Investigations into the amino-terminal domain of the respiratory syncytial virus nucleocapsid protein reveal elements important for nucleocapsid formation and interaction with the phosphoprotein

Lindsay B. Murphy, a,1 Colin Loney, a Jillian Murray, a David Bhella, a Peter Ashton, b and Robert P. Yeo a, *

a Medical Research Council Virology Unit, Church Street, Glasgow, G11 5JR UK
b Department of Biology, University of York, P.O. Box 373, York, YO10 5YW, UK

Received 26 August 2002; returned to author for revision 11 October 2002; accepted 16 October 2002

Abstract

Bacterially expressed nucleocapsid (N) protein, from respiratory syncytial virus (RSV), was used to investigate RNA binding in a modified North–Western blotting protocol. The recombinant protein demonstrated no sequence specificity in binding RNA representing either the antigenomic leader sequence or the nonspecific sequence derived from a plasmid vector. When recombinant N was purified on CsCl gradients, two types of structure, both with densities indicating that they contained RNA, could be visualised by negative-stain electron microscopy. Structures similar to nucleocapsids (NC) from RSV-infected cells were observed, as were ring structures. A small fragment of the N (amino acids 1-92) was all that was required for the production of NC-like structures. Another mutant with an internal deletion could form rings but not NC-like structures. This suggests that this domain (amino acids 121-160) may be important for maintaining helical stability. Further analysis has also identified a potential site in the amino-terminus that may be involved in an interaction with the phosphoprotein. A domain model of the RSV N protein is presented which, similar to that of other paramyxoviruses, supports the idea that the amino-terminus is important for NC assembly.

Introduction

Respiratory syncytial virus (RSV), a pneumovirus, has a negative-sense RNA genome encapsidated by the nucleocapsid (N) protein forming a helical nucleocapsid (Collins et al., 2001). This ribonucleoprotein (RNP) structure, as is the case for all members of the Mononegavirales, is the template for replication and transcription of the genome; uncomplexed RNA cannot function as a template for the viral polymerase. The RNA is protected from ribonuclease attack and the nucleocapsid may mask the genome from host cell surveillance via the interferon response. The N protein thus has a multitude of interactions for its functionality: with itself, the RNA, the polymerase (L), and associated cofactors (e.g., the P protein). In addition an interaction with the matrix (M) protein may be responsible for the uptake of the nucleocapsid into the virion particle, as has been demonstrated for human parainfluenza virus type 1 (hPIV1) and Sendai virus (SeV) (Coronel et al., 2001). Attempts to map domains on N proteins responsible for these interactions have been made on a number of Mononegavirales members, for example, rabies virus (RV) (Kouznetzoff et al., 1998), SeV (Myers et al., 1999), measles virus (MV) (Bankamp et al., 1996), and RSV (Garcia-Barreno et al., 1996; Khattar et al., 2000; Murray et al., 2001). Although differences exist between the viruses, the N proteins have
a similar modular compartmentation of the interacting regions. The amino-terminus appears to be responsible for the assembly of the nucleocapsid, while the carboxyl-terminus has elements that are necessary for the interaction with the polymerase and the M protein.

The assembly of nucleocapsids has been best studied on SeV, which appears to be an appropriate model for other members of the Paramyxoviridae (Lamb and Kolakofsky, 2001). The formation of the nucleocapsid is coupled with genome replication; the N being delivered possibly in the form of complex with P (N°P). The N°P complex maintains N in a soluble state and promotes specific binding to both viral genomic and antigenomic RNA (Curran, 1996; Curran et al., 1995). For a number of viruses within the Paramyxoviridae, sole expression of N results in assembly of nucleocapsid-like structures around cellular RNAs (Bhella et al., 2002); coexpression of P protein apparently inhibits this effect (Spehner et al., 1991; Curran et al., 1995).

