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Let T : Lip0(X) → Lip0(Y ) be a surjective map between pointed Lipschitz ∗-algebras, where
X and Y are compact metric spaces. On the one hand, we prove that if T satisfies the
non-symmetric norm ∗-multiplicativity condition:

∥∥T ( f )T (g) − 1
∥∥∞ = ∥∥ f g − 1

∥∥∞
(

f , g ∈ Lip0(X)
)
,

then T is of the form

T ( f ) = τ · (η · ( f ◦ ϕ) + (1 − η) · ( f ◦ ϕ)
) (

f ∈ Lip0(X)
)
,

where η and τ are functions on Y such that η(Y ) ⊆ {0,1} and τ (Y ) ⊆ {α ∈ K: |α| = 1},
and ϕ : Y → X is a base point preserving Lipschitz homeomorphism. On the other hand, if
T satisfies the weakly peripherally ∗-multiplicativity condition:

Ranπ ( f g) ∩ Ranπ

(
T ( f )T (g)

) 	= ∅ (
f , g ∈ Lip0(X)

)
,

where Ranπ ( f ) denotes the peripheral range of f , then T can be expressed as

T ( f ) = τ · ( f ◦ ϕ)
(

f ∈ Lip0(X)
)
,

with τ and ϕ as above. As a consequence, we obtain similar descriptions for surjective
maps between Lipschitz ∗-algebras Lip(X).

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The study of surjective maps between commutative Banach ∗-algebras that preserve ∗-multiplicatively the spectrum has
attracted the attention of several mathematicians in recent years (see [2,3,6,13]). The first results on the matter concern
the C∗-algebra C(X) of all complex-valued continuous functions on a compact Hausdorff space X with the supremum norm
and the complex conjugation involution. Under the additional condition that X satisfies the first countability axiom, Molnár
proved in [13, Theorem 6] that every surjective map T : C(X) → C(X) such that

σ
(
T ( f )T (g)

) = σ( f g)
(

f , g ∈ C(X)
)
,
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is of the form

T ( f )(x) = τ (x) f
(
ϕ(x)

) (
f ∈ C(X), x ∈ X

)
,

where τ is a continuous function from X into the unit circle SC of the complex plane C, and ϕ is a homeomorphism from X
onto itself. Hatori, Miura and Takagi showed that Molnár’s theorem holds without first countability for X [2, Theorem 3.6].
Notice that for each f ∈ C(X), the spectrum of f coincides with its range f (X), but this is not true in general.

For the case of unital ∗-algebras, the most general result known so far is due to Hatori, Miura and Takagi [3]. With
a method of proof that cannot be translated to the non-unital setting, they proved that if A, B are unital semisimple
commutative Banach ∗-algebras, then every surjective map T : A → B that satisfies the spectrum ∗-multiplicativity condition:

σ
(
T ( f )T (g)∗

) = σ
(

f g∗) ( f , g ∈ A),

where σ( f ) denotes the spectrum of f , is a ∗-isomorphism multiplied by a unimodular function [3, Theorem 6.2].
In [12], Luttman and Tonev introduced the concept of peripheral range of a function f ∈ C(X) as the set

Ranπ ( f ) = {
f (x): x ∈ X,

∣∣ f (x)
∣∣ = ‖ f ‖∞

}
,

and they characterized surjective maps between uniform algebras T : A → B satisfying the peripheral range multiplicativity
condition:

Ranπ

(
T ( f )T (g)

) = Ranπ ( f g) ( f , g ∈ A).

Later, peripherally multiplicative surjective maps on uniformly closed algebras of complex-valued continuous functions van-
ishing at infinity, and on Banach algebras of scalar-valued Lipschitz functions have been considered in [4,8], respectively.

In the case of non-unital ∗-algebras, as far as we know, the unique result on surjective maps fulfilling a spectrum
∗-multiplicativity condition appears in the paper by Honma [6, Theorem 1.1]. He showed that if a surjective map T : C0(X) →
C0(Y ) satisfies the peripheral range ∗-multiplicativity condition:

Ranπ

(
T ( f )T (g)

) = Ranπ ( f g)
(

f , g ∈ C0(X)
)
,

then there exist a continuous function τ : Y → SC and a homeomorphism ϕ : Y → X such that

T ( f )(y) = τ (y) f
(
ϕ(y)

) (
f ∈ C0(X), y ∈ Y

)
.

As usual, C0(X) denotes the C∗-algebra of all complex-valued continuous functions vanishing at infinity on a locally compact
Hausdorff space X , equipped with the supremum norm and the complex conjugation involution.

Lambert, Luttman and Tonev opened in [10] a new line of research by studying surjective maps between uniform algebras
T : A → B satisfying the weakly peripherally multiplicativity condition:

Ranπ

(
T ( f )T (g)

) ∩ Ranπ ( f g) 	= ∅ ( f , g ∈ A).

Jiménez, Luttman and Villegas characterized in [9] those weakly peripherally multiplicative surjections between pointed
Lipschitz algebras Lip0(X).

Related to a conjecture by O. Hatori, the authors of [10] also proved that every surjective unital map T : A → B with the
property that∥∥T ( f )T (h) + α1

∥∥∞ = ‖ f h + α1‖∞
(

f ∈ A, h ∈ F (A), α ∈ SC

)
,

is an isometric algebra isomorphism, where F (A) denotes the set of all peaking functions in A.
With regard to this property, Honma [7] proved that every surjective map T : C(X) → C(Y ) such that T (λ1) = λ1 for

λ ∈ {±1,±i} satisfying the non-symmetric norm ∗-multiplicativity condition:∥∥T ( f )T (g) − 1
∥∥∞ = ‖ f g − 1‖∞

(
f , g ∈ C(X)

)
,

is an isometric algebra isomorphism.
Recently, Hatori, Miura and Takagi [5] and Lambert and Luttman [11] have obtained some nice descriptions of surjective

maps between uniform algebras T : A → B fulfilling the non-symmetric norm multiplicativity condition:∥∥T ( f )T (g) − λ1
∥∥∞ = ‖ f g − λ1‖∞ ( f , g ∈ A),

for some λ ∈ C \ {0}.
Our goal in this paper is to state the main results in [6,7,11], for surjective maps between pointed Lipschitz ∗-algebras,

Lip0(X), and Lipschitz ∗-algebras, Lip(X), on compact metric spaces X . It is well known (see [16]) that every algebra iso-
morphism between pointed Lipschitz algebras T : Lip0(X) → Lip0(Y ) is a composition operator

T ( f ) = f ◦ ϕ
(

f ∈ Lip0(X)
)
,
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for some base point preserving Lipschitz homeomorphism ϕ : Y → X . A similar assertion holds for isomorphisms between
Lipschitz algebras. In particular, every isomorphism between Lipschitz algebras Lip0(X) or Lip(X) is a ∗-isomorphism.

The contents of this manuscript are organized as follows. Section 2 presents some preliminary information on Lipschitz
algebras and peaking functions. Section 3 focuses on surjective maps T : Lip0(X) → Lip0(Y ) that satisfy the norm multiplica-
tivity condition:∥∥T ( f )T (g)

∥∥∞ = ‖ f g‖∞
(

f , g ∈ Lip0(X)
)
.

We prove that such a map gives rise to a base point preserving bijective map ψ : X → Y in such a way that∣∣T ( f )
(
ψ(x)

)∣∣ = ∣∣ f (x)
∣∣ (

f ∈ Lip0(X), x ∈ X
)
.

