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Abstract

Based on the Hawking–Unruh thermalization theorem, we investigate the phenomenon of the dynamical chiral s
breaking and its restoration for a uniformly accelerated observer. We employ the Nambu–Jona-Lasinio model in Rindler
ordinates, and calculate the effective potential and the gapequation. The critical coupling and the critical acceleration
symmetry restoration are obtained.
 2004 Elsevier B.V.

PACS: 04.62.+v; 11.10.Wx; 11.30.Rd

The Hawking–Unruh effect predicts that the accelerated observer sees a thermal excitation of particles
system in Minkowski spacetime, with the Unruh temperatureTU = a/2π (a is an acceleration constant)[1]. This
is called the thermalization theorem[2–10]. To study the effect of uniform acceleration, we employ Rindler co
ordinates which are appropriate for the spacetime for auniformly accelerated observer. It should be noticed
the thermally excited particles are not the original Minkowski particles but the Rindler particles determined
ground (vacuum) state of the system of Rindler coordinates. It has been generally proved that, in Rindl
dinates, Euclidean two-point functions are periodic in the direction of time with period 2π , and these function
satisfy the Kubo–Martin–Schwinger condition[3–7,10]. Therefore, Green’s functions in Rindler coordinates w
period 2πmay be interpreted as finite-temperature Green’s functions.

In this Letter, we examine what will be observed by a uniformly accelerated observer who moves relative
a system in which the chiral symmetry was dynamically broken. The following situation is considered:
fermion system in Minkowski spacetime dynamically generated a chiral mass, an observer will be acceler
uniformly. The acceleration may give a thermal effect on the observation of the system. Of particular inter
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is the question whether the thermalization effect of acceleration gives the restoration of broken symmetry or no
For the purpose to study the problem, we employ the Nambu–Jona-Lasinio model[11]. The field theory in Rindler
coordinates can be described by the method of curved background field[12]. We obtain the Green’s function i
Rindler coordinates, and apply the method of effective potential given in Ref.[12] for our problem.

The starting point of our investigation is the discussion of the formalism. We introduce theN -flavor Nambu–
Jona-Lasinio model inD-dimensional spacetime

(1)L(x) = ψ̄(x)iγ ν(x)∇νψ(x) + λ

2N

[(
ψ̄(x)ψ(x)

)2 + (
ψ̄(x)iγ5ψ(x)

)2]
.

Here,ψ is the Dirac field, andλ is the coupling constant of chiral invariant four-body contact interaction.
gamma matricesγµ, the metricgµν and the vielbeineµ

m̂
are determined by the following relations[13]{

γµ(x), γν(x)
} = 2gµν(x), {γm̂, γn̂} = 2ηm̂n̂, ηm̂n̂ = diag(1,−1,−1, . . . ,−1),

(2)gµνg
νρ = δρ

µ, gµν(x) = e
µ

m̂
(x)eνm̂(x), γµ(x) = em̂

µ (x)γm̂.

Here,m̂ refers to the flat tangent space defined by the vielbein at spacetime pointx. The definitions of covarian
derivative∇ν and spin connectionAm̂n̂

ν are given as follows[13]

∇ν ≡ ∂ν − i

2
Am̂n̂

ν σm̂n̂, σm̂n̂ ≡ i

4
[γm̂, γn̂],

(3)Am̂n̂
µ ≡ 1

2
em̂λen̂ρ [Cλρµ − Cρλµ − Cµλρ ], Cλρµ ≡ em̂

λ [∂ρem̂µ − ∂µem̂ρ].
The Rindler coordinates(η, ξ,x⊥) are related to the Minkowski coordinates(x0, x1,x⊥) by the following coordi-
nate transformation:x0 = ξ sinhη, x1 = ξ coshη. Under the transformation, the Minkowski spacetime is devi
into two space-like wedges: the right Rindler wedge,R+ = {x | x1 > |x0|} (0 < ξ < +∞, −∞ < η < +∞), and
the left Rindler wedge,R− = {x | x1 < −|x0|} (−∞ < ξ < 0, −∞ < η < +∞). η is the time variable in Rindle
coordinates.ξ = 0 corresponds to the event horizon of the Rindler spacetime. These two wedges are caus
connected with each other. Hereafter, we concentrate on examining our problem in the right wedge. The world line
of the observer in Rindler coordinates is given as

(4)η(τ) = aτ, ξ(τ ) = a−1, x⊥(τ ) = const,

where,τ is the proper time of an observer, anda is a constant of acceleration. The metric is chosen asgµν =
diag(ξ2,−1,−1, . . . ,−1). The line element of Rindler coordinates becomes

(5)ds2 = gµν(x) dxµ dxν = ξ2 dη2 − dξ2 − dx2⊥.

