms- is
included in both a and b to facilitate comparison.
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TABLE V

CALCULATED PROBABILITIES OF STATES IN ISOTONIC CONTRACTIONS

(PI + P2)V
V PR PI P2

A ms-'
0 0.736 0.1058 0.1349 1.000
1.75 0.795 0.0445 0.1391 0.763
3.51 0.843 0.0300 0.1055 0.563

10.52 0.904 0.0164 0.0581 0.310
19.29 0.925 0.0125 0.0413 0.224

cross-bridges would decrease as the velocity increases; Table V shows that this is indeed the
case. The number of cross-bridges attached at vm is 22% of the number attached in the
isometric state.

If the attachment rate is closely related to the force-velocity curve, and, in turn, the
force-velocity curve is correlated with the ATPase rate measured in vitro, it would be expected
that the attachment rate and the ATPase rate are connected. In fact, this is exactly what is
found with our model. As mentioned above, over a wide range of x the effective rate constant
with which cross-bridges enter state 2, the major force-producing state is aRN. Thus aPN is
equivalent tof in the 1957 model of A. F. Huxley. At the same time, as we discussed above,
aRN= k7, which is equal to the ATPase V.,, per two myosin heads. Thus aRN influences
strongly both the force-velocity curve and the in vitro ATPase activity.

In Fig. 9 a, the square points show the drastic effect on the force-velocity curve of reducing
aRN and aNR by a factor of 10. Also, the absolute value of the isometric force is reduced as a
result of this change by a factor of 1.93, because fewer cross-bridges are attached in state 2.
Do any of the other rate constants alter the force-velocity curve? As long as aNI is much

larger than aRN, it has little influence on this curve. The open circles in Fig. 9 a show that
increasing aNl and alN by a factor of 10 has almost no effect. This emphasizes that the
effective attachment rate of the cross-bridge over a wide range of x is not aN1 but aRN. The
values of al2 and a2l also have almost no effect on the force velocity curve providing that, for x
< 80 A, a12 is much larger than aRN, as it is in our model.
The detachment rate constant (a2R) affects the force-velocity curve in two ways. In the

region x > 10 A, where we have assumed that a2, is about one-third the effective rate of
attachment aRN, it is important that a2R be kept significantly less than aRN so that a reasonable
number of cross-bridges remain in the force-producing state 2. There is, in fact, no
biochemical evidence that a2R is small in the region where the crossbridge exerts positive force
but this would seem to be a requirement in any cross-bridge model.
The value of a2R in the region x < 0, i.e., where the cross-bridge exerts negative force in

state 2, also has an important effect on the force-velocity curve, but only on that part of the
curve where P is less than P0/4, i.e., where the velocity becomes quite large. As we pointed out
above, the maximum velocity (vin) is strongly influenced by a2R where x < 0, the detachment
rate in the region of negative force. In our model we make a2R = 456 s-1 where x < -10 A to
obtain the correct value for the maximum velocity (vin). As already mentioned, a2R represents
the rate of ADP detachment from the cross-bridge. The rate constant for ADP release from
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FIGURE 12 Comparison of experimental mammalian force-velocity curves with force-velocity curves
computed from our model. (-) guinea pig force-velocity curve at 1OOC (42). (. .) rabbit
force-velocity curve at 40C.' ( ) Force-velocity curve computed from our model using rate constant
functions given in Fig. 4. Computed assuming aRN, aNR, a2R, and aR2 = 1/5 value given in Fig. 4 (0); =
1/10 value given in Fig. 4 (O).

acto-S-1 in vitro (k,2 in Fig. 1 a) has not been measured with frog S-1 but it has been
determined to be --400 s 'at 40C with rabbit acto-S-1 (18).

Fig. 9 b shows the effect of changing a2R for x < -10 A (with corresponding changes in the
"step" and in aR2). These changes are seen to have little influence between P0 and P0/4 but, as
expected, alter significantly the maximum velocity vm. In fact, if we used a2R = ° for x <
-10 A, the force-velocity curve would change very little between P0 and P0/4 but would
approach the abscissa asymptotically rather than interesecting it.