Several groups have studied the interaction between the RSV N and P proteins. Deletion of the carboxyl-terminus of N, and monoclonal antibodies (Mabs) that bind to this region, have a deleterious effect on the assembly of RSV nucleocapsids (see below), which were pelleted by the initial high speed centrifugation prior to isolation of protein gomers of His-N with the morphological appearance of nucleocapsids. Buchholz et al. (1993) observed a similar phenomenon with the N of SeV.

In this article, we demonstrate that RSV N, when expressed and purified from bacteria, binds RNA in a non-sequence-specific manner and is able to form nucleocapsid-like structures. The binding to RNA apparently induces a conformational change in N. We show that the RNA, and possibly the N–N, interacting domains reside between amino acids 1 and 92 of N and that this region is sufficient to form a structure where the RNA is resistant to nuclease attack. We also show that the amino-terminus of N has a region that may be involved with P.

Results and discussion

Generation of deletion mutants of the RSV N protein

The generation of full-length N protein with an amino-terminal histidine tag (His-N) has previously been described (Murray et al., 2001). A number of mutants (Fig. 1a), primarily C-terminal truncations, were subsequently prepared, using either PCR or the Promega Gene Editor kit. The C-terminal mutants were a series deleting the N by increments of 50 amino acids. Two mutants with deletions in the amino-terminus of N were also constructed; NΔ1-200 lacks the N-terminal 200 amino acids, while NΔ121-160 represents an internal deletion of 40 amino acids. Expression of the mutants and full-length His-N in BL21 (DE3) pLysS was readily detected (Fig. 1b). Subsequent work on the proteins demonstrated that a proportion of each was soluble (ca. 10-30% depending on the clone). The majority of the “insoluble” protein was subsequently determined to be oligomers of His-N with the morphological appearance of RSV nucleocapsids (see below), which were pelleted by the initial high speed centrifugation prior to isolation of protein using nickel affinity chromatography. Within the His-N, NΔ121-160, NΔ342-391 and NΔ292-391 preparations, we routinely observed a breakdown product of approximately 30
kDa (N*). This fragment could be detected with the His-tag antibody or with Mabs directed against the amino-terminus of N but not with Mabs against the carboxyl-terminus (not shown). Thus similar to other N proteins the C-terminus of the RSV N is susceptible to proteolytic removal (Heggeness et al., 1980, 1981; Mountcastle et al., 1974; Schoehn et al., 2001). We also observed that the smaller proteins (e.g., N_{392-391}) had a propensity to form higher order oligomers that were not readily dissociated by boiling in SDS–PAGE loading buffer, suggesting that the first 92 amino acids may have a role in the N–N interaction.

Full-length recombinant N binds RNA in a non-sequence-specific manner

His-N was purified by nickel-affinity chromatography. Size exclusion chromatography showed that under the conditions used, the His-N preparations were largely monomeric protein with a small (<5%) amount of dimer. Various assays were used to test for RNA binding; however, when RNA of any nature was added, His-N aggregated rapidly and the majority of the complexes could not be adequately resolved by gel electrophoresis, although there was some indication of in vitro RNA binding (not shown). Addition of a molar excess of RNA, to promote the binding of fewer His-N molecules to each RNA molecule, did not alleviate the situation, which suggested that interaction of even a single His-N with an RNA molecule catalysed a cascade of binding events, resulting in aggregation. The binding of exogenously added RNA to His-N appeared inefficient possibly due to the presence of bacterial RNA already bound to the protein. This was confirmed by UV traces obtained during purification of His-N on an FPLC apparatus that indicated that nucleic acid was extracted in the same fractions as His-N (data not shown). As shown later (Fig. 4) His-N can form nucleocapsid-like structures containing bacterial RNA. However, no evidence was found for the presence of nucleocapsid-like structures after examining His-N preparations purified by nickel-affinity chromatography by electron microscopy (EM). Thus a significant proportion of the so-called soluble His-N must be bound to a small fragment of RNA in a nuclease-protected form.