Notice that the corresponding result for uniform algebras was proved in [10].
Section 4 is devoted to surjective maps T : Lip0(X) → Lip0(Y ) with the non-symmetric norm ∗-multiplicativity condition.

We see that such a map is norm-multiplicative, and can be expressed as

T ( f ) = τ · (η · ( f ◦ ϕ) + (1 − η) · ( f ◦ ϕ)
) (

f ∈ Lip0(X)
)
,

where η and τ are functions on Y such that η(Y ) ⊆ {0,1} and τ (Y ) ⊆ SK , and ϕ : Y → X is a Lipschitz homeomorphism.
These results are applied in Section 5 in order to prove that every surjective map T : Lip0(X) → Lip0(Y ) satisfying the

weakly peripherally ∗-multiplicativity condition:

Ranπ

(
T ( f )T (g)

) ∩ Ranπ ( f g) 	= ∅ (
f , g ∈ Lip0(X)

)
is a weighted composition operator. Moreover, T is an algebra isomorphism provided T preserves an approximate identity
for the supremum norm.

Similar results are stated for surjective maps between algebras Lip(X).

2. Preliminaries

Throughout the paper, we will denote by d the distance on a metric space. A map between metric spaces f : X → Y
is said to be Lipschitz if there exists a constant a � 0 such that d( f (x), f (z)) � ad(x, z) for every x, z ∈ X . If f is bijective
and both f and f −1 are Lipschitz, then f is a Lipschitz homeomorphism. A pointed metric space is a metric space X with
a distinguished element e X ∈ X called base point. A map between pointed metric spaces f : X → Y preserves base point if
f (e X ) = eY .

As usual, K stands for the field of real or complex numbers, and SK denotes the set of all unimodular elements of K.
Given a metric space X , we represent the function constantly equal 1 on X by 1 and the diameter of X by diam(X).

Let X be a pointed compact metric space. We denote by Lip0(X) the ∗-algebra of all Lipschitz functions f : X → K

vanishing at e X , equipped with the complex conjugation involution and the Lipschitz norm:

L( f ) = sup

{ | f (x) − f (z)|
d(x, z)

: x, z ∈ X, x 	= z

}
.

If we need to specify the base field, we will write Lip0(X,R) or Lip0(X,C).
Given a compact metric space X , Lip(X) stands for the ∗-algebra of all Lipschitz functions f : X → K with the complex

conjugation involution and the norm

‖ f ‖ = max
{‖ f ‖∞, L( f )

}
.

Since L( f g) � 2 diam(X)L( f )L(g) for all f , g ∈ Lip0(X) and ‖ f g‖ � 2‖ f ‖‖g‖ for all f , g ∈ Lip(X), Lip0(X) and Lip(X) are
commutative Banach algebras after renorming.

Both algebras are closely related. According to Weaver [16], if a metric space X is spherical, that is, it has a base point
e X such that d(x, e X ) = 1 for all x 	= e X , then Lip0(X) is isometrically isomorphic to Lip(X \ {e X }). Conversely, given a metric
space X , if X0 denotes the metric space obtained by remetrizing X with d0(x, y) = min{2,d(x, y)} and adding a base point
e X such that d0(x, e X ) = 1 for all x ∈ X , then X0 is spherical, and Lip(X) is isometrically isomorphic to Lip0(X0). This
isometric algebra isomorphism is given by

ΨX ( f )(x) = f (x) (x ∈ X), ΨX ( f )(e X ) = 0. (2.1)

We refer the reader to the book by Weaver [16], for details and more background on the algebras of Lipschitz functions.
For our purposes, we next present two families of functions in Lip0(X). The first one is formed by the called peaking

functions. These functions have played an important role in uniform algebra theory (see [1]).
For any x ∈ X \ {e X }, define the set of functions peaking at x as

P x(X) = {
h ∈ Lip0(X): Ranπ (h) = {1}, h(x) = 1

}
,
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where

Ranπ (h) = {
h(x): x ∈ X,

∣∣h(x)
∣∣ = ‖h‖∞

}
is the peripheral range of h, and let P (X) = ⋃

x∈X\{e X } Px(X) be the set of all peaking functions of Lip0(X). Notice that
P (X) = {h ∈ Lip0(X): Ranπ (h) = {1}}.

Given x ∈ X \ {e X }, set

Fx(X) = {
f ∈ Lip0(X):

∣∣ f (x)
∣∣ = ‖ f ‖∞ = 1

}
.

We will also write F (X) = ⋃
x∈X\{e X } Fx(X). Clearly, Px(X) ⊆ Fx(X) for all x ∈ X \ {e X }, and P (X) ⊆ F (X).

There is no shortage of elements of Px(X). In fact, for every x ∈ X \{e X } and 0 < δ � d(x, e X ), the function hx,δ : X → [0,1]
given by

hx,δ(z) = max

{
0,1 − d(z, x)

δ

}
(z ∈ X) (2.2)

lies in Px(X), hx,δ(z) < 1 if z 	= x, and hx,δ(z) = 0 whenever d(z, x) � δ. In particular, hx,δ ∈ Fx(X) \ F z(X) for z 	= x, and the
next lemma becomes an easy observation.

Lemma 2.1. Let x, z ∈ X \ {e X }. If Fx(X) ⊆ F z(X), then x = z.

In the subsequent sections, we will use the following two lemmas. The first one, which is just [9, Lemma 2.1(iii)], is
a version for Lip0(X) of a Bishop’s theorem for uniform algebras (see, for example, [1, Theorem 2.4.1]). The second one
provides us with a method to identify the modulus of two functions of Lip0(X) by using peaking functions.

Lemma 2.2. Let X be a pointed compact metric space. Given f ∈ Lip0(X) and x ∈ X with f (x) 	= 0, there exists a nonnegative real
function h f ,x ∈ Px(X) such that h f ,x(z) < 1 and | f (z)h f ,x(z)| < | f (x)| for all z 	= x. In particular, Ranπ ( f h) = { f (x)}.

The following result was stated for uniform algebras in [10] and [12].

Lemma 2.3. Let X be a pointed compact metric space.

(1) For all f ∈ Lip0(X) and x ∈ X \ {e X },∣∣ f (x)
∣∣ = inf

{‖ f h‖∞: h ∈ P x(X)
} = inf

{‖ f h‖∞: h ∈ Fx(X)
}
.

(2) Let f , g ∈ Lip0(X). Then | f | � |g| if and only if ‖ f h‖∞ � ‖gh‖∞ for all h ∈ P (X).

Proof. Let f ∈ Lip0(X) and x ∈ X \ {e X }. It is clear that | f (x)| = | f (x)h(x)| � ‖ f h‖∞ for all h ∈ Px(X). Moreover, for every
ε > 0, since f is continuous at x, there exists δ ∈ ]0,d(x, e X )] > 0 such that | f (z)| < | f (x)| + ε/2 if d(z, x) < δ. Take hx,δ ∈
Px(X) as defined in (2.2). Then

‖ f hx,δ‖∞ = sup
{∣∣ f (z)hx,δ(z)

∣∣: d(z, x) < δ
}

<
∣∣ f (x)

∣∣ + ε,

and this proves the first equality of (1). The second one follows easily.
The ‘only if’ part of (2) is trivial. The ‘if’ part is [9, Lemma 2.2], but now it follows immediately from (1). �

3. Norm multiplicativity condition

Our purpose in this section is to show that every norm-multiplicative surjective map T : Lip0(X) → Lip0(Y ) brings a
bijective map ψ : X → Y in such a way that∣∣T ( f )

(
ψ(x)

)∣∣ = ∣∣ f (x)
∣∣ (

f ∈ Lip0(X), x ∈ X
)
.

