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1. INTRODUCTION

This paper considers the local case of modules over a fixed but arbitrary
discrete valuation ring R. Throughout, p denotes a fixed prime element of
R and all modules are unitary R-modules. Although our approach is
geared from the outset toward mixed modules (modules M with torsion
tM such that O # tM # M), much of our motivation comes from earlier
results in the torsion and torsion-free cases. Let E(M) denote the algebra
of R-linear endomorphisms of a module M. If both M and N are torsion,
Kaplansky’s theorem [5, Theorem 28] asserts that every isomorphism
E(M) — E(N) is induced by an isomorphism of the modules themselves.
The abundance of cyclic direct summands of reduced torsion modules
plays a key role in Kaplansky’s proof of this theorem. In the torsion-free
case, Wolfson [13] adapted Kaplansky’s method to prove the result for
torsion-free modules M and N which possess direct summands isomorphic
to R, stating his theorem for torsion-free modules over a complete discrete
valuation ring.

For mixed modules M and N, the implications of an isomorphism
E(M) — E(N) are less clear. In many cases Kaplansky’s method still
provides an isomorphism M — N, but the full structure of M and N may
not be encoded in the endomorphism algebras in the form of idempotents,
if even at all. Isomorphism theorems in this case remain rare, and instead
there are far-reaching results stating £E(M) = E(N) for many nonisomor-
phic, mixed modules M and N from certain classes [4, 7, 9]. From the
short list of affirmative theorems, we state two which are relevant to what
we shall prove in this paper. Only in the first theorem is the algebra
isomorphism necessarily induced.
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THEOREM [6). If M and N have torsion-free rank one and tM is totally
projective, then every isomorphism E(M) — E(N) is induced by an isomor-
phism M — N.

THEOREM [2].  If M and N are Warfield modules and E(M) = E(N),
then M = N.

In Section 2, we introduce the notion of a stable element of a mixed
module; the properties of such an element are merely some of those it
would possess if contained in a direct summand isomorphic to R. For
reduced modules M and N with M totally projective, our main theorem
asserts that every isomorphism E(M) — E(N) is induced by an isomor-
phism M — N if each module contains a stable element. We shall obtain
several corollaries which reflect back on the results stated above. Let
rk(M) denote torsion-free rank.

COROLLARY. Assume M is a reduced module of finite torsion-free rank
such that M is totally projective, and tk(M /p"M ) = 1 for some ordinal o.
If N is a reduced module and tk(N) < tk(M), then every isomorphism
E(M) — E(N) is induced by an isomorphism M — N.

COROLLARY. If M and N are reduced Warfield modules such that tM is
totally projective, and the set of height sequences of elements of a decomposi-
tion basis for M contains a least element, then every isomorphism E(M) —
E(N) is induced by an isomorphism M — N,

In regard to the second corollary, let o = (0, 0),0,,+) and 7=
(74,7, 72, - ) denote sequences of ordinals, and recall the partial ordering
on all such sequences obtained by defining o < r when o, < 7, for all
i > 0.If x| = |x|p denotes the p-height of x in M, the condition on M in
the corollary is met when there is a decomposition basis X for M and an
element x € X such that |p'x| < |p'ylforall y € X and i > 0.

Finally, we state some facts about totally projective modules and cotor-
sion hulls that will be used in later sections. If P is a nice submodule of M
with M /P totally projective, and ¢: P — N a homomorphism that does
not decrease p-heights in M and N, then ¢ extends to a homomorphism
M — N. To apply this result in certain cases, we use the fact that finitely
generated submodules of an R-module M are nice in M when rk(M) = 1,
or R is complete.

At a later stage, we adopt the viewpoint that every reduced module M is
a submodule of its cotorsion hull M* = Ext(R(p™), M). If T =M and
M /T is divisible, then M* = T* hence E(M) may be identified with a
subalgebra of E(T*) by unique extension to endomorphisms of 7*. In this
case, if NS T* and N* = T*, we have E(M) = E(N) when {¢ € E(T*):
(M) M) ={p € E(T*): &(N)C N}. The bulk of our proof will be
carried out in this setting.
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2. STABLE ELEMENTS

Mixed modules containing elements satisfying the conditions of the
following definition play a central role in this paper. If x € M, E(M)x is
the submodule {$(x): ¢ € E(M)} of M.