To overcome the interference caused by the presence of bacterial RNA bound to His-N, we employed a modified North–Western blot assay. This included a protein denaturation and renaturation step so it was likely that incorporated bacterial RNA would be removed. The ability of His-N to bind RNA under these conditions was tested by the addition of either radiolabelled specific RNA (representing the plus leader strand) or a nonspecific RNA. As more RNA was added, the binding to His-N increased. However we did not observe any significant differences between the binding of the two RNAs (Fig. 2a, i and ii). No binding to a control protein (His-βGal) was observed.

To more fully explore this, a competition assay was developed. Fragments of nitrocellulose membrane, containing His-N, were excised and incubated in RNA-binding buffer containing a radiolabelled specific RNA probe and a cold competitor probe at varying molar ratios (Fig. 2b, i). The ability of the specific probe to compete with a radiolabelled nonspecific probe was also tested (Fig. 2b, ii). The relative intensities of captured probe, determined by densitometry, were plotted after normalisation of the protein levels bound to each fragment of membrane and of the specific activity of each of the probes (Fig. 2b, iv). We saw no significant differences between the two samples. A nonspecific-binding protein, β-galactosidase, was also tested (Fig. 2b, iii). At low competitor levels some degree of nonspecific RNA binding was apparent, but at higher levels, unlike His-N, no binding was detected. The pattern of binding indicates that there were two distinguishable modes of interaction between His-N and RNA in this assay. The major form is largely nonspecific, represented by a large decline in binding of the radiolabelled species in the presence of low amounts of cold competitor. We believe this to be a result of the RNA binding to His-N as a consequence of electrostatic attraction with basic amino acid residues; we assume that the His-N is present in both unfolded and folded forms, thus the residues may come from anywhere within the protein. The second form of binding appears to be of higher affinity, as large excesses of cold competitor failed to dislodge RNA from the N. We assume that this might represent RNA that has located to the true RNA-binding domain on native protein, and similar to the RNA bound to purified, monomeric N, this interaction would only be disrupted by protein denaturation. Our data could see no significant differences between the binding affinity of a specific and nonspecific RNA to His-N. We could not, therefore, assign a sequence specificity to the binding of RNA to RSV N, a feature that is apparently shared with other mononegaviruses when N proteins are expressed in the absence of other viral proteins (Bankamp et al., 1996; Buchholz et al., 1993; Iseni et al., 1998).

The RNA binding domain is located in the amino-terminus of the RSV N protein

Attempts were made to use the deletion mutants in the modified North–Western assay to determine the approximate locale of the RNA-binding domain. However, variation in expression levels and purity made the assay unmanageable. An alternative protocol employed the use of CsCl density gradients and Trizol extraction of RNA. The gradients were fractionated and the presence of protein determined by Western blotting using an anti-His tag Mab (not shown). The densities of fractions that contained protein were determined by refractometry and by reference to published tables and are listed in Table 1. We noted that there was variation in the densities, but generally the mutants had lower densities than that obtained for His-N or for N prepared from RSV-infected CV-1 cells. However, all the densities were significantly higher than that of BSA (1.19
This suggested that all the mutants bound RNA, although the ratio of RNA to protein was probably variable, which may explain the variation in densities.

To test the assumption that RNA has been encapsidated by His-N, or mutants thereof, the peak fractions were dialysed into RIPA buffer and precipitated with an anti-His tag Mab and recovery was confirmed by Western blot (not shown). Nucleic acid within the potential RNP complexes was recovered by Trizol extraction and end-labelled with 32P. TCA precipitable material was recovered from all of the C-terminal mutants and $N_{9004}^{121-160}$ (Fig. 3). However, N_{9004}^{1-200}, despite having a density higher than that of BSA, had no detectable nucleic acid. When micrococcal nuclease was added, after Trizol extraction, the radioactivity was converted to an acid-soluble form, confirming that the recovered nucleic acid was RNA. This implies that the RNA-binding domain of the RSV N protein, or at least significant elements of it, is located within amino acids 1-92. Thus it appears that the elements necessary for nucleocapsid formation, similar to other members of the Paramyxoviridae, are found within the amino-terminus of N (Bankamp et al., 1996; Buchholz et al., 1993; Myers et al., 1997). The be-

