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Abstract

Based on the Hawking—Unruh thermalization theorem, we investigate the phenomenon of the dynamical chiral symmetry
breaking and its restoration for a uniformly accelerated obsewe employ the Nambu—Jona-Lasinio model in Rindler co-
ordinates, and calculate the effective potential and theegpation. The critical coupling and the critical acceleration for
symmetry restoration are obtained.

0 2004 Elsevier B.VOpen access under CC BY license,

PACS 04.62.+v; 11.10.Wx; 11.30.Rd

The Hawking—Unruh effect predicts that the acceledlabbserver sees a thermal excitation of particles of a
system in Minkowski spacetime, with the Unruh temperatlise= a /27 (a is an acceleration constaiff)]. This
is called the thermalization theordi2-10]. To study the effect of uniform acehation, we employ Rindler co-
ordinates which are appropriate for the spacetime foniformly accelerated observer. It should be noticed that
the thermally excited particles are not the original Minkowski particles but the Rindler particles determined by the
ground (vacuum) state of the system of Rindler coordinates. It has been generally proved that, in Rindler coor-
dinates, Euclidean two-point functions are periodic in the direction of time with perigdd these functions
satisfy the Kubo—Martin—Schwinger conditif@-7,10] Therefore, Green’s functions in Rindler coordinates with
period 2rmay be interpreted as finite-temperature Green'’s functions.

In this Letter, we examine what will be observed by afammly accelerated observer who moves relative to
a system in which the chiral symmetry was dynamically broken. The following situation is considered: after a
fermion system in Minkowski spacetime dynamicallyngeated a chiral mass, an observer will be accelerated
uniformly. The acceleration may give a thermal effect on the observation of the system. Of particular interest here
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is the question whether the thernzation effect of acceleration gives thet@sition of broken symmetry or not.
For the purpose to study the problem, we employ the Nambu—Jona-Lasinio fhbpdlhe field theory in Rindler
coordinates can be described by the method of curved backgrounil&ldVe obtain the Green’s function in
Rindler coordinates, and apply the method of effective potential given ifRjffor our problem.

The starting point of our investigation is the discussion of the formalism. We introdugé-freor Nambu—
Jona-Lasinio model iD-dimensional spacetime

_ A _ _
L) =¥ )iy () Vo (x) + ﬁ[(vf(x)w(x))2 + (P )ivsy (0)7]. @)

Here, ¢ is the Dirac field, and. is the coupling constant of chiral invariant four-body contact interaction. The
gamma matriceg,,, the metricg,,, and the vielbeir&fg are determined by the following relatiofs3]

{V/L(x), Vv(x)} =2g;w(x), Wi Vﬁ}zzn;ﬁﬁ, Nimn =diag(1,—1,—1,---,—1),
guwg” =85, g =i (e (), yux) =€l () @)

Here,n refers to the flat tangent space defined by the vielbein at spacetimexpdiné definitions of covariant
derivativeV, and spin connectiod’" are given as follow§l3]

i
2

PN U .
A = Eem*e"ﬂ[cxpﬂ — Cpip — Cripl, Copu = €' [8pesny — duespl. (3)

. i
vV, =39, AV o, GAﬁEZ[yrflvVﬁ]’

The Rindler coordinateg, &, x | ) are related to the Minkowski coordinates, x1, x | ) by the following coordi-

nate transformationeg = & sinhn, x1 = & coshy. Under the transformation, the Minkowski spacetime is devided
into two space-like wedges: the right Rindler wed@e, = {x | x1 > |x°]} (0 < & < 400, —00 < 17 < +00), and

the left Rindler wedgeR_ = {x | x1 < —|x0]} (—o0 <& <0, —00 < 5 < 4+00). 1 is the time variable in Rindler
coordinatesé = 0 corresponds to the event horizon of the Rindler spacetime. These two wedges are causally dis-
connected with each other. Hereafter, we concentratg@mi@ing our problem in thaght wedge. The world line

of the observer in Rindler coordinates is given as

n(t)=ar, E(t)y=a"1, x () =const (4)
where, 7 is the proper time of an observer, ands a constant of acceleration. The metric is choseg,as=
diagie?, —1, —1,..., —1). The line element of Rindler coordinates becomes

ds? = gy (x)dx"dx" = £%dn? — d&? — dx? . (5)
One obtains the gamma matrices in Rindler coordinates from the definition giy2n in

yOx) = gyﬁ, Vo=yL  PZwm=yE L Pl =yP L (6)

Here, they” (m =0,1,2,..., D — 1) are the usual Dirac gamma matrices of Minkowski spacetime. After com-
puting the spin connection by the definition given(®), one finds the components of the covariant derivatives in
Rindler coordinates