DEFINITION 1. An element x of a module M is stable in M if the
following hold.

(1) There exists 8 € E(M) such that &(x) =x and SM/{x) is
torsion.

(2) M/E(M)x is torsion.

We will refer to x as a stable element of M or simply a stable element
when (1) and (2) hold. Every element of a torsion module is stable, and
stable elements of nontorsion modules are necessarily torsion-free. We
begin with an assortment of mixed modules which possess such elements.
In (5) below, the inclusion 77 € T induces an inclusion T7* ¢ T* be-
causc T/T“ is reduced. The purification L, of L in T* is defined by
L,/L=«T*/L).

PROPOSITION 1. A reduced module M has a stable element in the follow-
ing cases.

(1) M has torsion-free rank one.

(2) M =A ® B, where A has a stable element and B/Hom(A, B)A is
torsion.

(3) M has countable torsion-free rank, tM is totally projective, and there
is an ordinal o such that M /p°M has torsion-free rank one.

(4) M is a Warfield module, and the set of height sequences of elements
of a decomposition basis for M contains a least element.

(5) M=(x)+ T, T, whereTis totally projective and x € T*
satisfies p'x & T* for all i 2 0.

Proof. Part (1) is clear. To prove (2), assume x € A and & € E(A4)
satisfy the conditions of Definition 1 for A, and let m: M —> A4 be
projection. Note sm(x) =x, 8#M/(x) € 8A/{x) is torsion, and that
B/Hom(A, B)x must be torsion. Thus M/E(M)x is torsion, and x is
stable in M.
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Assume M satisfies (3) and choose ¥ = x + p°M torsion-free in M=
M/p°M. Then M/{X) is isomorphic to a countably generated extension
of tM, hence is totally projective. Since p°M is nice in M and |p'x| < o
for all i > 0 we have |p'¥|s = | p'x|y for all i > 0. Hence, there exists a
homomorphism ¢: M - M with ¢(%) =x. By composing ¢ with the
natural map M — M we obtain & € E(M) with &(x) = x and M /{x)
torsion. This method also shows M /E(M)x is torsion, finishing (3).

Next assume M is a Warfield module as in (4), and let X be a nice
decomposition basis for M with M/{X) totally projective. We may
assume X = {x} U Y, where |p'x| < |p'y| for all y € Y and i > 0. Then
the map (X) — (X ) induced by x — x and {Y) — 0 extends to § €
E(M) such that 8(x) = x and M /{x) is torsion. A similar method shows
M /E(M)x is torsion, finishing (4).

Finally, let T, x, and ¢ be as in (5). We claim x is stable in M =
({(x)> + T7*),. Let x be the image of x in P=(x),/T", and note
|p'xlp = |p'x| for all { > 0 because T*” is nice in 7°*. A straightforward
argument shows

(0w /y {0y /Ax)
(T ® () /{(x)y  ((x)e/xn)"”

P/(x) =

is totally projective. As in (3), we can obtain § € E(T*) with §(77) =0
and 8(x) = x. It follows that 8(M) c M and &(M)/{x) is torsion be-
cause & annihilates T7°. For any z € T?*, the same method furnishes
¢ € E(M) with ¢(x) = z, finishing the proof that x is stable. |

A module M is called Walker-indecomposable if M = 4 © B implies A
or B is torsion; parts (3) and (4) above readily provide examples of such
modules of torsion-free rank greater than one which possess stable ele-
ments. In Section 5, we use part (5) above to construct a Walker-indecom-
posable module of uncountable torsion-free rank which has a stable
element. .