<table>
<thead>
<tr>
<th>Protein</th>
<th>Density (g/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSV N</td>
<td>1.31 ± 0.02</td>
</tr>
<tr>
<td>N-His</td>
<td>1.30 ± 0.02</td>
</tr>
<tr>
<td>$N_{342-391}$</td>
<td>1.29 ± 0.02</td>
</tr>
<tr>
<td>$N_{292-391}$</td>
<td>1.29 ± 0.02</td>
</tr>
<tr>
<td>$N_{242-391}$</td>
<td>1.28 ± 0.02</td>
</tr>
<tr>
<td>$N_{192-391}$</td>
<td>1.28 ± 0.02</td>
</tr>
<tr>
<td>$N_{142-391}$</td>
<td>1.29 ± 0.02</td>
</tr>
<tr>
<td>N_{92-391}</td>
<td>1.28 ± 0.02</td>
</tr>
<tr>
<td>$N_{121-160}$</td>
<td>1.30 ± 0.02</td>
</tr>
<tr>
<td>N_{1-200}</td>
<td>1.26 ± 0.03</td>
</tr>
<tr>
<td>BSA*</td>
<td>1.19 ± 0.05</td>
</tr>
</tbody>
</table>

* Bovine Serum Albumin

To test the assumption that RNA has been encapsidated by His-N, or mutants thereof, the peak fractions were dialysed into RIPA buffer and precipitated with an anti-His tag Mab and recovery was confirmed by Western blot (not shown). Nucleic acid within the potential RNP complexes was recovered by Trizol extraction and end-labelled with 32P. TCA precipitable material was recovered from all of the C-terminal mutants and $N_{121-160}$ (Fig. 3). However, N_{1-200}, despite having a density higher than that of BSA, had no detectable nucleic acid. When micrococcal nuclease was added, after Trizol extraction, the radioactivity was converted to an acid-soluble form, confirming that the recovered nucleic acid was RNA. This implies that the RNA-binding domain of the RSV N protein, or at least significant elements of it, is located within amino acids 1-92. Thus it appears that the elements necessary for nucleocapsid formation, similar to other members of the Paramyxoviridae, are found within the amino-terminus of N (Bankamp et al., 1996; Buchholz et al., 1993; Myers et al., 1997). The be-

Fig. 2. RNA binding by His-N shows no sequence specificity. (a) 50 μg of His-N, isolated by Ni-affinity chromatography, was separated by SDS–PAGE in an 8-cm well and Western blotted. After transfer, the nitrocellulose was cut into 1-cm strips and subjected to North-Western blotting after renaturation of the protein. Increasing amounts of radiolabelled RNA was added to each strip (indicated above) and allowed to bind. After washing, the strips were exposed to a phosphorImager screen and scanned using a Bio-Rad phosphorImager with Quantity One software. Two different RNA probes were employed: (i) a specific probe representing the RSV plus-strand Leader RNA and (ii) a nonspecific RNA probe. The last strip (*) was his-β-Gal probed with 50,000 cpm of the appropriate probe. The smaller band noticeable in the strip exposed to 50,000 cpm of probe is N^* (see Fig. 1). In all cases yeast tRNA was included to inhibit nonspecific interactions. (b) Competitive North-Western using His-N. Small fragments of nitrocellulose containing renatured His-N were exposed to a radiolabelled probe, either (i) the specific leader probe or (ii) the nonspecific probe. The binding of each probe was performed in competition with increasing molar ratios of cold competitor. After binding, the strips were washed and exposed to a phosphorImager screen and scanned. After taking into account protein levels (determined by Western blot of the fragments) and probe activities, the competition profiles were plotted (iv). As a control His-β-Gal was probed with hot specific probe and cold nonspecific competitor (iii).
When RSV N is expressed from recombinant baculoviruses observed, as was a population of subnucleocapsid rings structures similar to that formed in RSV-infected cells were formed two types of structure (Fig. 4). Nucleocapsid-like microscopy (TEM). When visualised by TEM, His-N with 1% (w/v) PTA, and visualised by transmission electron length His-N, were separated on CsCl gradients, stained al., 1999; Spehner et al., 1991). The N mutants, and full-al., 1998; Mavrakis et al., 2002; Meric et al., 1994; Myers et /H9004 N proteins to form such structures in the absence of Mononegavi-nucleocapsid-like structures. The ability of N to form nucleocapsid-like and ring structures, N200 produced only ring structures. This would suggest that he-lical stability relies on more than lateral (i.e., side-by-side) contacts and may involve interaction between N molecules on adjacent turns of the helix and thus there may be up to six contacts for any one subunit within a helix (see Fig. 4b); thus a nucleocapsid could be considered a curved sheet with N packed in a hexagonal arrangement. The N121-160 mutation may disrupt an interaction between protein on adja-cent turns, either by loss of one of the contacts or by adopting a conformation that prevents an interaction occurring. The result could be the inability of N121-160 to form more than one helical turn or that the stability of helices is decreased to such an extent that purification disrupts any that may have existed. We have tried to visualise whether N121-160 forms helices, within bacteria, but have not been able to identify any such structures.