1
Vo=109,;+ YoV V1= 0, Vo =02, e Vp-1=0p-1. (7
Next, we introduce the following auxiliary fields

A A g
O(x)=—N1/f(X)1/f(x), n(x)=—N1/f(x)lV51/f(x)- (8)
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Then we obtain the partition function in our problem:

2, 2
= /Dlﬁ Dy Do D exp{iNdex «/—g|:—o 2-;]1 + 1/_/(iy”(x)Vu -0 — iy5n)1p]}
/DoDneXp{lN/de«/ |: o+ ]—iInDet(iy”(x)Vv—o—iy5n)}. (9)
Employing the largeV expansion, the effective action integral in the leading order becomes
D o’+r . v .
Seff = /d XA/ |: ] —iln Det(ly x)Vy, —0o — ly5n). (10)
Hereafter, we will omit ther field because it is not needed for our pases. Using the following relation
In Det(iy”Vv — o) :tr/de In(iy”VU - 0) = —tr/de «/—g/ds S(x,x;s), (12)
0
one obtains the effective action in the right wedge:
RH) /de N (——) +ltl’/de»\/ /ds S(x,x;s). (12)
Here we have introduced the Green'’s functidigs, y; s) andG (x, y; s) satisfying the following equations
1
iy'Vy —5)S(x, y; ) = —=08"(x, ), (13)
( : N
(iy"Vy+5)G(x, y;5) = S(x, y; 8), (14)
1
—y YV, — s2)G(x, i s) = ——8P(x, y). (15)
( M ) \/_—g

The Fourier transform of the Green'’s functiéhis

Gx,y;8)=G1—n2,61,62, X1 —y1;5)
/ dko [ dkP?
(271)0_2
Next, we change our theory to the Euclidean formalisnmtorporate with the thermal effect of acceleration
[8,9,14] The Euclidean Rindler spacetime has a singularity-at0. To avoid it, we have to choose the period of
the imaginary time as72[14,15] The Euclidean formalism in Rindler coordinates with a definite pesied2sz of

imaginary time coincides with the finite-temperature Matsubara formalism. The Matsubara formalism is obtained
by the following substitutions in our theo[¥6]:

dko 1 )
or — ; E, ko — iwy,
iS(kO’ El’ 52’ kL; s) - _S(a)ﬂ’ El’ 52’ kL; s)7 iG(kO’ El’ 52’ kL; s) - _g(wﬂ7 slv 52’ kL; s)7 (17)

where,w, is the fermion discrete frequency definedws= (2n + 1)7/8 (n =0, +1,£+2,...). For the Green’s
functions, we use the abbreviations

S(,&5)=S(wn, £, & k1ss), G, E;5)=G(wn, &, ki;s). (18)

e~ hom=mHikL-FL=Y ) G ko, £1, £,k ; 5). (16)
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Some manipulations derive the following differential equationd¢y, £'; s):

1 1 2 2 a)’% wy ~ ’ 1 ’
— — ) — yavi— s) == . 1
In Eq.(19), we divide the differential operator as follows
~ d?2 1d 5 o wi+1/4 Ly
=— 4+ -—— — - T R=——. 2
=it ia ("”s = ) 52 20
We introduce the projection operators in the gamma matrix space defined by
1 1 -~ = -
P =51+ vpr), P-=35A-yr).  G=G+Pi+G-P-. (21)

Here,P. +P_=1,P; Py =P, P_P_=P_,andP, P_ = P_P, =0 are satisfied. Thus, E(L9)can be written
as follows

A A~ P A oA 5 1
(Q+vriRGE &) =((Q+R)P +(Q — R)P)G(E, £ s) = ES(E, £). (22)
Therefore, Eq(22)is decoupled into the following two equations
A oA 1 A oA 1
(Q+R)Q+(S,‘§’;S)=55(5,%"), (Q—R)Qf(%“,é’;S)=53(%‘,5’). (23)

The eigenfunctions of the operataps+ R are given as

—2i2 -1 hr 2
vy = AL DOTNE e otat),

202 —1 ht 2
wo (= L2 s )OS &2 1 (). (24)

Here,a = \/k% + s2, andK, (x) is the modified Bessel function. The orthonormal conditiondfgr is [17,18]

o0

rd dE (122 — 1) coshr 2
f f%ﬁf(swﬁ(s): / ;(; O Kot Kt ola) = 5(2, 2. (25)
0 0

ExpandingG.. by the eigenfunctions’ﬁ, and using the orthonormal relatiofi. are obtained in the following
form