The remainder of this section contains a sequence of lemmas that will
figure when we turn to endomorphism algebras in Section 3. We will
assume all totally projective modules are reduced. One can use [11,
Theorems 1 and 2; 10, Theorem 3.2] to give an inductive proof that totally
projective modules are thin; i.e., if 7 is totally projective, then every
homomorphism C — T is small if C is torsion-complete.

LEMMA 1. If T is totally projective and T* is nontorsion, then (T*")
does not possess a stable element.

Proof. By way of contradiction, assume x € M = (T*”), and 8§ €
E(M) satisfy the conditions of Definition 1. Then 8(7*") is cotorsion of
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torsion-free rank one, hence has bounded torsion. Thus, we may assume
8(T7)=0 and 8(p'x) # 0 for all { > 0. If o =0, then §(T*) =0 be-
cause 8(T) =0 with 7*/T divisible and T* reduced. This contradicts
8(T*) nontorsion. Hence, we may assume o> 0. If $ =T/7T", then &
induces an endomorphism f: §* — $° such that f($*”) has torsion-free
rank one. We consider two cases for o.

Case 1. Suppose o = 7+ 1. By [3, Proposition 56.5] we have S*” =
Hom(K,S,/S,), where K = R(p*) and §, is torsion-completion. On $*7, f
is induced by g: S./S, — §./S., where f first induces g: §,— S, with
g(8.) € S,. Because f(S*”) has torsion-free rank one, it follows from the
isomorphism above that Im g = K. Then g(S)) + S, is isomorphic to a
countably generated extension of §S_, hence is totally projective. By the
remarks before the lemma, g is small. Hence g(S,) = g(S,) < S, because
S, is pure in §_ with divisible quotient. This contradicts Im g # 0.

Cuase 2. Suppose o is a limit ordinal. Then o has cofinality w by [8,
Lemma 4]} because $” = (0 and S*“ is nontorsion. By [3, Proposition 56.5]
we have §°*” = Hom(K, D), where D is the divisible torsion of L /S and
L =1mS/8(r <o) On §*, f is induced by g: D — D, where f first

induces g: L — L with g(8) € § in the natural way. As above, we have
Img = K because f(S$°“) has torsion-free rank one. Suppose that for each
k > 0, there exist 7< ¢ and n > 0 such that (p"S™)[ p*] C ker f. Let
z € §*7. By using a suitably chosen set of roots of muitiples of z, one can
construct a module P C S$°, containing z, such that P/A is divisible for
A C ker f. We omit the routine details. Then f(z) = 0 because S* is
reduced, so that f(S*?) = 0. This is a contradiction, hence we conclude
there exists k > 0 such that f((p"S™)[p*]) = 0 for all 7 < ¢ and n > 0.
Now it follows that we can choose a sequence 7, < 7, < 7, < -+, lO-
gether with elements ¢, € S, to satisfy the following conditions: (1) sup 7,
=0;(2) ¢, €8 and p'c; € S[p*] for all i; and (3) f(p'c;) # 0 for all i.
Let P =TI, ,{(c;), and let C be the external direct sum @,  {c;>. By
writing elements of P as formal infinite sums, for each 7 < o we obtain a
homomorphism P — §/S7 by taking partial sums. These homomorphisms
induce ¢: P — L with ¢(C) C S. Hence, ¢ induces a homomorphism :
C/C — D. Note gi{C/C) = (gy«(C) + §)/S < Im g is countably gener-
ated, hence g¢/(C) + § is totally projective. As above, it follows that gy is
small on C. Hence, there exists n > 0 such that gy(p"C) p*] = 0. But
p"c, € (p"Clp*] and gy(p"c,) = f(p"c,) + 0, a contradiction. This
completes the proof. |

If o ={(0;) is a sequence of ordinals, M(g) denotes the submodule
{xeM: |p'xi= o0 forall i =0} of M.
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LEMMA 2. If o = (0;) is a strictly increasing sequence of ordinals and C is
a reduced cotorsion module, then C(a ') is cotorsion.