Summarizing, we find that aRN iS the major determinent of the force-velocity curve from P0
to P0/4, providing that the detachment rate constant, a2R, in the region where state 2 exerts
positive force (x > 0), is kept small compared to aRN.

Fig. 12 shows the calculated force-velocity curves when aRN and a2R are both (along with
aNR and aR2) reduced, either by a factor of 5 or a factor of 10. Because a2R is changed as well
as aRN, the fraction of cross-bridges attached when x < 80 A, in the isometric state, will
remain constant despite the change in aRN. For comparison, the curves for guinea pig psoas
fibers at 10°C (42) and rabbit psoas fibers' at 40C are also shown. Note that a reduction in
aRN and a2R leads to curves that are quite similar, at low velocity, to the curves observed with
mammalian muscle at low temperature. Qualitatively, this is what our model predicts because

'Tawada, K., and R. J. Podolsky. Unpublished data.
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TABLE VI
RELATIONSHIP BETWEEN ATPASE ACTIVITY AND CONTRACTION VELOCITY

Contraction Required value of apv Measured V.,
p /4 per two myosin heads per two HMM heads

A ms-' s-' s-'
Frog, 1.20C 7.5 (29) 31.8 9 (31)
Rabbit, 40C 1.4' 4.3 2 (43)
Guinea pig, 60C 1.3 (42) 4.0 2*
Guinea pig, 100C 2.2 (42) 6.9 4*
Rabbit, 200C 12.9t 56.5 20 (43)

*From rabbit HMM (43) rather than guinea pig HMM.
tFrom rabbit muscle at 40C assuming Qlo = 4 (42).

experimentally the ATPase V.,, (=k7 = aRN) is also lower for rabbit myosin than for frog
myosin.
The relationship between the contraction velocity at P0/4 and the ATPase Vmax for various

muscles and temperatures is shown more quantitatively in Table VI. Column 2 shows the
contraction velocity at P0/4 for three kinds of muscle at several temperatures, whereas column
3 gives the values of aRN (per two myosin heads) required by our model to obtain the
respective contraction velocities. As can be seen, these required values of aRN agree, within a
factor of 2 or 3, with the measured values of V,, (per 2 myosin heads) shown in column 4.
The results in Table VI therefore generally support our hypothesis that the rate of the
transition from R toN has a strong influence on both Vmax and the force-velocity curve from P0
to approximately P0/4. Support for our hypothesis also comes from the similar Qio values
reported for the mammalian force-velocity curve (Q,0 = 4) (29) and for Vmax (Qlo 5) (43).
Note that in Fig. 12 we made no attempt to fit the calculated vim to the vim observed with
mammalian muscle. Obviously (see Fig. 9 b) we could have adjusted a2R for x < -10 A to
give a particular ym, but we did not do this because there is no experimental data concerning
the rate of ADP release from acto-S- 1 in vitro under various conditions.

10. RELATIONSHIP BETWEEN ATPASE RATE IN VITRO AND IN VIVO

Not only does aRN determine both the ATPase Vmax and the major portion of the force-velocity
curve in our model, but it also establishes the ATPase rate that occurs at high velocity. In our
cross-bridge model (as in any model), the overall ATP flux per cross-bridge depends on two
factors: first, the fraction of cross-bridges that both attach to actin and hydrolyze ATP; and,
second, the rate at which these cross-bridges hydrolyze ATP. Thus, in the isometric state, the
ATP flux per cross-bridge is determined by: (a) the limiting rate in the ATPase cycle, which,
in the isometric state, is the rate constant for cross-bridge detachment (a2R for x > 10 A); and
(b) the fact that cross-bridges attach only between x = 20 A and x = 120 A and, furthermore,
over only part of this range (x < 80 A) do they hydrolyze ATP. Therefore, the ATP flux per
cross-bridge in the isometric state is = a2R (X> 10 A) x (60/360) - 1.5 s-'.