Lemma 3.1. Let T : Lip0(X) → Lip0(Y ) be a map satisfying the conditions:

(1) ‖T ( f )‖∞ = ‖ f ‖∞ for all f ∈ Lip0(X).
(2) For any f , g ∈ Lip0(X), | f | � |g| if and only if |T ( f )| � |T (g)|.

Then the following assertions hold

(i) For every x ∈ X \ {e X }, there exists y ∈ Y \ {eY } such that T (Fx(X)) ⊆ F y(Y ).
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(ii) If x, z ∈ X \ {e X } and T (Fx(X)) ⊆ T (F z(X)), then x = z.

If, in addition, T is surjective, then:

(iii) For every y ∈ Y \ {eY }, there exists z ∈ X \ {e X } such that F y(Y ) ⊆ T (F z(X)).
(iv) For every x ∈ X \ {e X }, there exists a unique y ∈ Y \ {eY } such that T (Fx(X)) = F y(Y ).

Proof. (i) We follow here the method of proof used in [14] for uniform algebras. Let x ∈ X \ {e X }. For each f ∈ Fx(X), define

F ( f ) = {
y ∈ Y \ {eY }: T ( f ) ∈ F y(Y )

}
.

Since Y is compact, we deduce from (1) that F ( f ) is nonempty. Statement (i) follows if we show that
⋂

f ∈Fx(X) F ( f ) is
nonempty. To this end, it suffices to prove that {F ( f ): f ∈ Fx(X)} has the finite intersection property, because F ( f ) is a
closed subset of the compact Hausdorff space Y for each f ∈ Fx(X). Pick f1, . . . , fn ∈ Fx(X). By (1), we have ‖T ( fk)‖∞ =
‖ fk‖∞ = 1 for all k ∈ {1, . . . ,n}. Let g = f1 · · · fn ∈ Fx(X) and let y ∈ Y \ {eY } be such that T (g) ∈ F y(Y ). We deduce from (2)
that for each k ∈ {1, . . . ,n}, |T (g)| � |T ( fk)| and therefore 1 = |T (g)(y)| � |T ( fk)(y)| � 1. Hence |T ( fk)(y)| = ‖T ( fk)‖∞ = 1
for all k ∈ {1, . . . ,n} and thus y ∈ ⋂n

k=1 F ( fk) as desired.
(ii) Let x, z ∈ X \ {e X }, and assume that T (Fx(X)) ⊆ T (F z(X)). Take hx,δ ∈ Lip0(X) as in (2.2). Notice that hx,δ(x) = 1 and

|hx,δ(w)| < 1 if w 	= x. Because hx,δ ∈ Fx(X), there exists g ∈ F z(X) such that T (hx,δ) = T (g). Then (2) gives |hx,δ| = |g|,
which yields z = x.

(iii) Since T is surjective, there is a map S : Lip0(Y ) → Lip0(X) such that T ◦ S is the identity map on Lip0(Y ) and,
obviously, S also fulfills conditions (1) and (2). By applying (i) to S instead of T we obtain that for every y ∈ Y \ {eY }, there
exists z ∈ X \ {e X } such that S(F y(Y )) ⊆ F z(X). This implies that F y(Y ) ⊆ T (F z(X)).

(iv) Let x ∈ X \ {e X }. By (i) and (iii), there exist y ∈ Y \ {eY } and z ∈ X \ {e X } such that T (Fx(X)) ⊆ F y(Y ) ⊆ T (F z(X)).
By (ii), it follows that x = z and thus T (Fx(X)) = F y(Y ). The uniqueness of y is deduced from Lemma 2.1. �

The next theorem has been proved in [10] in the context of uniform algebras. The proof provided here is an adaptation
for Lipschitz algebras of the original proof from [10].

Theorem 3.2. Let X and Y be pointed compact metric spaces and let T be a surjective map from Lip0(X) to Lip0(Y ) satisfying∥∥T ( f )T (g)
∥∥∞ = ‖ f g‖∞

(
f , g ∈ Lip0(X)

)
. (3.3)

Then there exists a unique bijective map ψ : X → Y such that ψ(e X ) = eY and∣∣T ( f )
(
ψ(x)

)∣∣ = ∣∣ f (x)
∣∣ (

f ∈ Lip0(X), x ∈ X
)
. (3.4)

The map ψ will be referred to as the map associated to T .

Proof. By taking g = f in (3.3) we see that T satisfies condition (1) of Lemma 3.1. We next show that T also fulfills
condition (2). To see this, let f , g ∈ Lip0(X). If | f | � |g|, then ‖ f h‖∞ � ‖gh‖∞ for all h ∈ Lip0(X). Since T is surjective, for
each k ∈ P (Y ), there is h ∈ Lip0(X) such that k = T (h). By using (3.3), we have∥∥T ( f )k

∥∥∞ = ∥∥T ( f )T (h)
∥∥∞ = ‖ f h‖∞ � ‖gh‖∞ = ∥∥T (g)T (h)

∥∥∞ = ∥∥T (g)k
∥∥∞.

Since k is arbitrary in P (Y ), we infer from Lemma 2.3(2) that |T ( f )| � |T (g)|. The other implication is proved likewise.
Then, by Lemma 3.1(iv), for every x ∈ X \ {e X }, there exists a unique point ψ(x) ∈ Y \ {eY } such that T (Fx(X)) = Fψ(x)(Y ).

Put ψ(e X ) = eY . We have thus defined a map ψ : X → Y . The injectivity of ψ follows from Lemma 3.1(ii) and its surjectivity
from Lemma 3.1(iii), and Lemma 2.1. To prove the equality (3.4), take f ∈ Lip0(X). It is clear that∣∣T ( f )

(
ψ(e X )

)∣∣ = ∣∣T ( f )(eY )
∣∣ = 0 = ∣∣ f (e X )

∣∣,
and if x ∈ X \ {e X }, we have∣∣ f (x)

∣∣ = inf
{‖ f g‖∞: g ∈ Fx(X)

}
= inf

{∥∥T ( f )T (g)
∥∥∞: g ∈ Fx(X)

}
= inf

{∥∥T ( f )h
∥∥∞: h ∈ Fψ(x)(Y )

}
= ∣∣T ( f )

(
ψ(x)

)∣∣,
by using Lemma 2.3(1).

For the uniqueness of ψ , let ψ ′ : X → Y be another bijection satisfying ψ ′(e X ) = eY and (3.4). It is easy to see that
T (Fx(X)) = Fψ ′(x)(Y ) for all x ∈ X \{e X }. Then, Lemma 2.1 implies that ψ ′(x) = ψ(x) for all x ∈ X \{e X }, and thus ψ ′ = ψ . �
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4. Non-symmetric norm ∗-multiplicativity condition

In this section, we show that every surjective map T : Lip0(X) → Lip0(Y ) satisfying the non-symmetric norm
∗-multiplicativity condition∥∥T ( f )T (g) − 1

∥∥∞ = ‖ f g − 1‖∞
(

f , g ∈ Lip0(X)
)

(4.5)

can be expressed as sum of a weighted isomorphism and a weighted conjugate-isomorphism from Lip0(X) onto Lip0(Y ) in
the form given in Theorem 4.8.