Proof. For each i we obtain a composition of homomorphisms C —
p'C = p'C/p”C in the natural way, and these induce a homomorphism
6:C > Il,. ,p'C/p”C with kernel C(a). Since Im 8 is reduced, C(o ) is
cotorsion by [3, Sect. 54]. |1

If xeM, we use |lx|| or [lx|lyy to denote the height sequence
(x|, 1 pxl,I p2x|,+--) of x in M. If x is stable, we may assume |/ x|| contains
infinitely many gaps or else none at all because nonzero multiples of x
remain stable. For such an element, it will be convenient to define

supl p'xl, if |lx| has infinitely many gaps

7 \ixl, if |lx]l is gapless.

LEMMA 3. Assume M is a reduced module with totally projective torsion T
and M /T is divisible. If o = (a;) is a stricdy increasing sequence of ordinals
such that T*(g) C M, and x is a stable torsion-free element of M, then
sup a; > W,

Proof. Suppose ||x|| contains infinitely many gaps, and let § € E(M) C
E(T*) be as in Definition 1. Then 8(T°(o)) c (x), is cotorsion of
torsion-free rank one by Lemma 2, hence has bounded torsion. Thus
p*8(T(a)) = 0 for some k, and it follows that (p®**T) p] C ker 8. If
sup o, < u,, we may choose m so that |p™x| = o, + k and |p™*'x| >
|p”™x| + 1. Then p™*'x = py for y € M with |y| > |p™x|. Thus p™x =
8(p™x) = 8(y) because y — p™x € (p®**T) p). This contradicts our
choice of y, hence sup g; > u, in this case.

Now assume |[|x|| is gapless, and note M C (T*7), if 7 is the smallest
ordinal such that x & 7*"*'. If supo;, < u, = x|, then T*" c T*(g). It
follows that M = (T*"),. This contradicts Lemma 1, hence sup o; > u, as
desired. |}

In the next lemma, Z(S) denotes p-length.

LEMMA 4. Assume M is reduced with totally projective torsion T and
M /T is divisible. If x is a stable, torsion-free element of M, we may regard T*
as an isotype submodule of T*, where T = S & §' is reduced torsion, /(§) <
K, andx € §°.

Proof. Denote p = pu,.Let § = T/p*T, a totally projective module of
length at most u. We claim there exists x' € §* = T*/(p*T)* such that
llx'llse = llxllpr. If o = sup|p’x|, it is easily seen that the image x’ of x in
S* has this property because (p*7T)* € p#T* and the latter is nice in T°.
If u=|x|, such an x’ exists if /(5°) = u + w, which will be the case if
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the image of x in S* is torsion-free. If instead p*x € (p#T)* for some &,
we obtain pfT"x = pX*"y for some y € (p*T)* and integers m > n
because (p“T)*/p*T is divisible. Note | p**"x| = u + k + n because ||x||
is gapless. Then [p**"y| > u + k + m > |p**"x|, a contradiction.

Now let x' € §* be as guaranteed above and define T = § @ §’, where
S = T. If {(x'), denotes purification in S* and {x), purification in T,
there exists an isomorphism (x), ® § = (x'), ® §' taking x to x'.
Hence, there is an isomorphism ¢: T°* & §* — T* with ¢(x) = x'. The
restriction of ¢ to T* is the desired embedding in 7. 1§

3. ENDOMORPHISM ALGEBRAS

This section leads to the proof of our first isomorphism theorem for the
endomorphism algebras of modules with totally projective torsion and
stable elements. We focus first on the case where M and N are embedded
in a common cotorsion hull with E(M) = E(N). The next definition and
lemma first appeared in [8].

DEerINITION 2. If M is reduced, the core C(M) of M is the maximal
E(M *)-module contained in M.

Clearly, C(M) is a pure submodule of M containing tM.

LEMMA 5. If T is a reduced torsion module and M and N are pure
submodules of T* containing T such that E(M) = E(N), then
Hom(M, C(M)) = Hom(N, C(N)).

Proof. See [8, p. 488].