N121-200 formed neither nucleocapsid-like nor ring structures, but we observed aggregates of what we assume to be N121-200. It could be that there may be an additional N–N interaction site within amino acids 201-391 that allowed the aggregation to occur. The possible bipartite nature of the N–N interacting domain may also exist in MV N (Bankamp et al., 1996).

Identification of sites of interaction for the P protein

We previously demonstrated, using Mabs and peptide blocking studies, that there was a P-binding site in the N protein carboxyl-terminus (Murray et al., 2001). Further peptide studies were undertaken to determine whether the amino-terminus was involved in any way with the P protein. Peptides representing the amino-terminus from amino acids 1 to 252 (the region not covered previously) were used in preliminary studies either to bind P to a solid support or to block the binding of N to P (data not shown). N4 (amino acids 46-65) demonstrated reasonable binding to P (Fig. 5a), but in blocking assays had a dramatic effect on the binding of N to P (Fig. 5b). Peptide N17 (amino acid 241-260) bound P strongly but was unable to block the N–P interac-tion. The binding was speci cation of sites of interaction for the P protein

We previously demonstrated, using Mabs and peptide blocking studies, that there was a P-binding site in the N protein carboxyl-terminus (Murray et al., 2001). Further peptide studies were undertaken to determine whether the amino-terminus was involved in any way with the P protein. Peptides representing the amino-terminus from amino acids 1 to 252 (the region not covered previously) were used in preliminary studies either to bind P to a solid support or to block the binding of N to P (data not shown). N4 (amino acids 46-65) demonstrated reasonable binding to P (Fig. 5a), but in blocking assays had a dramatic effect on the binding of N to P (Fig. 5b). Peptide N17 (amino acid 241-260) bound P strongly but was unable to block the N–P interaction. The binding was specific as P did not bind significantly to other peptides nor did N4 and N17 bind control proteins (not shown). The sequence of N4 and N17 are presented in Fig. 5d.
Expression of mutants containing these regions showed that whereas the carboxy domain, as represented by N\textsubscript{H9004}\textsubscript{1-200}, could bind P, the amino-terminus, as represented by N\textsubscript{H9004}\textsubscript{192-392}, was unable to do so (Fig. 5c). It is possible that the N4 sequence at the amino-terminus, in the context of the full-length protein, required the presence of the carboxyl-terminus for functionality: use of the peptide in binding/blocking experiments overcomes the requirement in vitro. We have preliminary evidence, using tryptic digests and mass spectrometry analysis, that the sequence represented by N4 on N is exposed to the solvent and thus would be available for some form of interaction (L.B. Murphy and P. Ashton, unpublished observations). Since the sequence is within the proposed nucleocapsid assembly domain and RNA-binding domain, the interaction of P with this site could prevent unsolicited assembly of N onto cellular RNAs. Similarly, it has been reported for MV and HPIV-3 that there are at least two regions involved in P binding, one in the amino-terminus and another near the carboxyl-terminus (Bankamp et al., 1996; Zhao and Banerjee, 1995). Caution must be applied to such a comparison since the N proteins of the Pneumovirinae are considerably smaller than their Paramyxovirinae counterparts (ca. 43 kDa compared to 55 kDa and more). However the results do indicate that separate elements make
up P-binding sites for both subfamilies. Whether these constitute components of a single binding site, which is formed by folding of N, or represent distinct functional sites is not clear.