First we need to see that T is norm-multiplicative.

Lemma 4.1. Let T : Lip0(X) → Lip0(Y ) be a surjective map satisfying condition (4.5). Then ‖T ( f )T (g)‖∞ = ‖ f g‖∞ for every f , g ∈
Lip0(X).

Proof. We claim that∣∣T (r f )
∣∣ = r

∣∣T ( f )
∣∣ (

r ∈ R
+, f ∈ Lip0(X)

)
.

Let r ∈ R
+ and f ∈ Lip0(X). It is obvious that |T (r f )(eY )| = 0 = r|T ( f )(eY )|. Given y ∈ Y \ {eY }, we distinguish two cases.

First, if T ( f )(y) 	= 0, take

hn = −n
(
T ( f )(y)/

∣∣T ( f )(y)
∣∣)hT ( f ),y ∈ Lip0(Y ) (n ∈ N),

where hT ( f ),y is the function given in Lemma 2.2. Let gn ∈ Lip0(X) be such that T (gn) = hn . An easy calculation gives

n
∣∣T (r f )(y)

∣∣ − 1 = ∣∣T (r f )(y)hn(y)
∣∣ − 1 �

∥∥T (r f )hn − 1
∥∥∞

= ‖r f gn − 1‖∞ � r‖ f gn − 1 + 1‖∞ + 1 � r‖ f gn − 1‖∞ + r + 1

= r
∥∥T ( f )hn − 1

∥∥∞ + r + 1 = r
(
n
∣∣T ( f )(y)

∣∣ + 1
) + r + 1.

Therefore |T (r f )(y)| � r|T ( f )(y)| + (2r + 2)/n. As n is arbitrary, it follows that |T (r f )(y)| � r|T ( f )(y)|.
Now assume that T ( f )(y) = 0. Since T ( f ) is continuous at y, given n ∈ N, there exists δn ∈ ]0,d(y, eY )] such that

|T ( f )(z)| < 1/n, whenever d(z, y) < δn . Take hn = nhy,δn and let gn ∈ Lip0(X) be such that T (gn) = hn . A trivial verification
yields ‖T ( f )hn‖∞ � 1 and, arguing as above, we can see that

n
∣∣T (r f )(y)

∣∣ − 1 � r
∥∥T ( f )hn − 1

∥∥∞ + r + 1 � r
∥∥T ( f )hn

∥∥∞ + 2r + 1 � 3r + 1.

Hence |T (r f )(y)| � (3r + 2)/n and thus |T (r f )(y)| = 0 = r|T ( f )(y)|.
This proves that |T (r f )| � r|T ( f )|. Since r and f are arbitrary, the previous inequality also holds for 1/r and r f instead

of r and f . Then

∣∣T ( f )
∣∣ =

∣∣∣∣T
(

1

r
r f

)∣∣∣∣ � 1

r

∣∣T (r f )
∣∣ �

∣∣T ( f )
∣∣,

and from this we conclude that |T (r f )| = r|T ( f )|, as claimed.
In order to prove that T satisfies condition (3.3), take f , g ∈ Lip0(X) and n ∈ N. From the claim proved above, it follows

easily that ‖T (nf )T (g)‖∞ = n‖T ( f )T (g)‖∞ . Then

n‖ f g‖∞ − 1 � ‖nf g − 1‖∞ = ∥∥T (nf )T (g) − 1
∥∥∞ � n

∥∥T ( f )T (g)
∥∥∞ + 1,

which shows that ‖ f g‖∞ � ‖T ( f )T (g)‖∞ + 2/n. Making n → ∞ we get ‖ f g‖∞ � ‖T ( f )T (g)‖∞ . The contrary inequality is
deduced similarly by taking into account that

n
∥∥T ( f )T (g)

∥∥∞ − 1 �
∥∥T (nf )T (g) − 1

∥∥∞ = ‖nf g − 1‖∞ � n‖ f g‖∞ + 1

for all n ∈ N. �
Since T satisfies condition (3.3), we can consider its associated map ψ and then equality (3.4) holds. Roughly speaking,

our next aim is to eliminate the modulus in (3.4). To get this, we study the homogeneity of T on products of scalars in SK

by functions in Px(X) (x ∈ X \ {e X }).
We begin with a straightforward lemma that will make easier the reading of the proofs.

Lemma 4.2. Let α,β ∈ C.

(i) If |α − 1| = |β| + 1 and |α| = |β|, then α = −|β|.
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(ii) If |α − 1| � |α| − 1, then α ∈ R
+ .

(iii) If |α| = 1 and 0 � r � 1, then |2αr − 1| � |2α − 1|.
(iv) If |β| = |α|, |β − 1| � |α − 1| and |β + 1| � |α + 1|, then β = α or β = α.

Lemma 4.3. Let T : Lip0(X) → Lip0(Y ) be a surjective map satisfying condition (4.5) and let ψ : X → Y be its associated map. For
every x ∈ X \ {e X }, α ∈ SK and h ∈ Px(X),

(i) T (αh)(ψ(x)) = T (αhx,δ)(ψ(x)) where hx,δ ∈ Px(X) is given in (2.2),
(ii) T (−αh)(ψ(x)) = −T (αh)(ψ(x)).

Proof. Let x ∈ X \ {e X }, α ∈ SK and h ∈ Px(X). Since∥∥T (−αhx,δ)T (αh) − 1
∥∥∞ = ‖−hx,δh − 1‖∞ = 2,

ψ is surjective and Y is compact, we can find z ∈ X such that∣∣T (−αhx,δ)
(
ψ(z)

)
T (αh)

(
ψ(z)

) − 1
∣∣ = 2.

Equality (3.4) allows us to obtain that

2 �
∣∣T (−αhx,δ)

(
ψ(z)

)
T (αh)

(
ψ(z)

)∣∣ + 1 = ∣∣hx,δ(z)
∣∣∣∣h(z)

∣∣ + 1 �
∣∣hx,δ(z)

∣∣ + 1.

This clearly forces z = x. Consequently, we have∣∣T (−αhx,δ)
(
ψ(x)

)
T (αh)

(
ψ(x)

) − 1
∣∣ = 2,

∣∣T (−αhx,δ)
(
ψ(x)

)
T (αh)

(
ψ(x)

)∣∣ = 1.

Moreover, according to Lemma 4.2(i), T (−αhx,δ)(ψ(x))T (αh)(ψ(x)) = −1, and since |T (αh)(ψ(x))| = 1, it follows that

T (−αhx,δ)
(
ψ(x)

) = −T (αh)
(
ψ(x)

)
.

Since h is arbitrary, taking h = hx,δ above we get

T (−αhx,δ)
(
ψ(x)

) = −T (αhx,δ)
(
ψ(x)

)
.

Hence T (αh)(ψ(x)) = T (αhx,δ)(ψ(x)), which proves (i). By replacing α with −α above,

T (−αh)
(
ψ(x)

) = T (−αhx,δ)
(
ψ(x)

) = −T (αhx,δ)
(
ψ(x)

) = −T (αh)
(
ψ(x)

)
,

and the proof is complete. �
The first part of Lemma 4.3 motivates the following definition.

Definition 4.4. Let T : Lip0(X) → Lip0(Y ) be a surjective map satisfying condition (4.5). Let ψ : X → Y be the associated
map to T , and ϕ = ψ−1. Let τ : Y → SK be the function defined by

τ (eY ) = 1, τ (y) = T (h)(y)
(

y ∈ Y \ {eY }),
where h is any function in Pϕ(y)(X).