LEMMA 6. Assume M and N are pure submodules of T* containing T
such that ECM) = E(N). If x € M and 8 € E(M) satisfy the conditions of
Definition 1, then Hom({x ), ,C(M)) = Hom((8N) ., C(N)).

Proof. Since x € 6M C {(x), we have Hom((6M),, C(M)) =
Hom({x),, C(M)). If ¢ < Hom({x),, C(M)), then ¢é € Hom(M,
C(M)) = Hom(N,C(N)) by Lemma 5, hence ¢ € Hom((6N),, C(N)).
The reverse inclusion is similar. [

LEMMA 7. Assume M is a reduced module with totally projective torsion T
and M /T is divisible. If x is a stable torsion-free element of M, then
x & C(M).

Proof. Denote |lx|l by o. First, assume o contains infinitely many gaps.
For any z € T*(o), there exists ¢ € E(T*) with ¢(x) = z because {x) is
nice in {x), with totally projective quotient. If x € C(M), it follows that
T*(g) € M. But then sup | p'x| > u, = sup | p'x| by Lemma 3, a contradic-
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tion. Thus x & C(M) in this case. Now suppose g is gapless. If x € C(M),
we have M = (E(T*)x), because x is stable in M. It follows that M =
(T*"), if 7 is the smallest ordinal such that x &€ T*™"'. This contradicts
Lemma 1, finishing the proof. 1

Let R denote the p-adic completion of R. To prove the next lemma, we
will need to consider R- submodules of 7° and use a consequence of
[8, Lemma 5): if L is a reduced R-module and x € L is torsion- free, then
A(HL/Rx)) </(tL) + w.

LEMMA 8.  Assume T is totally projective, and M and N are pure submod-
ules of T* containing T such that E(M) = E(N). If x is a stable torsion-free
element of M and Rx OV N = 0, then there exists a strictly increasing sequence
of ordinals o = (a,) such that T*(g) € C(N) and sup o, < p.

Proof. Suppose x € M\ T and 8 € E(M) satisfy the conditions
of Definition 1, and Rx N N = 0. Then Hom({x),, C(M)) =
Hom((BN)*,C(N)) by Lemma 6, and Lemma 7 implies the existence of
y € 8N such that y & C(N) (because x & C(M)). Let L be the R-module
(R(x, y», /Rx of torsion-free rank one, where the purification is taken in
T*. Define o, = |p'y + Rx|, for i>0,and o= (0). If z € T*(g), there
exists ¢: L — T* with ¢(y + Rx) = z because ¢L Is totally projective.
Hence, by composing ¢ with the natural map (R{x,y)), — L and
extending to T°, we obtain ¢ € E(T*) such that ¢(y) =z andy(x) =
It follows that z € C(N) because ¢ € Hom({x),,C(M)) and y € (SN
Thus, 7*(ag) € C(N). Note that since Rr is nice, for each i there exists
r, € R such that o, =|p'y + rixlre.

It remains to be shown that sup o; < u.. If o contains only finitely
many gaps, then o,,;, = g, +i (i 2 0) for some n, hence p"y +r,x €
T*(g) € C(N). Thus 0 # r,x € N because y & C(N) contradlctmg Rx
O N = 0. Therefore g contains infinitely many gaps. By Lemma 4, we may
regard T* C T*, where T = § 8 S, /(S) < i, and x € §°. Let 7 T* -

S* be projection and define L = (R(w(y) x)), /Rx, where the purlflca-
tion is taken in S°. Let &, = |p'w(y) + Rle for { > 0, and note g; < ¢,
for all /.

We claim L has torsion-free rank one. If L is torsion, then p*m(y) +
e = 0 for some r € R and &, hence p* y—z—-rx forsome z € T* N §'°.
Now o, =|p"™**y + r  xlje =lr;, . x — p'rx +pz(T- <|p'zlge for i >
0, so that z€ T*(g) C C(N). Thus x = z — pFy € Rx " N = 0, so that

p¥y. This implies y € C(N), a contradiction. Therefore tk(L) = 1 as
claimed.