The domain structure of the RSV N protein

Figure 6 shows a proposed domain structure for the hRSV N protein based on the above data and from previous publications (Garcia-Barreno et al., 1996; Khattar et al., 2000; Murray et al., 2001).

Khattar et al. (2000) investigated the N of bovine RSV (bRSV), which shares approximately 93% homology at the amino acid level with the human strain of RSV N protein. Two domains were identified in the bRSV N protein carboxyl-terminus that were involved in an interaction with P, represented by amino acids 244-290 and 338-364. Peptide N17 lies within the 244-290 region and we had placed the second P interacting domain at amino acids 305-335 (Murray et al., 2001), thus there is good agreement on the arrangement of the P interacting domain(s), at least in the carboxyl-terminus of N. Garcia-Barreno et al. (1996) had also indicated that P bound hRSV N near amino acid 352. We now show that there is a third potential region, between...
amino acids 45 and 65, on N that may be involved in some interaction with P, possibly as suggested above to prevent N assembling on nonviral RNA.

Khattar et al. (2000) showed that deletions of only 28 amino acids at the carboxyl-terminus affect encapsidation of viral RNA by the bRSV N. Our data differ in that N missing 75% of its backbone (amino acids 1-92) was able to form structures that encapsidated RNA and formed nucleocapsid-like structures, indicating that the minimal requirements for assembly are contained within this small domain. The remainder of the N probably plays a supporting role in structural integrity, interactions with other viral and cellular components, and functionality. The differences between the data can be explained by the fact that Khattar et al. (2000) used a biological system dependent on replication, and specifically, looked for the incorporation of a minigenome RNA. It is possible that cellular RNAs were nonspecifically incorporated but not detected. However, the observations of Khattar et al. (2000) and the study presented here support the concept of N having at least two domains, one for nucleocapsid assembly/structure and the other essential for the interaction with the polymerase and/or other factors.

The features on N shown in Fig. 6 represent only some of the potential interactions that N must be involved in. The complexity of Mononegavirales nucleocapsid assembly, and indeed virion assembly, suggest that the N protein has other interactions, for example, with the M protein for packaging the nucleocapsid into the virion during the budding process. Preliminary data implicates the C-terminal region in this role (R.P. Yeo, unpublished results). Using the data above, and reagents developed previously (Murray et al., 2001), we aim to model the RSV nucleocapsid and map the N protein domains into three-dimensional space, rather than the linear model presented in Fig. 6, in an attempt to determine the mechanisms of the nucleocapsid functionality during RNA synthesis.

Materials and methods

Materials

*Bam*HI and T4 DNA ligase were purchased from Gibco-BRL. The plasmid pET 16b was obtained from Novagen as were the bacterial strains DH5α and BL12 (DE3) pLysS. Primers for PCR were purchased from MWG Biotech; the sequences are available on request. Reagents for RNA extraction from RSV-infected CV-1 cells and reverse transcription using random primers were obtained from Ambion and Boehringer Mannheim, respectively. The proofreading *Pwo* polymerase was used for PCR (Boehringer Mannheim). The Mabs to N and P have been described before (Murray et al., 2001); the anti-mouse HRP conjugate and the Mabs against the histidine tag were obtained from Sigma.