VgV E)
(wp £1/2)2 — (i2 +£1/2)2

g”i@,s’;s):—fdsz
0

(26)

o
_fdg (F2i2 — 1) coshw 2 Kip+1/2(@é)Kio+1/2(aE”)
N w2 (iwg— 2+ (iw,+2)
0
The position of the uniformly accelerated observer in Rindler coordinates is giv@h).lho obtain the value of
the effective potential at this position, we have to change the variablgs-ast andé — 1. The definition of
the effective potential is

Seff

[dPx =g
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Hence in our case

D—-2
vE (a0 +t Z /ds/ é )D"; (@as). (28)

RH (a,0) is alocal, intensive quantity. The effective potential is normallzeﬁ’éﬁs (a,0 =0)=0. The gap
equatlon corresponds to the stationary condition:

0= LVeff. (29)
do

Therefore, the self-consistency condition is derived as

dD ij_

=—AtrZ /(271)0 > (at a1 0). (30)

From the following relation

(Syown +l7/1(3s + 25) —V1-kL +S>G(E,$’; $)=8(, &), (31)

the gap equation is found to be

dD ij_ 5 _1 1
_—Atrz /(Zn)D 50 ,a ;0)

(—2i2 —1)coshr 2 N !
K;
X{ = (Kig+1/2(0a™)) (iop — R +)(w, + 2)
(2i§2 — 1) coshr §2 -1y)2 =
P Kig-
22 (Kig-1/20a™))" g s

2i) dP=2k, T sinhZe
—ZTG (271)70;,/ wT;{(Kiw/a-‘rl/Z(aail))z_(Kiw/a—l/Z(aail))z}a (32)
0

where,a = ,/kL + o2. To obtain the final expression in E(R2), the frequency summation was performed, and
the integration variable was changed@s~ w/a.

By using the result given above, we first examine theation for the determinatioof critical acceleration
for symmetry restoration. Hereafter, we restrict ourselves to the four-dimensionabcasé. Settingo = 0 in
Eq. (32) of the case of nontrivial solution, one finds

v [T 7 K\ )2 K\ 2
1:—E/kdk/da)sinhza){(K,'w/a+1/2<g>> — (Kiw/a—l/2<g>> } (33)
0 0
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Integration ink is performed by making use of the following formuile/,18]
oo
/dx Km(ax)Kn(ax)xl
0

=212a’1r(l+1)1r<l+m42r”+1>r<l+m;"Jrl)r(l_szrnJrl)r(l_m;”Jrl).

(34)
(Valid wheni(l —m —n) > —1.) Then we obtain

o )\‘ o0
A 2w
=— a)dwtanh w= —/ { } 35
2([ 2 ) 27m) +1 ( )

The integration in Eq(35)yields the equation for the detemation of critical acceleration.

AAZ a?
1= - e 36
272 2472 (36)

To obtain the above expression, we have simply used a catédf the regularization. Becausgg is positive, the
critical Hawking—Unruh temperature becomes

) _ dce 3 2 6

T,/ =—=,/—5A%——. 37
U 2w 72 A (37)
In order to compare with the usual thermal cdséus refer to the result in Minkowski spacetifi®]. The gap
equation in finite-temperature case is

A+\/A2+02} 2% T k2 1 )
o

A 2.2 .2
1= o Z{A Ac+o o<ln dk Zar, k2+62/T+1.
Hence, ato0 = 0, our Eq.(36) coincides with the case of usual finite-temperature gap equation in Minkowski
spacetime. The critical Hawking—Unruh temperature dependd @md 2 in the same way as the case of the
temperature of thermal restoration in Minkowski spacetime. Wheand A become IargeT(C) increases. In the
above expression, 3472 — 6/1 > 0 has to be satisfied. We assume this condition indicates the existence of a
critical couplingi.. Thus we arrive at the familiar expression:

(39)

Now, we give a rough estimation fer.. The Unruh temperature is given By = ha/(2rkgc) = a/(2.5 x
1072 (cms2))K (c is the velocity of light, andg is the Boltzmann constant). Here we consider the case of quark,
assumer, ~ A x 1071, and chooset = Agcp ~ 1 GeV[19]. Because 1 Ge 1.2 x 10'3 K, one has

ac~3x10**cms2. (40)

This value belongs to an extremely higcceleration regime. The observémast have to be accelerated to the
order of this value to observe the chiral symmetry restoration of a quark. A massive Dirac particle will be observed
as a massless particle abaye
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Next, we examine the behaviour of our gap equatian-at a.. The gap equatio(82)is