One obtains the gamma matrices in Rindler coordinates from the definition given in(2)

(6)γ 0(x) = 1

ξ
γ 0̂, γ 1(x) = γ 1̂, γ 2(x) = γ 2̂, . . . , γ D−1(x) = γ D̂−1.

Here, theγ m̂ (m = 0,1,2, . . . ,D − 1) are the usual Dirac gamma matrices of Minkowski spacetime. After c
puting the spin connection by the definition given in(3), one finds the components of the covariant derivative
Rindler coordinates

(7)∇0 = ∂η + 1

2
γ0̂γ1̂, ∇1 = ∂ξ , ∇2 = ∂2, . . . , ∇D−1 = ∂D−1.

Next, we introduce the following auxiliary fields

(8)σ(x) ≡ − λ

N
ψ̄(x)ψ(x), π(x) ≡ − λ

N
ψ̄(x)iγ5ψ(x).
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Then we obtain the partition function in our problem:

Z =
∫

Dψ̄ Dψ Dσ Dπ exp

{
iN

∫
dDx

√−g

[
−σ 2 + π2

2λ
+ ψ̄

(
iγ ν(x)∇ν − σ − iγ5π

)
ψ

]}

(9)=
∫

Dσ Dπ exp

{
iN

∫
dDx

√−g

[
−σ 2 + π2

2λ

]
− i lnDet

(
iγ ν(x)∇ν − σ − iγ5π

)}
.

Employing the large-N expansion, the effective action integral in the leading order becomes

(10)Seff =
∫

dDx
√−g

[
−σ 2 + π2

2λ

]
− i lnDet

(
iγ ν(x)∇ν − σ − iγ5π

)
.

Hereafter, we will omit theπ field because it is not needed for our purposes. Using the following relation

(11)lnDet
(
iγ ν∇ν − σ

) = tr
∫

dDx ln
(
iγ ν∇ν − σ

) = − tr
∫

dDx
√−g

σ∫
0

ds S(x, x; s),

one obtains the effective action in the right wedge:

(12)SR(+)

eff =
∫

dDx
√−g

(
−σ 2

2λ

)
+ i tr

∫
dDx

√−g

σ∫
0

ds S(x, x; s).

Here we have introduced the Green’s functionsS(x, y; s) andG(x,y; s) satisfying the following equations

(13)
(
iγ ν∇ν − s

)
S(x, y; s) = 1√−g

δD(x, y),

(14)
(
iγ ν∇ν + s

)
G(x,y; s) = S(x, y; s),

(15)
(−γ νγ µ∇ν∇µ − s2)G(x,y; s) = 1√−g

δD(x, y).

The Fourier transform of the Green’s functionG is

G(x,y; s) = G(η1 − η2, ξ1, ξ2,x⊥ − y⊥; s)

(16)=
∫

dk0

2π

∫
dkD−2

⊥
(2π)D−2e−ik0(η1−η2)+ik⊥·(x⊥−y⊥)G(k0, ξ1, ξ2,k⊥; s).

Next, we change our theory to the Euclidean formalism to incorporate with the thermal effect of accelerat
[8,9,14]. The Euclidean Rindler spacetime has a singularity atξ = 0. To avoid it, we have to choose the period
the imaginary time as 2π [14,15]. The Euclidean formalism in Rindler coordinates with a definite periodβ = 2π of
imaginary time coincides with the finite-temperature Matsubara formalism. The Matsubara formalism is o
by the following substitutions in our theory[16]:∫

dk0

2π
→

∑
n

1

β
, k0 → iωn,

(17)iS(k0, ξ1, ξ2,k⊥; s) → −S(ωn, ξ1, ξ2,k⊥; s), iG(k0, ξ1, ξ2,k⊥; s) → −G(ωn, ξ1, ξ2,k⊥; s),

where,ωn is the fermion discrete frequency defined asωn = (2n + 1)π/β (n = 0,±1,±2, . . .). For the Green’s
functions, we use the abbreviations

(18)S̃(ξ, ξ ′; s) ≡ S(ωn, ξ, ξ ′,k⊥; s), G̃(ξ, ξ ′; s) ≡ G(ωn, ξ, ξ ′,k⊥; s).
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Some manipulations derive the following differential equation forG̃(ξ, ξ ′; s):

(19)

{(
∂ξ + 1

2ξ

)(
∂ξ + 1

2ξ

)
−

(
k2⊥ + s2 + ω2

n

ξ2

)
− γ0̂γ1̂

ωn

ξ2

}
G̃(ξ, ξ ′; s) = 1

ξ
δ(ξ, ξ ′).