Plasmid construction

The production of plasmids expressing histidine-tagged versions of the RSV N (pETN) and P (pETP) proteins has been previously described (Murray et al., 2001). pETN was used as a template for the production of deletion mutants, either by PCR or by using the Gene Editor mutagenesis kit from Promega. Initially all constructs were transformed into DH5α and sequences at their amino- and carboxyl-termini were confirmed. Again, primer design was such that cloning was in-frame with the pET 16b histidine tag. Plasmid DNA was used to transform BL21 (DE3) pLysS; a number of clones of each mutant were tested for expression before selecting one for analysis.

Purification of his-tagged proteins

The expressed proteins were purified using Ni-affinity chromatography. An overnight culture of each clone was used to inoculate 100 ml YT broth and allowed to grow to OD_{600} of 0.5 at 37°C before the addition of 1 mM IPTG. After 3 h induction the bacteria were pelleted, resuspended in phosphate buffer (20 mM sodium phosphate, 500 mM NaCl pH 7.4), and lysed by three rounds of freeze/thaw in a dry-ice/methanol bath. The lysate was treated with DNase I and RNase A to reduce viscosity and clarified by centrifugation at 85,000 g for 20 min. The his-tagged proteins were isolated on a Hi-Trap chelating column (Pharmacia), previously loaded with nickel, and eluted using increasing concentrations of imidazole as per the manufacturer’s instructions. The eluted proteins were dialysed against PBS.
and stored at 4°C before use. As a control his-tagged β-galactosidase (Novagen) was used.

Western blot analysis

Proteins, denatured by boiling in SDS-sample loading buffer, were separated by SDS-PAGE. The proteins were transferred to nitrocellulose membrane (Hybond-C, Amersham) blocked with 5% (w/v) Marvel in PBS + 0.1% (v/v) Tween 20 and the proteins probed with an anti-his-tag monoclonal (Sigma) which was conjugated to horseradish peroxidase (HRP). Bound antigen-antibody was visualised by ECL. All washes were carried out with PBS/Tween.

Production of radiolabelled RNA transcripts

Two 32P-labelled transcripts were prepared. One, termed the “specific target,” represented the leader region of the RSV antigenome, supposedly the site responsible for encapsidation. This was generated by annealing two complementary oligonucleotide primers that contained a T7 polymerase promoter and the RSV leader sequence (Collins et al., 1991). The nonspecific target was produced by linearising a plasmid with 3xrl. Runoff transcripts were prepared using the Mega-Shortscript kit (Ambion). To produce radiolabelled RNAs, the cold CTP was replaced with [32P]CTP. The RNA transcripts were purified on a 15% polyacrylamide gel containing 6 M urea, eluted into TE buffer with 0.1% (w/v) SDS, and precipitated using ethanol. The RNAs were pelleted before use and resuspended in RNase-free water.

North-Western analysis

The RNA-binding specificity of full-length His-N protein was analysed by North-Western blot protocol, modified from that described by Blackwell and Brinton (1995). Fifty micrograms of His-N was denatured and loaded into a single 5-cm-wide lane on a 12% polyacrylamide gel, electrophoresed, and transferred to nitrocellulose as above. The membrane was blocked in 5% Marvel in PBS containing 1 mM DTT. The membrane was washed in HBB (25 mM HEPES pH 7.5, 25 mM NaCl, 5 mM MgCl2, and 1 mM DTT) to allow protein refolding to take place at 4°C for 16 h. The portion of the membrane containing the His-N protein was cut up into small (5 x 3 mm) fragments and inserted into 1.5-ml microtubes and covered with HYB100 buffer (20 mM HEPES–KOH, 100 mM KCl, 2.5 mM MgCl2, 0.1 mM EDTA, 0.05% (v/v) Nonidet P-40, and 1 mM DTT) with 20,000 counts per minute (cpm) of the appropriate RNA probe together with 1 μg yeast tRNA (Sigma) to reduce nonspecific binding and, when required, a cold competitor RNA at various concentrations. RNA was quantified by spectrophotometry. Binding was allowed to take place overnight before washing the membranes extensively in HYB100 buffer and exposing the blot to a phosphorImager screen (Bio-Rad). Band intensities were determined by densitometry using Bio-Rad Quantity One software. Each band was boxed and the background, determined for each individual nitrocellulose fragment, was determined. The level of binding was calculated by normalising to protein levels on each fragment (by Western blot) and taking into account the specific activities of the probes used.