During a fast isotonic contraction, the rate of cross-bridge detachment (a2R for x < - 10 A)
becomes very rapid. Therefore the rate-limiting step in the cross-bridge cycle is aP.N. Thus, at
very high velocity, the ATP flux per cross-bridge could approach a value as high as aRN.
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However, even when the muscle is moving, all of the cross-bridges are not able to attach to
actin all of the time. Therefore the ATP flux per cross-bridge at Vm approaches aRN x
(100/360) = 8 s-1, where 100 A is approximately the range over which the cross-bridge can
attach.

If ap.jv/aNR were equal to unity rather than to 1/30, i.e., if a significant number of
unattached cross-bridges occurred in state N (which attaches very rapidly to actin), the ATP
flux per cross-bridge at high velocity would increase. However, it could never become larger
than aRN, the rate-limiting step in the ATPase cycle. Therefore, aR not only determines the
force-velocity curve and Vmax, but also strongly influences the ATP flux per cross-bridge at
high velocity.
As already mentioned, we have been unable to duplicate the decrease in ATP flux per

cross-bridge that occurs at high velocity according to heat measurements. A. F. Huxley has
suggested (44) that the decrease in ATP flux at high velocity might be explained if the
cross-bridge enters a weakly attached state before it enters the strongly attached, force-
producing state. In theory, state 1 could serve as such a weakly attached state. But in our
model we make a12 increase rapidly as x decreases so that we can obtain the very rapid rate of
force recovery after large releases. As a consequence, even at very high velocity, almost all of
the cross-bridges that enter state 1 transform to state 2 before they can detach from actin.
Hence, although our model contains a weakly attached state, we do not obtain the observed
decrease in ATP flux.

I 1. DISCUSSION

The most important new feature that we have presented in this paper is the incorporation of
quantitative biochemical data into a specific model of muscle contraction. To employ these
data, we made several basic approximations or assumptions. First, we made the approxima-
tion that, except for transitions involving attachment of the cross-bridge to actin, the
equilibrium constant between any two cross-bridge states at their minimum free energies in
vivo is the same as the equilibrium constant between these two states in vitro. This
approximation is required if we are to make use of the in vitro biochemical data at all. It
would certainly have been quite arbitrary to assume that certain equilibrium constants were
the same in vivo and in vitro while others were not.
The nature of this approximation for an attached state is the following. In vivo the

cross-bridge is relatively rigid when attached at the angle of minimum free energy, 0min. In
vitro, in the same state, new degrees of freedom are available, including fluctuations in 0
around Omin. These extra motions will lower the free energy of the in vitro state somewhat,
relative to the in vivo state (at min). Nevertheless, the approximation is probably accurate to
within 5% in the free energy.

Even with the above approximation, one class of reactions in vivo was still not dealt with:
the binding of the cross-bridge to actin. The concentration of actin in vivo has no meaning
with respect to the rate of attachment of the cross-bridge. What is meant by the "effective
actin concentration in vivo" is, in reality, the actin concentration required in vitro to give the
same ratio [M]:[AM] in vitro as occurs in vivo at x = 0 (cross-bridge angle = 450). Once this
single binding constant is specified (K2 in column 3, Table I), all of the other reactions
involving attachment of the cross-bridge to actin in vivo are determined by detailed balance.
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For example, if in vitro the binding constant of M*. T to actin is 107 weaker than the binding
constant of M to actin, the same will be true in vivo. But to get the absolute value of the
binding constant of M*- T to actin in vivo, the absolute value of the binding constant ofM to
actin in vivo must be specified.
We and other workers have previously suggested (1, 21, 22) that the binding constants of

ATP and actin to myosin should be similar, but this qualitative argument is sharpened up
considerably when it is recognized that to make these binding constants alike requires an
effective actin concentraion of -10 M. By making the binding constants of ATP and actin to
myosin similar, we make the free energies of the 450 state and the refractory state similar.
Thus in our model there is very little loss of free energy when ATP dissociates the cross-bridge
from actin; this keeps the efficiency high.