In Eq.(19), we divide the differential operator as follows

(20)Q̂ ≡ d2

dξ2 + 1

ξ

d

dξ
−

(
k2⊥ + s2 + ω2

n + 1/4

ξ2

)
, R̂ ≡ −ωn

ξ2 .

We introduce the projection operators in the gamma matrix space defined by

(21)P+ ≡ 1

2
(1+ γ0̂γ1̂), P− ≡ 1

2
(1− γ0̂γ1̂), G̃ = G̃+P+ + G̃−P−.

Here,P+ +P− = 1,P+P+ = P+, P−P− = P−, andP+P− = P−P+ = 0 are satisfied. Thus, Eq.(19)can be written
as follows

(22)(Q̂ + γ0̂γ1̂R̂)G̃(ξ, ξ ′; s) = (
(Q̂ + R̂)P+ + (Q̂ − R̂)P−

)
G̃(ξ, ξ ′; s) = 1

ξ
δ(ξ, ξ ′).

Therefore, Eq.(22) is decoupled into the following two equations

(23)(Q̂ + R̂)G̃+(ξ, ξ ′; s) = 1

ξ
δ(ξ, ξ ′), (Q̂ − R̂)G̃−(ξ, ξ ′; s) = 1

ξ
δ(ξ, ξ ′).

The eigenfunctions of the operatorsQ̂ ± R̂ are given as

Ψ +
Ω (ξ) ≡

√
(−2iΩ − 1)coshπΩ

π
KiΩ+1/2(αξ),

(24)Ψ −
Ω (ξ) ≡

√
(+2iΩ − 1)coshπΩ

π
KiΩ−1/2(αξ).

Here,α =
√

k2⊥ + s2, andKµ(x) is the modified Bessel function. The orthonormal condition forΨ ±
Ω is [17,18]

(25)

∞∫
0

dξ

ξ
Ψ ±

Ω (ξ)Ψ ±
Ω ′(ξ) =

∞∫
0

dξ

ξ

(∓2iΩ − 1)coshπΩ

π2
KiΩ±1/2(αξ)KiΩ ′±1/2(αξ) = δ(Ω,Ω ′).

ExpandingG̃± by the eigenfunctionsΨ ±
Ω , and using the orthonormal relation,G̃± are obtained in the following

form

G̃±(ξ, ξ ′; s) = −
∞∫

0

dΩ
Ψ ±

Ω (ξ)Ψ ±
Ω (ξ ′)

(ωn ± 1/2)2 − (iΩ ± 1/2)2

(26)=
∞∫

0

dΩ
(∓2iΩ − 1)coshπΩ

π2

KiΩ±1/2(αξ)KiΩ±1/2(αξ ′)
(iωn − Ω ± i)(iωn + Ω)

.

The position of the uniformly accelerated observer in Rindler coordinates is given by(4). To obtain the value o
the effective potential at this position, we have to change the variables asη → aτ andξ → a−1. The definition of
the effective potential is

(27)Veff = − Seff∫
dDx

√−g
.



106 T. Ohsaku / Physics Letters B 599 (2004) 102–110

nd
Hence in our case

(28)V R(+)

eff (a, σ ) = σ 2

2λ
+ tr

∑
n

1

β

σ∫
0

ds

∫
dD−2k⊥
(2π)D−2 S̃

(
a−1, a−1; s

)
.

V R(+)

eff (a, σ ) is a local, intensive quantity. The effective potential is normalized asV R(+)

eff (a, σ = 0) = 0. The gap
equation corresponds to the stationary condition:

(29)0= ∂Veff

∂σ
.

Therefore, the self-consistency condition is derived as

(30)σ = −λ tr
∑
n

1

β

∫
dD−2k⊥
(2π)D−2 S̃

(
a−1, a−1;σ

)
.

From the following relation

(31)

(
i

ξ
γ0̂ωn + iγ1̂

(
∂ξ + 1

2ξ

)
− 	γ⊥ · k⊥ + s

)
G̃(ξ, ξ ′; s) = S̃(ξ, ξ ′; s),

the gap equation is found to be

σ = −λ tr
∑
n

1

β

∫
dD−2k⊥
(2π)D−2

σ G̃
(
a−1, a−1;σ

)

= −λσ tr
∑
n

1

2π

∫
dD−2k⊥
(2π)D−2

∞∫
0

dΩ

×
{
P+

(−2iΩ − 1)coshπΩ

π2

(
KiΩ+1/2

(
αa−1))2 1

(iωn − Ω + i)(iωn + Ω)

+ P−
(2iΩ − 1)coshπΩ

π2

(
KiΩ−1/2

(
αa−1))2 1

(iωn − Ω − i)(iωn + Ω)

}

(32)= −2iλσ

a

∫
dD−2k⊥
(2π)D−2

∞∫
0

dω
sinhπ

a
ω

π2

{(
Kiω/a+1/2

(
αa−1))2 − (

Kiω/a−1/2
(
αa−1))2}

,

where,α =
√

k2⊥ + σ 2. To obtain the final expression in Eq.(32), the frequency summation was performed, a
the integration variable was changed asΩ → ω/a.