Moreover, in the complex-valued case, define γ : Y → SC by

γ (eY ) = i, γ (y) = T (ih)(y)
(

y ∈ Y \ {eY }),
where h is any function in Pϕ(y)(X).

Notice that Lemma 4.3(i) guarantees that the definitions of τ and γ do not depend on the choise of h.
We will need the following fact about the real homogeneity of T .

Lemma 4.5. Let T : Lip0(X) → Lip0(Y ) be a surjective map satisfying condition (4.5), and ψ : X → Y be its associated map. Let
x ∈ X \ {e X } and f ∈ Fx(X). Then T (r f )(ψ(x)) = rT ( f )(ψ(x)) for all r � 2.

Proof. Let r ∈ R, r � 2. An easy verification gives∣∣T (r f )
(
ψ(x)

)
T ( f )

(
ψ(x)

) − 1
∣∣ �

∥∥T (r f )T ( f ) − 1
∥∥∞ = ∥∥r| f |2 − 1

∥∥∞ = r − 1,

and in view of equality (3.4), we have |T (r f )(ψ(x))T ( f )(ψ(x))| = r. Hence
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T (r f )
(
ψ(x)

)
T ( f )

(
ψ(x)

) = r

by Lemma 4.2(ii), and as |T ( f )(ψ(x))| = 1, we conclude that T (r f )(ψ(x)) = rT ( f )(ψ(x)). �
If K = R, for any x ∈ X \ {e X }, Lemma 4.3(ii) shows that T (αh)(ψ(x)) = αT (h)(ψ(x)) for all α ∈ SR and h ∈ Px(X).
In the complex-valued case, a little more effort is needed.

Lemma 4.6. Let T : Lip0(X,C) → Lip0(Y ,C) be a surjective map fulfilling (4.5), ψ : X → Y its associated map, and τ and γ the
functions introduced in Definition 4.4. Given x ∈ X \ {e X }, one has

(i) Either γ (ψ(x)) = iτ (ψ(x)) or γ (ψ(x)) = −iτ (ψ(x)).
(ii) If γ (ψ(x)) = iτ (ψ(x)), then

T (αh)
(
ψ(x)

) = αT (h)
(
ψ(x)

) (
α ∈ SC, h ∈ P x(X)

)
.

(iii) If γ (ψ(x)) = −iτ (ψ(x)), then

T (αh)
(
ψ(x)

) = αT (h)
(
ψ(x)

) (
α ∈ SC, h ∈ P x(X)

)
.

Proof. Let α ∈ SC and h ∈ Px(X). From equality (3.4) we can deduce that∣∣T (αh)
(
ψ(x)

)
T (2h)

(
ψ(x)

)∣∣ = 2.

By using Lemma 4.2(iii) and taking into account that h(x) = 1, it follows that∣∣T (αh)
(
ψ(x)

)
T (2h)

(
ψ(x)

) − 1
∣∣ �

∥∥T (αh)T (2h) − 1
∥∥∞ = ∥∥2α|h|2 − 1

∥∥∞ = |2α − 1|,
and from Lemmas 4.3(ii), 4.2(iii) and condition (4.5), we obtain∣∣T (αh)

(
ψ(x)

)
T (2h)

(
ψ(x)

) + 1
∣∣ = ∣∣T (−αh)

(
ψ(x)

)
T (2h)

(
ψ(x)

) − 1
∣∣

�
∥∥T (−αh)T (2h) − 1

∥∥∞ = ∥∥−2α|h|2 − 1
∥∥∞

= |−2α − 1| = |2α + 1|.
Now Lemma 4.2(iv) gives

T (αh)
(
ψ(x)

)
T (2h)

(
ψ(x)

) = 2α or T (αh)
(
ψ(x)

)
T (2h)

(
ψ(x)

) = 2α. (4.6)

Since |T (h)(ψ(x))| = 1, from (4.6) and Lemma 4.5 it follows that

T (αh)
(
ψ(x)

) = αT (h)
(
ψ(x)

)
or T (αh)

(
ψ(x)

) = αT (h)
(
ψ(x)

)
.

For α = i we have T (ih)(ψ(x)) = iT (h)(ψ(x)) or T (ih)(ψ(x)) = −iT (h)(ψ(x)). According to Definition 4.4, this means that
either γ (ψ(x)) = iτ (ψ(x)) or γ (ψ(x)) = −iτ (ψ(x)), which proves (i).

We next show (ii), and (iii) follows analogously. So, assume that γ (ψ(x)) = iτ (ψ(x)). Then T (ih)(ψ(x)) = iT (h)(ψ(x))
and, Lemmas 4.3(ii) and 4.5, give∣∣iT (αh)

(
ψ(x)

)
T (2h)

(
ψ(x)

) − 1
∣∣ = ∣∣T (−αh)

(
ψ(x)

)
T (2ih)

(
ψ(x)

) − 1
∣∣

�
∥∥T (−αh)T (2ih) − 1

∥∥∞ = ∥∥2iα|h|2 − 1
∥∥∞

= |2iα − 1|,
and ∣∣iT (αh)

(
ψ(x)

)
T (2h)

(
ψ(x)

) + 1
∣∣ = ∣∣T (αh)

(
ψ(x)

)
T (2ih)

(
ψ(x)

) − 1
∣∣

�
∥∥T (αh)T (2ih) − 1

∥∥∞ = ∥∥−2iα|h|2 − 1
∥∥∞

= |−2iα − 1| = |2iα + 1|.
By (3.4), it is clear that∣∣iT (αh)

(
ψ(x)

)
T (2h)

(
ψ(x)

)∣∣ = |2iα|.
Thus, taking into account Lemma 4.2(iv),

Re
(
iT (αh)

(
ψ(x)

)
T (2h)

(
ψ(x)

)) = 2Re(iα),
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or equivalently

Im
(
T (αh)

(
ψ(x)

)
T (2h)

(
ψ(x)

)) = 2 Im(α).

From (4.6) we deduce that T (αh)(ψ(x))T (2h)(ψ(x)) = 2α, which together with equality (3.4) and Lemma 4.5 give

T (αh)
(
ψ(x)

) = αT (h)
(
ψ(x)

)
. �

We will need the following lemma in order to prove the automatic continuity of a surjective map between pointed
Lipschitz algebras satisfying the non-symmetric norm ∗-multiplicativity condition. Recall that if E and F are real or complex
normed spaces and S : E → F is an R-linear map, then S is continuous if and only if there exists β ∈ R

+ such that
‖S(e)‖ � β‖e‖ for every e ∈ E .

Lemma 4.7. Let S : Lip0(X) → Lip0(Y ) be an R-linear and continuous map with respect to the supremum norm. Then S is continuous
with respect to the Lipschitz norm.

Proof. If K = C, let us define S1, S2 : Lip0(X) → Lip0(Y ) by

S1( f ) = S( f ) − i S(i f ), S2( f ) = S( f ) + i S(i f )
(

f ∈ Lip0(X)
)
.

It is easily seen that both S1 and S2 are C-linear. Moreover, by the continuity of S , there exists β ∈ R
+ such that∥∥S j( f )

∥∥∞ �
∥∥S( f )

∥∥∞ + ∥∥S(i f )
∥∥∞ � 2β‖ f ‖∞

(
j ∈ {1,2}).