Finally, note that Z(tL) </(S) + w < u, + w by the remark before
the lemma. Hence, (4;) will be gapless from some point on if sup 7; > u,.
This implies (0;) can have only finitely many gaps if sup o; > u,. Thus
sup o; < u,, as desired. I
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LEMMA 9.  Assume T is totally projective, M and N are pure submodules
of T* containing T such that E(M) = E(N), and that M has a stable
element. If CCN) = T or N has a stable element, then there is a unit a € R
such that aM C N.

Proof. 1f M =T, then N = C(N). In this case Lemma 7 applied to N
shows N = T, hence M = N. Therefore assume M is nontorsion, and let x
be a stable element of M. If Rx N N # 0, then ax = N for some unit
« € R, hence aM C N because M /E(M)x is torsion and E(M) = E(N).
For the sake of contradiction, assume Rx NN = 0 and obtain o = (o)
such that T*(g) € C(N) and sup o, < n, by Lemma 8. If ||lx]| is gapless,
then x € C(N) because x € T*(o), a contradiction. Therefore, assume
lixlf contains infinitely many gaps. We consider two cases for N.

Case 1. Assume C(N) = T. Because of the gaps in flx|, we have
Z(T) = p, and a standard argument shows that 7*(¢) contains torsion-free
elements. This contradicts T*(ag) < C(N).

Case 2. Assume N has a stable element y, and note y is torsion-free
since N # T (otherwise M = T by Lemma 7). We have p, > sup o, > p,
by Lemma 3. If Ry AM+#0, then BN CM for a unit B <€ R, hence
T*(g) < C(N) € C(M). Thus sup o, > u, by Lemma 3. This contradic-
tion shows Ry N M = 0, hence by Lemma 8 there exists a sequence
1= (7) such that 7*(7) € C(M) and sup7, < u,. But supr, > u by
Lemma 3, contradicting u, < p,. |}

Before turning to the theorem, we prepare for the case where M is a
reduced module with a stable element and M /tM is not divisible. Write
T = tM, and assume that x € M and & € E(M) satisfy the conditions of
Definition 1. Given y € M, there exist nonzero r, s € R and ¢ € E(M)
such that ¢(rx) = sy. If (x), /T is divisible, then ¢ induces an epimor-
phism {x), /T — {y), /T. Hence, {x}, /T = R if M/T is not divisible.
In this case, 6 composed with the natural map M — M /T has image
isomorphic to R, from which it follows that M has a direct summand
isomorphic to R.

THEOREM 1.  Assume M and N are reduced modules and the torsion of M
is totally projective. If each module possesses a stable element, then every
isomorphism E(M) — E(N) is induced by an isomorphism M — N.

Proof. Let ®: E(M)— E(N) be an R-algebra isomorphism. First,
assume M /tM is not divisible. Then M = M, & M,, where M, = R. Let
N =N, & N, be the corresponding decomposition of N induced by ©.
Since R = E(M,) = E(N,), N, is torsion-free and indecomposable. We
claim N, = R. Since N/tN is not divisible and N contains a stable
element, we have N = N, @ N;, where N, = R. Let M = M, ® M, be the
corresponding decomposition of M induced by ®~'. Since E(M,) =R
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M, is nonzero. Thus Hom(M,, M,) = M, is nonzero. ® induces an iso-
morphism Hom(M,, M,) = Hom(N,, N,), hence there exists a nonzero
homomorphism y: Ny — N,. Since N, = R, v splits. Therefore N, = Im y
= R because N, is indecomposable. This proves the claim. Using the
corresponding summands M, and N,, Kaplansky’s method can be applied
to construct an isomorphism ¢: M — N which induces ®.