Ala 00
.)Laz . 2 2
1=—1? dxsmhﬂ'x/ydy{(Kix+l/2(Y)) — (Kix-12(1))"}
0 o/a

2 Ala 2 2
. o o o o
__MF dxsmhﬁx{(Kix—l/Z(g)) _<Kix+1/2(g)) +Kix—1/2(g)Kix+3/2(;>
0
o o
— Kix+l/2(_>Kix3/2(_) } (41)
a a

Whena — a., o/a — 0 may occur. This condition corrgends to the case when the argumemtf the Bessel
function K, (z) tends to zero. By using the forms of the Bessel functions/at— 0, we find

) Ala N 00 inh 2 2ix
sin

1:—2a2/xdxtanhnx—i—aofdx ™ (,0/ ) 5

s 4 cosfrx [(ix +1/2)

0 —00

AA2 ad? 22 S0\ 1 o
-0 = _ == — ) ——(In=—— ) 42

272 2472 n ’;(21'54) (n—l)!( 2a Wm) “2)

Here, v (n) is the digamma functiony (n) = Z” 1 1 — y (y is the Euler constant; 0.577...). To obtain the
final expression, we have performed an approprlate contour integration. Picking the largest contribution under the
conditiono « 2a, we get

AAZ xa® 2 2a
l=—5——5——0°Inle7— ). 43

272 2472 21° (e o ) (43)
The combination of this equation with E@R6) gives

2
a? —a®=12n0° |n(e_y ;). (44)

Taking the derivative with respect tg we have
do a a
da & 12noln(e=v2a/0) “0a2 - a?

under the conditiom <« 2a. The solution of this differential equation is

<0, (45)

—a?. (46)

C1 is an integration constant. In the vicinity of the phase transitiotlepends ow in the way of Eq(46). Because
the gap equation is equwalentao’R( )/80 = 0, we arrive at the following expression for the effective potential
from Eq.(42).

o
R(+) 1 A? a’® 20 & s2\" 1 1
- dsl- -~ 4+ = = S I
@)= /s s{,\ 22 242 T 2_; 22) ooi\2 4a2 —v)
/ -

1 1 2 1
=— (a? - a?)o? +—<| ;a+——y)o+

4872 8 4
1 1
= @(QCZ — GZ)O' -+ 370' + - (47)
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To obtain the final expression, we have used E86) and (44) This result is a kind of Ginzburg—Landau-type
energy functional. The effective potenti@7) clearly shows the phenomenon of broken symmetry by its wine
bottle-like shape under the variation with respect tfn the phase mode). Taking the derivative with respeat to

in Eq. (47), we find that this potential gives the sed-order phase transition. From K46), we find the critical
exponent of the order parameteiis 1/2, and this coincides with the case of the Landau theory of second-order
phase transition.

In summary, we have obtained several important results: (1) The critical Hawking—Unruh temperature of the
chiral mass for a uniformly accelerated observer is giveﬂf@s: ac/2mw = /3A2/m2 — 6/A, which coincides
with the case of the thermal restoration of the dynamical chiral symmetry breaking of the Nambu—Jona-Lasinio
model in Minkowski spacetime. (2) Based on the thermalization theorem, we have found that the effect of the
Unruh temperature will cause the restoration of the broken chiral symmetry. A point-like massive Dirac particle
located at the position of the accelerated observer can give the chiral symmetry restoration. By the examination
in the vicinity of the transition, we have found that thiéeetive potential (free energy density) is written as a
Ginzburg—Landau functional, and it gives a second order phase transition.

Finally, we would like to make some comments on several issues and possible extensions of this work. The
Rindler metric can be regarded as an approximation of the metric of a large mass Schwarzschild black hole near
the outside of the event horiz¢h4]. Thus the physics in Rindler wedge provides us with a simplified model to
study the situation around a Schwarzschild black hole. Investigations of the phenomena of dynamical symmetry
breaking in such alarge mass black hole is also an interesting problem. It is also important for us to study the finite-
density case, by using our model. In this work, we have only considered the case of scalar fermion—antifermion
condensate without a chemical potential. We can extend our theory to consider the other cases of symmetries, such
as vector, tensor and so forth. Moreover, a treatment of Majorana-type mass with the fermion—fermion condensate
(yy) is also interesting. This issue might be related to the problem of neutrino Majorana mass. The meson—diquark
bosonization of the Nambu—Jona-Lasinio md@€) in Rindler coordinates is possible. In such a case, to take into
account the Pauli-Girsey symmetry would give us a useful point of {2&W If the Pauli-Girsey symmetry
is realized in the Lagrangian, there is a rotational symmetry between meson and diquark. We speculate that the
phenomena we have found in this Letter will also occur in a Majorana-type mass.
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