Isolation of recombinant nucleocapsid-like structures

The various N proteins were expressed as above. After pelleting the bacteria, they were resuspended in NTE buffer (150 mM NaCl, 50 mM Tris–HCl pH 7.4, 2 mM EDTA). A 1/10 volume of 6% (v/v) NP-40 in NTE was added and the cells were subjected to three rounds of freeze/thaw. The lysate was clarified by centrifugation at 12,000 g for 20 min. The clarified lysate was layered on top of a linear 25-40% CsCl gradient, prepared in NTE, and centrifuged in a TST41 rotor (Sorvall) at 200,000 g for 18 h at 16°C. Bands were visualised by light scattering and isolated by side puncture. The bands were dialysed against NTE and used for EM analysis (see below). The RNP-like structures were also precipitated by an anti-histidine tag Mab before RNA extraction methodologies were employed.

Density gradient analysis

An alternative to linear gradients was to isolate RNP using buoyant density equilibrium centrifugation to determine the density of the nucleocapsids. The constructs were expressed as above and the clarified lysate layered on top of a CsCl step gradient (2 ml 40%, 2 ml 30%, 2 ml 25%, topped with a 2.5 ml 5% sucrose solution) and centrifuged at 200,000 g for 4 h at 16°C. The bands were fractionated from the top and each fraction was subjected to Western blot analysis to detect the histagged proteins; the density of each fraction was determined by refractometry.

Detection of RNA from recombinant nucleocapsid-like structures

Prior to isolating the RNA, to ensure that only N-structures were the source, the RNP's from above were precipitated by an anti-histidine tag antibody (Sigma). RNA was recovered by extraction using Trizol LS (Invitrogen) as per the manufacturer’s instructions. Recovered RNA was treated with calf intestinal alkaline phosphatase to remove 5' phosphate groups and then subsequently end-labelled with 32P using T4 polynucleotide kinase. Each sample was divided into two; one was left untreated, and the other was digested with micrococcal nuclease in the presence of cal-
chium. After treatment, 10 volumes of ice-cold 10% (w/v) trichloroacetic acid was added and the samples were captured on glass filters (Sigma) which were washed with 5 ml of 10% (w/v) trichloroacetic acid. Captured radioactivity was measured by scintillation counting.

Electron microscopy

The bands obtained from the linear gradients were mounted on carbon-coated copper grids and stained using a 1% (w/v) phosphotungstic acid (PTA) stain. The grids were analysed in a Phillips 100 V electron microscope at a nominal magnification of ×32,000.

Protein binding and competition assay

Microtitre plates were coated with peptides (Murray et al., 2001) or appropriate proteins. His-P protein was added in saturating quantities, determined empirically, and allowed to bind. After washing, the His-P was detected using a P Mab and an anti-mouse HRP conjugate. ABTS (1 mg/ml; Sigma) color reagent in 50 mM citrate buffer (pH 4.0) with hydrogen peroxide was added to each well and the color reaction allowed to proceed for up to 30 min at room temperature. All binding and wash steps were performed in PBS containing 0.1% Tween 20. The plates were analysed on a Dynex microtitre plate reader at a wavelength of 405 nm. The blocking assays were carried out in a similar manner except that His-P was used to coat the plate. Peptides were added, before addition of His-N, at varying concentrations from 1-100 μg/ml in PBS or water. After allowing the peptides to bind, His-N was added in saturating quantities and allowed time to interact. Captured His-N was detected using a N Mab followed by an anti-mouse HRP conjugate.

Acknowledgments

The authors acknowledge N. Stow, MRC Virology Unit, U.K. for critical reading of the manuscript. L.B.M. was supported by a Medical Research Council Studentship.

References