Now denote T =tM, and assume M /T is divisible. Then N/T is
divisible, and by [8, Proposition 3] we may assume M and N are pure
submodules of T* containing T such that E(M) = E(N). According to
this proposition, ® is induced by an isomorphism of the original modules
precisely when N = aM for a unit « € R. By Lemma 9, there exist units
a, B € R such that aM C N and BN c M, so that aBM c M. If xeM
and 8 € E(M) satisfy the conditions of Definition 1, then {x, aBx) C
8M c {x), because &(aBx) = aB8(x) = afx. Thus aBf € R and
aBM = M. Therefore aM = N, and the theorem is proved. |

When R is complete, the example E(R) = R = E(R(p™)) shows the
necessity of assuming N is reduced in Theorem 1. In Section 5, we show
that the hypothesis that N have a stable element cannot be dropped in the
case of infinite torsion-free rank. In the finite-rank case, though, it is
possible to do so if rk(N) < rk(M) and tM # 0. This situation is consid-
ered in the next section.

The first corollary to Theorem 1 is immediate.

CoROLLARY 1. If M is a reduced module with a stable element and totally
projective torsion, then every automorphism of E(M) is inner.

COROLLARY 2. Assume M and N are reduced modules of countable
torsion-free rank, tM is totally projective, and there are ordinals o and v such
that M /p°M and N /p™N have torsion-free rank one. Then every isomorphism
E(M) — E(N) is induced by an isomorphism M — N.

Proof. See Theorem 1 and Proposition 1(3). |

COROLLARY 3. Assume M and N are reduced Warfield modules, tM is
totally projective, and the set of height sequences of elements of a decomposi-
tion basis for M contains a least element. Then every isomorphism E(M) —
E(N) is induced by an isomorphism M — N.

Proof. Let ®: E(M) — E(N) be an isomorphism. By [2, Theorem 4.3],
M is isomorphic to N. Therefore N contains a stable element. By Theo-
rem 1, ® is induced by an isomorphism of M with N. |}
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4. FINITE TORSION-FREE RANK

If the rank of R as an R-module is infinite, and M is any reduced
R-module of finite, positive torsion-free rank, then [9, Theorem 7] implies
there are uncountably many pairwise nonisomorphic R-modules N with
E(N) = E(M). One consequence of the next theorem is that this occurs
only for N of larger torsion-free rank than M when the latter has totally
projective torsion and contains a stable element.

THEOREM 2. Assume M and N are reduced modules with tk(N) <
rk(M) < R, and tM # 0 is totally projective. If M possesses a stable element,
then every isomorphism E(M) — E(N) is induced by an isomorphism
M - N.

Proof. Let ®: E(M) — E(N) be an isomorphism. To begin, assume
M/tM is not divisible. Then M = M, ® M|, where M, =R. Let N =
N, ® N, be the corresponding decomposition of N induced by ®. Since
E(N,) = R, N, is torsion-free. As in the proof of Theorem 1, it suffices
to show N, = R. Because tM # 0, [1, Corollary 3.4] can be applied to
show that N, = M, = R. & induces an isomorphism Hom(M,, M,) =
Hom(N,, N,). Since Hom(M,, M) = M|, the torsion-free rank of
Hom(N,, N,) equals tk(M,). Fix 0 # z € N, and let ¢ & Hom(N,, N,).
Because N, = R and ¢ extends to a homomorphism N, — N, it follows
that ¢ is a torsion element of Hom(N,, N|) if ¢(z) € tN,. Hence,
the torsion-free rank of Hom(N,, N,) is at most that of the submod-
ule {¢(z): ¢ € Hom(N,, N\)} of N,. Therefore rk(M,) < rk(N,). Since
tk(M) = tk(M,) + 1 and rk(N) < rk(M), we obtain rk(N,) = 1. There-
fore N, = R, as desired.

Now let T = tM and assume M /T is divisible. By [8, Lemma 2], N/IN
is divisible. As in the proof of Theorem 1, we may assume M and N are
pure submodules of 7' containing T such that E(M) = E(N). Since N
has finite torsion-free rank we have C(N) = T (see [8, Lemma 7]), hence
aM C N for a unit @ € R by Lemma 9. Thus N = aM because N/aM is
torsion and aM is pure in T*, proving the theorem. [

The next two corollaries follow from Theorem 2 and Proposition 1. The
case tM = 0 is easily handled by other means.