By using the result given above, we first examine the equation for the determination of critical acceleration
for symmetry restoration. Hereafter, we restrict ourselves to the four-dimensional caseD = 4. Settingσ = 0 in
Eq.(32)of the case of nontrivial solution, one finds

(33)1= − iλ

π3a

∞∫
0

k dk

∞∫
0

dω sinh
π

a
ω

{(
Kiω/a+1/2

(
k

a

))2

−
(

Kiω/a−1/2

(
k

a

))2}
.
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Integration ink is performed by making use of the following formula[17,18]

∞∫
0

dx Km(αx)Kn(αx)xl

(34)

= 2l−2α−l−1�(l + 1)−1�

(
l + m + n + 1

2

)
�

(
l + m − n + 1

2

)
�

(
l − m + n + 1

2

)
�

(
l − m − n + 1

2

)
.

(Valid when
(l − m − n) > −1.) Then we obtain

(35)1= λ

π2

∞∫
0

ωdω tanh
π

a
ω = λ

π2

∞∫
0

dω

{
ω − 2ω

exp2πω
a

+ 1

}
.

The integration in Eq.(35)yields the equation for the determination of critical accelerationac

(36)1= λΛ2

2π2
− λa2

c

24π2
.

To obtain the above expression, we have simply used a cutoffΛ for the regularization. Becauseac is positive, the
critical Hawking–Unruh temperature becomes

(37)T
(c)
U ≡ ac

2π
=

√
3

π2
Λ2 − 6

λ
.

In order to compare with the usual thermal case,let us refer to the result in Minkowski spacetime[19]. The gap
equation in finite-temperature case is

(38)1= λ

2π2

{
Λ

√
Λ2 + σ 2 − σ 2 ln

Λ + √
Λ2 + σ 2

σ

}
− 2λ

π2

∞∫
0

dk
k2

√
k2 + σ 2

1

e
√

k2+σ2/T + 1
.

Hence, atσ = 0, our Eq.(36) coincides with the case of usual finite-temperature gap equation in Minko
spacetime. The critical Hawking–Unruh temperature depends onΛ and λ in the same way as the case of t
temperature of thermal restoration in Minkowski spacetime. WhenΛ andλ become large,T (c)

U increases. In the
above expression, 3Λ2/π2 − 6/λ > 0 has to be satisfied. We assume this condition indicates the existenc
critical couplingλc . Thus we arrive at the familiar expression:

(39)λc = 2π2

Λ2 .

Now, we give a rough estimation forac. The Unruh temperature is given byTU = h̄a/(2πkBc) = a/(2.5 ×
1022 (cms−2))K (c is the velocity of light, andkB is the Boltzmann constant). Here we consider the case of q
assumeac ∼ Λ × 10−1, and chooseΛ = ΛQCD ∼ 1 GeV[19]. Because 1 GeV= 1.2× 1013 K, one has

(40)ac ∼ 3× 1034 cms−2.

This value belongs to an extremely high acceleration regime. The observer almost have to be accelerated to t
order of this value to observe the chiral symmetry restoration of a quark. A massive Dirac particle will be ob
as a massless particle aboveac.
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Next, we examine the behaviour of our gap equation ata → ac. The gap equation(32) is

1= −i
λa2

π3

Λ/a∫
0

dx sinhπx

∞∫
σ/a

y dy
{(

Kix+1/2(y)
)2 − (

Kix−1/2(y)
)2}

= −iλ
σ 2

2π3

Λ/a∫
0

dx sinhπx

{(
Kix−1/2

(
σ

a

))2

−
(

Kix+1/2

(
σ

a

))2

+ Kix−1/2

(
σ

a

)
Kix+3/2

(
σ

a

)

(41)− Kix+1/2

(
σ

a

)
Kix−3/2

(
σ

a

)}
.