If all of the in vitro equilibrium constants were known, the approximation we made above
relating in vivo and in vitro equilibrium constants, along with a value for the binding constant
of the cross-bridge to actin in vivo, would determine the relative minimum free energy levels of
all of the cross-bridge states in vivo. In fact, however, all of the in vitro equilibrium constants
are not known. Therefore we had to make three further assumptions (Table I, column 2). One
of these three assumptions is worth further mention because it has certain biochemical
consequences. In our model we assumed that state AM*- T does not occur to a significant
extent in vivo. Often, in a cross-bridge model, a state like AM* * T is assumed to be a transient
intermediate without an explicit recognition of what this implies biochemically. In the present
model we attempted to avoid this problem. To make state AM*. T a transient intermediate,
we assumed explicitly that the binding of M* * T to actin is very weak. Thus we assumed that
the value of K3 in vitro is 1 x 10-' M-l. This assumption leads to two specific biochemical
predictions. First, no binding should occur between M*. T and actin at any actin concentra-
tion obtainable in vitro. Second, by detailed balance, K4 = 2 x 102 M-1, that is, the binding
constant of ATP to acto-S-1 in vitro should be 108 smaller than the binding constant of ATP
to S- 1.

However, very recent biochemical data (24) indicate that, at very low ionic strength,
binding between M*. T and actin occurs in vitro with a binding constant K3 of -3 x 104 M-1,
much greater than the value assumed in our model (1 x 10- Ml). Furthermore, by detailed
balance, this result implies that K4 = 6 x 107 M` rather than 2 x 102 M-1, as we assumed.
These new biochemical data also suggest that ATP hydrolysis can occur without dissociation
of the actomyosin complex and that the refractory state is able to bind weakly to actin.
Clearly, if these experimental data are correct, modifications will be required in our model
because the minimum free energy levels of several cross-bridge states will be changed.
Possible modifications have been outlined qualitatively in a separate publication (45).
Although they are of interest, they do not affect two of the major premises of the present
model: first, that the transition from the 900 to the 450 state is mainly responsible for the
recovery of force in the isometric transient; and, second, that the transition from the refractory
to the nonrefractory state has a major influence on both the force-velocity curve and the
ATPase rate. Nevertheless, the very fact that our model is sensitive to changes in the
minimum free energy levels of the cross-bridge states emphasizes the importance of biochemi-
cal data in determining the properties of a cross-bridge model.
Not only the free energy levels but also the rate constants in our model are dependent on the
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in vitro biochemical data. One example is our assumption that the transition from the 900 to
the 450 state is very fast in vivo; this is related to kinetic evidence suggesting that the transition
from AMt.D-Pi to AM* * D is quite rapid in vitro (6). An even better example is our
assumption that the transition from the refractory to the nonrefractory state has the same rate
in vivo and in vitro. This is the feature of our model that is the most successful in relating
biochemistry and physiology: it provides a possible explanation for the well-known relation-
ship between ATPase activity in vitro and the velocity of muscle contraction in vivo. It is
interesting that data obtained with cardiac muscle from normal and thyrotoxic animals also
showed a correlation between the velocity of contraction and the ATPase V.,, (46). As
accurate force-velocity curves and values of V.,, are obtained for more types of muscle, the
quantitative relationship between ATPase rate and velocity predicted by our model will be
repeatedly tested.

Although our model provides a possible explanation for the relationship between ATPase
rate and the velocity of contraction v, as in any model where the force-velocity curve is
essentially established by the effective rate of attachment, ours predicts that the number of
attached cross-bridges decreases markedly as v increases. Actually, one interpretation (47) of
x-ray measurements on contracting frog muscle is that there is little if any change in the
number of attached cross-bridges as v increases. If one accepts this interpretation, it is possible
that recent biochemical data, which indicates that not only the nonrefractory state but also the
refractory state binds weakly to actin, could explain the x-ray results. If the refractory state is
weakly attached to actin, the number of attached cross-bridges might not decrease as v
increases. Nevertheless,i the transition from the refractory to the nonrefractory state could still
limit the rate at which the major force-producing 450 state is formed and hence determine the
velocity of contraction (45). We are planning further modeling efforts to investigate whether
this modified refractory state model can explain the correlation between ATPase rate and
velocity of contraction without predicting a marked decrease in the number of attached
cross-bridges as v increases.
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