Hence S1 and S2 are ‖ · ‖∞-continuous.
If K = R, we can take S1 = S2 = S and thus S1 and S2 are linear and ‖ · ‖∞-continuous as well.
Pick j ∈ {1,2}. We next see that S j is L(·)-continuous. Let { fn}n∈N be a sequence in Lip0(X) such that L( fn) converges

to 0, and assume that L(S j( fn) − g) converges to 0 for some g ∈ Lip0(Y ). For every n ∈ N, we have

‖g‖∞ �
∥∥S j( fn) − g

∥∥∞ + ∥∥S j( fn)
∥∥∞ � diam(Y )L

(
S j( fn) − g

) + 2β diam(X)L( fn).

Hence g = 0. Then S j is L(·)-continuous by the Closed Graph Theorem. Since S( f ) = (1/2)(S1( f ) + S2( f )) for all
f ∈ Lip0(X), the lemma follows. �

We are now ready to prove the main result of this section.

Theorem 4.8. Let X , Y be pointed compact metric spaces, and let T : Lip0(X) → Lip0(Y ) be a surjective map satisfying∥∥T ( f )T (g) − 1
∥∥∞ = ‖ f g − 1‖∞

(
f , g ∈ Lip0(X)

)
.

Then there exist a function η : Y → {0,1} with η(eY ) = 1, a function τ : Y → SK with τ (eY ) = 1, and a base point preserving
Lipschitz homeomorphism ϕ : Y → X such that

T ( f ) = τ · (η · ( f ◦ ϕ) + (1 − η) · ( f ◦ ϕ)
) (

f ∈ Lip0(X)
)
.

Proof. Let ψ be the associated map to T and τ be the function given in Definition 4.4. Set ϕ = ψ−1.
Assume for a moment that K = C and consider as well the function γ presented in Definition 4.4. Define now η =

(1/2)(1 − iγ τ ). Using the surjectivity of ψ and Lemma 4.6(i), it is easy to see that (γ τ )(Y ) ⊆ {−i, i}. Then η(Y ) ⊆ {0,1}
and it is obvious that η(eY ) = 1. If K = R, set η = 1.

Let f ∈ Lip0(X), y ∈ Y and x = ϕ(y). If f (x) = 0, from (3.4) we infer that

T ( f )(y) = 0 = τ (y)
(
η(y) f

(
ϕ(y)

) + (
1 − η(y)

)
f
(
ϕ(y)

))
.

Suppose f (x) 	= 0 and take the peaking function h f ,x given in Lemma 2.2. Set

α = −T (h f ,x)
(
ψ(x)

)
T ( f )

(
ψ(x)

)
/
∣∣ f (x)

∣∣,
λ = Re(α) + (

1 − 2η
(
ψ(x)

))
Im(α)i.

Notice that if K = R, then λ = α; and for K = C,

λ =
{

α if γ (ψ(x)) = iτ (ψ(x)),

α if γ (ψ(x)) = −iτ (ψ(x)).

By applying Lemma 4.3(ii) in the real-valued case, Lemma 4.6 in the complex-valued case, and (3.4), we obtain
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∣∣T ( f )
(
ψ(x)

)
T (λh f ,x)

(
ψ(x)

) − 1
∣∣ = ∣∣T ( f )

(
ψ(x)

)
αT (h f ,x)

(
ψ(x)

) − 1
∣∣ = ∣∣ f (x)

∣∣ + 1,

and since |T ( f )(ψ(z))T (λh f ,x)(ψ(z)) − 1| � | f (z)h f ,x(z)| + 1 � | f (x)| + 1 for all z ∈ X , we deduce that∣∣ f (x)
∣∣ + 1 = ∥∥T ( f )T (λh f ,x) − 1

∥∥∞ = ‖λ f h f ,x − 1‖∞.

Besides, as |λ f (z)h f ,x(z) − 1| � | f (z)h f ,x(z)| + 1 < | f (x)| + 1 for all z ∈ X with z 	= x, the compactness of X grants∣∣λ f (x) − 1
∣∣ = ‖λ f h f ,x − 1‖∞ = ∣∣ f (x)

∣∣ + 1.

In view of Lemma 4.2(i), this shows that λ f (x) = −| f (x)|. As a consequence,

f (x) =
{

T (h f ,x)(ψ(x))T ( f )(ψ(x)) if η(ψ(x)) = 1,

T (h f ,x)(ψ(x))T ( f )(ψ(x)) if η(ψ(x)) = 0.

According to the definition of τ , we conclude that

T ( f )
(
ψ(x)

) =
{

τ (ψ(x)) f (x) if η(ψ(x)) = 1,

τ (ψ(x)) f (x) if η(ψ(x)) = 0,

or, equivalently,

T ( f )(y) = τ (y)
(
η(y) f

(
ϕ(y)

) + (
1 − η(y)

)
f
(
ϕ(y)

))
.

Finally, we prove that ϕ is a Lipschitz homeomorphism. From the expressions obtained above for T , we deduce im-
mediately that T is R-linear and T preserves the supremum norm. Hence T is continuous with respect to the Lipschitz
norm by Lemma 4.7. Then there exists β ∈ R

+ such that L(T ( f )) � βL( f ) for all f ∈ Lip0(X). Let y, z ∈ Y be with
y 	= z. We can assume without lost of generality that d(ϕ(y), e X ) � d(ϕ(z), e X ), and then d(ϕ(y),ϕ(z)) � 2d(ϕ(z), e X ).

Take δ = min{d(ϕ(z), e X ),d(ϕ(y),ϕ(z))} and f = d(ϕ(y),ϕ(z))hϕ(z),δ . It is clear that f ∈ Lip0(X) with L( f ) � 2, f (ϕ(z)) =
d(ϕ(y),ϕ(z)) and f (ϕ(y)) = 0. An easy calculation yields

d
(
ϕ(y),ϕ(z)

) = ∣∣τ (z) f
(
ϕ(z)

) − τ (y) f
(
ϕ(y)

)∣∣ = ∣∣T ( f )(z) − T ( f )(y)
∣∣

� L
(
T ( f )

)
d(y, z) � 2βd(y, z),

and thus ϕ is Lipschitz.
Clearly, T is bijective and T −1 has the same properties as T . Therefore we can apply the same arguments as above to

obtain a Lipschitz bijection ϕ′ : X → Y with ϕ′(e X ) = eY such that∣∣T −1(g)(x)
∣∣ = ∣∣g

(
ϕ′(x)

)∣∣ (
g ∈ Lip0(Y ), x ∈ X

)
.

From this formula we deduce that |T ( f )(ϕ′(x))| = | f (x)| for all f ∈ Lip0(X) and x ∈ X . Since ψ is unique by Theorem 3.2, it
follows that ϕ′ = ψ , and thus ψ is Lipschitz. �
Remark 4.9. The functions which appear in the representation of T given in the previous theorem are unique as we see
next. Let η, τ and ϕ as in Theorem 4.8. If η′ : Y → {0,1} and τ ′ : Y → SK are functions for which η′(eY ) = 1 = τ ′(eY ) and
ϕ′ : Y → X is a bijection with ϕ′(eY ) = e X such that

T ( f ) = τ ′ · (η · ( f ◦ ϕ′) + (1 − η′) · ( f ◦ ϕ′)
) (

f ∈ Lip0(X)
)
,

one has

(1) If K = R, then ϕ′ = ϕ and τ ′ = τ .
(2) If K = C, then ϕ′ = ϕ , τ ′ = τ and η′ = η.