Whena → ac, σ/a → 0 may occur. This condition corresponds to the case when the argumentz of the Bessel
functionKµ(z) tends to zero. By using the forms of the Bessel functions atσ/a → 0, we find

1= λ

π2a2

Λ/a∫
0

x dx tanhπx − i
λa

4π
σ

∞∫
−∞

dx
sinhπx

cosh2 πx

(σ/2a)2ix

�(ix + 1/2)2

(42)= λΛ2

2π2
− λa2

24π2
− 2λa2

π

∞∑
n=1

(
σ

2ia

)2n 1

(n − 1)!
(

ln
σ

2a
− ψ(n)

)
.

Here,ψ(n) is the digamma function:ψ(n) ≡ ∑n−1
j=1

1
j

− γ (γ is the Euler constant; 0.577. . . ). To obtain t
final expression, we have performed an appropriate contour integration. Picking the largest contribution u
conditionσ � 2a, we get

(43)1= λΛ2

2π2
− λa2

24π2
− λ

2π
σ 2 ln

(
e−γ 2a

σ

)
.

The combination of this equation with Eq.(36)gives

(44)a2
c − a2 = 12πσ2 ln

(
e−γ 2a

σ

)
.

Taking the derivative with respect toa, we have

(45)
dσ

da
≈ − a

12πσ ln(e−γ 2a/σ)
= σ

a

a2 − a2
c

< 0,

under the conditionσ � 2a. The solution of this differential equation is

(46)σ = eC1

√
a2
c − a2.

C1 is an integration constant. In the vicinity of the phase transition,σ depends ona in the way of Eq.(46). Because
the gap equation is equivalent to∂V R(+)

eff /∂σ = 0, we arrive at the following expression for the effective poten
from Eq.(42):

V R(+)

eff (a, σ ) =
σ∫

0

s ds

{
1

λ
− Λ2

2π2 + a2

24π2 + 2a2

π

∞∑
n=1

(
− s2

4a2

)n 1

(n − 1)!
(

1

2
ln

s2

4a2 − ψ(n)

)}

= − 1

48π2

(
a2
c − a2)σ 2 + 1

8π

(
ln

2a

σ
+ 1

4
− γ

)
σ 4 + · · ·

(47)= − 1
2

(
a2
c − a2)σ 2 + 1

σ 4 + · · · .

96π 32π
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To obtain the final expression, we have used Eqs.(36) and (44). This result is a kind of Ginzburg–Landau-ty
energy functional. The effective potential(47) clearly shows the phenomenon of broken symmetry by its w
bottle-like shape under the variation with respect toσ (in the phase mode). Taking the derivative with respecta
in Eq. (47), we find that this potential gives the second-order phase transition. From Eq.(46), we find the critical
exponent of the order parameterσ is 1/2, and this coincides with the case of the Landau theory of second-
phase transition.

In summary, we have obtained several important results: (1) The critical Hawking–Unruh temperature
chiral mass for a uniformly accelerated observer is given asT

(c)
U = ac/2π = √

3Λ2/π2 − 6/λ, which coincides
with the case of the thermal restoration of the dynamical chiral symmetry breaking of the Nambu–Jona-
model in Minkowski spacetime. (2) Based on the thermalization theorem, we have found that the effec
Unruh temperature will cause the restoration of the broken chiral symmetry. A point-like massive Dirac p
located at the position of the accelerated observer can give the chiral symmetry restoration. By the exa
in the vicinity of the transition, we have found that the effective potential (free energy density) is written as
Ginzburg–Landau functional, and it gives a second order phase transition.

Finally, we would like to make some comments on several issues and possible extensions of this wo
Rindler metric can be regarded as an approximation of the metric of a large mass Schwarzschild black h
the outside of the event horizon[14]. Thus the physics in Rindler wedge provides us with a simplified mod
study the situation around a Schwarzschild black hole. Investigations of the phenomena of dynamical sy
breaking in such a large mass black hole is also an interesting problem. It is also important for us to study th
density case, by using our model. In this work, we have only considered the case of scalar fermion–ant
condensate without a chemical potential. We can extend our theory to consider the other cases of symmet
as vector, tensor and so forth. Moreover, a treatment of Majorana-type mass with the fermion–fermion con
〈ψψ〉 is also interesting. This issue might be related to the problem of neutrino Majorana mass. The meson–
bosonization of the Nambu–Jona-Lasinio model[20] in Rindler coordinates is possible. In such a case, to take
account the Pauli–Gürsey symmetry would give us a useful point of view[21]. If the Pauli–Gürsey symmetr
is realized in the Lagrangian, there is a rotational symmetry between meson and diquark. We speculate
phenomena we have found in this Letter will also occur in a Majorana-type mass.
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