COROLLARY 4. Assume M and N are reduced modules with rk(N) <
k(M) < 8, and tM is totally projective. If tk(M/p"M) =1 for some
ordinal o, then every isomorphism E(M) — E(N) is induced by an isomor-
phism M — N.

COROLLARY 5. Assume M is a reduced Warfield module of finite torsion-
free rank, tM is totally projective, and the set of height sequences of a
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decomposition basis of M contains a least element. If N is a reduced module
with tk(N) < rk(M), then every isomorphism E(M) — E(N) is induced by
an isomorphism M — N.

The algebra isomorphism in the next corollary need not be induced; the
example in [2, Sect. 5] demonstrates that possibility for modules of
torsion-free rank two.

COROLLARY 6. Assume M = ®M, is a reduced module of finite torsion-
free rank, tM # 0 is totally projective, and each module M; possesses a stable
element. If N is a reduced module and rk(N) < rk(M), then E(M) = E(N)

implies M = N.

Proof. We may assume M = @, _,_, M, where each M, contains
a stable element and M, is totally projective. Using the isomorphism
E(M) — E(N), decompose N = @, _,_, N, so that E(M,) = E(N,) for
all . Because rk(N) < rk(M),rk(N,) < rk(Mj) for some j. We claim
M; = N,. This follows from Theorem 2 if tM; # 0.1t M, is torsion-free,
then there exist nonzero, torsion direct summands § of M and S’ of N
such that E(M; & §) = E(N, ® §’). Therefore M; & S = N, @ §' by The-
orem 2, so that M; = N,. Since rk(N/N!-) < rk(M/Mj), we have rk(Nj') <
rk(M;.) for some j' # j. By repeating the above argument and continuing
in this fashion, we obtain M, = N, forall i = 1,..., k. |

5. EXAMPLES

For the first of two examples, we construct a Walker-indecomposable
module M of uncountable rank which contains a stable element. Let 7 be
a totally projective module of length w2 with Ulm invariants U;(2{) = 1
and U,(2i + 1) = 0 for i < w. By [3, Sect. 103], there is a module P of
torsion-free rank one with ¢P = 7T that contains an element with height
sequence (0,2,4,---). Then P embeds in 7°, so we may assume x € T*
satisfies | p'x| = 2i for i > 0. By Proposition 1, x is stable in M = ({x) +
T'*), € T* Since T' is unbounded, 7'* and hence M has torsion-free
rank at least 2*. If M = A ® B, we claim A4 or B is bounded. Writing
x = a + b in this decomposition, we may assume a & (T*') . Since M/M'
has torsion-free rank one, there exist » € R and k such that p"x +ra €
M', hence |p**ix|y = |p'ral4 for i = 0. Thus U,2i) = | for almost all
i < w, and it follows that B is bounded because Uy(i) = 0 for almost all
1 < w.

For the second example, we construct reduced modules that show the
main hypothesis on N in Theorem 1 cannot be replaced by a condition on
ranks. Specifically, we show isomorphism can fail when rk(M) = rk(N) =
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R,, tM # 0, and only M contains a stable element. For convenience, let
R = Z,, (ocalization at p) and define X = @, R. By [4, Proposition
4.3], we may regard X as embedded in a reduced R-module G(X) such
that X = G(X)', tG(X) is a direct sum of cyclics, G(X)/X is torsion, and
every endomorphism of X has an extension to one of G(X). Then G(X)
satisfies the hypotheses for M in Theorem 1 because every nonzero
element of X is stable in X, hence in G(X). Let Y be a pure submod-
ule of X of rank X, not isomorphic to X, such that Y =X and E(Y) =
E(X) in E(X). Then E(G(X)) = E(G(Y)) by the proposition in [4], but
G(X) is not isomorphic to G(Y) because G(X)' and G(Y)' = Y are not
isomorphic.
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