Indeed, notice that for every f ∈ Lip0(X) and all x ∈ X , we have

T ( f )
(
ϕ′−1(x)

) = τ ′(ϕ′−1(x)
)

f (x) if η′(ϕ′−1(x)
) = 1,

T ( f )
(
ϕ′−1(x)

) = τ ′(ϕ′−1(x)
)

f (x) if η′(ϕ′−1(x)
) = 0.

Therefore |T ( f )(ϕ′−1(x))| = | f (x)| for all f ∈ Lip0(X) and x ∈ X . By Theorem 3.2, it follows that ϕ′−1 = ψ and thus ϕ′ = ϕ .
Now, let y ∈ Y \ {eY } and h ∈ Pϕ(y)(X). Then τ ′(y) = T (h)(y) = τ (y) and, if K = C, we have η′(y) = η(y) since

τ (y)
(
2iη′(y) − i

) = τ ′(y)
(
η′(y)i + (

1 − η′(y)
)
ī
) = T (ih)(y) = τ (y)

(
2iη(y) − i

)
.

In consequence, τ ′ = τ and, in the complex-valued case, η′ = η.
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The following corollary characterizes surjective maps T : Lip(X) → Lip(Y ) that satisfy the non-symmetric norm
∗-multiplicativity condition.

Recall that every algebra isomorphism T from Lip(X) onto Lip(Y ) is a composition operator T ( f ) = f ◦ ϕ for all
f ∈ Lip(X), where ϕ : Y → X is a Lipschitz homeomorphism [15, Theorem 5.1]. As a consequence, every isomorphism from
Lip(X) onto Lip(Y ) is also a ∗-isomorphism.

Corollary 4.10. Let X and Y be compact metric spaces and let T : Lip(X) → Lip(Y ) be a surjective map with the property that∥∥T ( f )T (g) − 1
∥∥∞ = ‖ f g − 1‖∞

(
f , g ∈ Lip(X)

)
.

(1) If K = C, there exist two unique Lipschitz functions η : Y → {0,1} and τ : Y → SC and a unique Lipschitz homeomorphism
ϕ : Y → X such that

T ( f ) = τ · (η · ( f ◦ ϕ) + (1 − η) · ( f ◦ ϕ)
) (

f ∈ Lip(X,C)
)
.

If, in addition, T (1) = 1 and T (i1) = i1 (T (i1) = −i1), then T is an algebra isomorphism (respectively, a conjugate-isomorphism).
(2) If K = R, there exist a unique Lipschitz function τ : Y → SR , and a unique Lipschitz homeomorphism ϕ : Y → X such that

T ( f ) = τ · ( f ◦ ϕ)
(

f ∈ Lip(X,R)
)
.

Moreover, if T (1) = 1, then T is an algebra isomorphism.

Proof. Let ΨX : Lip(X) → Lip0(X0) and ΨY : Lip(Y ) → Lip0(Y0) be the isometric isomorphisms given by (2.1), where X0 =
X ∪ {e X } and Y0 = Y ∪ {eY }. Then T0 = ΨY ◦ T ◦ Ψ −1

X is a map from Lip0(X0) onto Lip0(Y0). We first prove that T0 satisfies
condition (4.5). Pick f , g ∈ Lip0(X0). We have

∣∣ f (x)g(x) − 1
∣∣ = ∣∣Ψ −1

X ( f )(x)Ψ −1
X (g)(x) − 1

∣∣ �
∥∥Ψ −1

X ( f )Ψ −1
X (g) − 1

∥∥∞
= ∥∥T

(
Ψ −1

X ( f )
)
T
(
Ψ −1

X (g)
) − 1

∥∥∞ �
∥∥T0( f )T0(g) − 1

∥∥∞ (x ∈ X),

and ∣∣ f (e X )g(e X ) − 1
∣∣ = 1 = ∣∣T0( f )(eY )T0(g)(eY ) − 1

∣∣ �
∥∥T0( f )T0(g) − 1

∥∥∞.

Therefore ‖ f g − 1‖∞ � ‖T0( f )T0(g) − 1‖∞ . The converse inequality is obtained similarly.
Then, by Theorem 4.8, there exist η0 : Y0 → {0,1} with η0(eY ) = 1, τ0 : Y0 → SK with τ0(eY ) = 1, and a base point

preserving Lipschitz homeomorphism ϕ0 : Y0 → X0 such that

T0(g)(y) = τ0(y)
(
η0(y)g

(
ϕ0(y)

) + (
1 − η0(y)

)
g
(
ϕ0(y)

)) (
g ∈ Lip0(X0), y ∈ Y0

)
.

Define τ = τ0|Y , η = η0|Y and ϕ = ϕ0|Y . Then ϕ is a Lipschitz homeomorphism from Y onto X and, for every f ∈ Lip(X)

and y ∈ Y , it is easy to see that

τ (y)
(
η(y) f

(
ϕ(y)

) + (
1 − η(y)

)
f
(
ϕ(y)

)) = T ( f )(y).

Moreover, τ = T (1) ∈ Lip(Y ) and, if K = C, η = (1/2)(1 − iτ T (i1)) ∈ Lip(Y ). Finally, the uniqueness of ϕ , τ and, in the
complex-valued case, of η follows from Remark 4.9. �
5. Weakly peripherally ∗-multiplicativity condition

This last section is concerned with surjective maps between pointed Lipschitz algebras satisfying the weakly peripherally
∗-multiplicativity. We prove that such a map is an algebra isomorphism multiplied by a unimodular function.

Theorem 5.1. Let X , Y be pointed compact metric spaces, and let T : Lip0(X) → Lip0(Y ) be a surjective map that satisfies

Ranπ

(
T ( f )T (g)

) ∩ Ranπ ( f g) 	= ∅ (
f , g ∈ Lip0(X)

)
. (5.7)

There exist a unique function τ : Y → SK with τ (eY ) = 1, and a unique base point preserving Lipschitz homeomorphism ϕ : Y → X
such that

T ( f ) = τ · ( f ◦ ϕ)
(

f ∈ Lip0(X)
)
.
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Proof. From (5.7), it is clear that∥∥T ( f )T (g)
∥∥∞ = ‖ f g‖∞

(
f , g ∈ Lip0(X)

)
.

Hence, by Theorem 3.2, there exists a unique bijective map ψ : X → Y such that |T ( f )(ψ(x))| = | f (x)| for all f ∈ Lip0(X)

and x ∈ X .
Let f , g ∈ Lip0(X) and x ∈ X . Assume first f (x) 	= 0 	= g(x). Let h f ,x,hg,x ∈ Px(X) be the functions given in Lemma 2.2,

and h = h f ,xhg,x ∈ Px(X). Evidently, Ranπ ( f h) = { f (x)}, and so by assumption, there exists z ∈ X such that f (x) =
T ( f )(ψ(z))T (h)(ψ(z)). Then∣∣ f (x)

∣∣ = ∣∣T ( f )
(
ψ(z)

)∣∣∣∣T (h)
(
ψ(z)

)∣∣ = ∣∣ f (z)
∣∣∣∣h(z)

∣∣,
and since | f (w)h(w)| < | f (x)| for all w 	= x, we have z = x. Since |T (h)(ψ(x))| = |h(x)| = 1, it follows that T ( f )(ψ(x)) =
T (h)(ψ(x)) f (x). Similarly, it is proved that T (g)(ψ(x)) = T (h)(ψ(x))g(x). Thus

T ( f )
(
ψ(x)

)
T (g)

(
ψ(x)

) = T (h)
(
ψ(x)

)
f (x)T (h)

(
ψ(x)

)
g(x) = f (x)g(x).

If now f (x) = 0 or g(x) = 0, obviously

T ( f )
(
ψ(x)

)
T (g)

(
ψ(x)

) = 0 = f (x)g(x).

So, we have proved that

T ( f )
(
ψ(x)

)
T (g)

(
ψ(x)

) = f (x)g(x)
(

f , g ∈ Lip0(X), x ∈ X
)
. (5.8)

As a consequence, we have ‖T ( f )T (g) − 1‖∞ = ‖ f g − 1‖∞ for all f , g ∈ Lip0(X).
Then, in the real-valued case, Theorem 4.8 and Remark 4.9 yield a unique function τ : Y → SR with τ (eY ) = 1 and a

unique base point preserving Lipschitz homeomorphism ϕ : Y → X such that

T ( f )(y) = τ (y) f
(
ϕ(y)

) (
f ∈ Lip0(X,R), y ∈ Y

)
,

which proves the theorem in this case.
In the complex-valued case, by the aforementioned results, we have a unique function η : Y → {0,1} with η(eY ) = 1, a

unique function τ : Y → SC with τ (eY ) = 1 and a unique base point preserving Lipschitz homeomorphism ϕ : Y → X such
that

T ( f )(y) = τ (y)
(
η(y) f

(
ϕ(y)

) + (
1 − η(y)

)
f
(
ϕ(y)

)) (
f ∈ Lip0(X,C), y ∈ Y

)
. (5.9)

Let y ∈ Y \ {eY }, x=∈ X \ {e X } for which ψ(x) = y and hx,δ ∈ Px(X). Applying (5.8) gives

T (ihx,δ)(y)T
(
hx,δ(y)

) = ihx,δ(x)hx,δ(x) = i,

but, by using (5.9), we also have

T (ihx,δ)(y)T (hx,δ)(y) = (
2η(y) − 1

)
ihx,δ

(
ϕ(y)

)2
.

It follows that η(y) = 1 and this completes the proof. �
Let us recall that a net {a j} j∈I in a commutative Banach algebra A is an approximate identity if lim j∈I ‖a j x − x‖ = 0 for

each x ∈ A. Notice that Lip0(X) may do not have an approximate identity. In fact, for a pointed compact metric space X ,
the following conditions are equivalent.

(i) Lip0(X) has a unity.
(ii) Lip0(X) has an approximate identity.

(iii) e X is an isolated point.

Only (ii) ⇒ (iii) deserves some comments. Assume that {h j} j∈I is an approximate identity for Lip0(X) and e X is not an
isolated point. Let f ∈ Lip0(X) be the function defined as f (x) = d(x, e X ). For every j ∈ I , since h j is continuous at e X , there
exists δ j > 0 such that |h j(x)| = |h j(x) − h j(e X )| < 1/2 if 0 < d(x, e X ) < δ j . Therefore,

L( f h j − f ) � | f (x)h j(x) − f (x)|
d(x, e X )

= ∣∣h j(x) − 1
∣∣ � 1 − ∣∣h j(x)

∣∣ >
1

2
,

whenever 0 < d(x, e X ) < δ j . Since lim j∈I L( f h j − f ) = 0, we arrive at a contradiction and therefore e X is isolated.
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However, for any pointed compact metric space X , the sequence {hn}n∈N defined by

hn(x) = min
{

1,nd(x, e X )
}

(x ∈ X, n ∈ N),

is an approximate identity for the supremum norm in Lip0(X).
Following an idea by Honma in [6], we next provide a sufficient condition for a weakly peripherally ∗-multiplicative

surjection between ∗-algebras Lip0(X) to be an algebra isomorphism.

Corollary 5.2. Let X , Y be pointed compact metric spaces and let T : Lip0(X) → Lip0(Y ) be a surjective map satisfying condition (5.7).
Then T is an algebra isomorphism if T preserves an approximate identity for the supremum norm.

Proof. We know that T ( f ) = τ · ( f ◦ ϕ) for all f ∈ Lip0(X), with τ and ϕ as in Theorem 5.1. To prove the corollary, it
suffices to show that τ = 1. Suppose that T preserves an approximate identity for the supremum norm {h j} j∈I in Lip0(X).
For each x ∈ X \ {e X }, we can take a f ∈ Lip0(X) for which f (x) = 1. Then, for all j ∈ I , we have∣∣h j(x) − 1

∣∣ = ∣∣h j(x) f (x) − f (x)
∣∣ � ‖h j f − f ‖∞.

Since lim j∈I ‖h j f − f ‖∞ = 0, it follows that lim j∈I h j(x) = 1. In the same way, as {T (h j)} j∈I is an approximate identity for
the supremum norm in Lip0(Y ), we get lim j∈I T (h j)(y) = 1 for each y ∈ Y \ {eY }. Then

τ (y) = lim
j∈I

τ (y)h j
(
ϕ(y)

) = lim
j∈I

T (h j)(y) = 1

for all y ∈ Y \ {eY }, which is the desired conclusion. �
Taking into account that elements with equal ranges have equal peripheral ranges, from Theorem 5.1 we deduce the

following version for algebras Lip0(X) of the result obtained by Hatori, Miura and Takagi [2, Theorem 3.6].

Corollary 5.3. Let X and Y be pointed compact metric spaces. Every surjective map T : Lip0(X) → Lip0(Y ) fulfilling(
T ( f )T (g)

)
(Y ) = ( f g)(X)

(
f , g ∈ Lip0(X)

)
is a weighted composition operator

T ( f )(y) = τ (y) f
(
ϕ(y)

) (
f ∈ Lip0(X), y ∈ Y

)
,

where τ is a unimodular function on Y , and ϕ is a base point preserving Lipschitz homeomorphism from Y onto X.

From Theorem 5.1 we deduce the next result that characterizes surjective maps between ∗-algebras Lip(X) satisfying the
weakly peripherally ∗-multiplicativity condition. Its proof follows by the same method used in Corollary 4.10.

Corollary 5.4. Let X and Y be compact metric spaces and let T : Lip(X) → Lip(Y ) be a surjective map such that

Ranπ

(
T ( f )T (g)

) ∩ Ranπ ( f g) 	= ∅ (
f , g ∈ Lip(X)

)
.

Then there exist a unique Lipschitz function τ : Y → SK and a unique Lipschitz homeomorphism ϕ : Y → X such that

T ( f )(y) = τ (y) f
(
ϕ(y)

) (
f ∈ Lip(X), y ∈ Y

)
.

In particular, if T preserves the unity, then T is an algebra isomorphism.

Finally, we deduce from Corollary 5.4 the version for algebras Lip(X) of the aforementioned result by Hatori–Miura–
Takagi.

Corollary 5.5. Let X and Y be compact metric spaces. Every surjective map T : Lip(X) → Lip(Y ) such that(
T ( f )T (g)

)
(Y ) = ( f g)(X)

(
f , g ∈ Lip(X)

)
is of the form

T ( f )(y) = τ (y) f
(
ϕ(y)

) (
f ∈ Lip(X), y ∈ Y

)
,

where τ : Y → SK is Lipschitz and ϕ : Y → X is a Lipschitz homeomorphism.
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