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Abstract 

Reed, R.C., A decidable Ehrenfeucht theory with exactly two hyperarithmetic models, Annals 

of Pure and Applied Logic 53 (1991) 135-168. 

Millar showed that for each n < w, there is a complete decidable theory having precisely 

eighteen nonisomorphic countable models where some of these are decidable exactly in the 

hyperarithmetic set H(n). By combining ideas from Millar’s proof with a technique of 

Peretyat’kin, the author reduces the number of countable models to five. By a theorem of 

Millar, this is the smallest number of countable models a decidable theory can have if some of 

the models are not 0”-decidable. 

A theory T is Ehrenfeucht if it has finitely many countable models up to 
isomorphism and is not w-categorical. T is persistently Ehrenfeucht if for every 
n-type r(Z) of T, the theory T(C) in the language L(T) U {E} is Ehrenfeucht. 

Let 

WO) =defO, 

H(Y) =defH(X)‘, 

H(3.5”) =def{(.& Y>: x E WQ)e(Y)~~ 

be representative sets in the hyperarithmetic hierarchy, where x and e are any 
nonnegative integers. Arbitrarily define H(n) to be 0 for values of n not included 
above. Given a model .& and a set S, we say that Se is decidable exactly in S if d 
is decidable relative to S but is not decidable in any Turing degree below that of 
S. Other standard definitions may be found in [l, 2,6]. This paper consists of a 
proof of the following theorem. 
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Theorem. For each n < w there is a complete, decidable, persistently Ehrenfeucht 
theory T having exactly five nonisomorphic countable models: three decidable 
models and two models decidable exactly in H(n). 

In [4], Millar shows that any decidable Ehrenfeucht theory having a countable 
model which is not 0”-decidable must have at least five nonisomorphic countable 
models. Thus the theorem proved in this paper gives an example of a decidable 
Ehrenfeucht theory having the fewest possible number of countable models 
where some of these are not 0”-decidable. It appears to be unknown whether a 
decidable Ehrenfeucht theory whose undecidable countable models are exactly 
0”-decidable can have fewer than five countable models. 

This paper is essentially the author’s Ph.D. thesis, submitted to the University 
of Wisconsin, Madison. I would like to thank Terry Millar for his advice and 
encouragement while I was a graduate student. Part of the work was done while I 
was a research assistant under his supervision, supported by NSF grant 
MCS-8200729. 

Introduction 

There are several examples of decidable Ehrenfeucht theories having unde- 
cidable models. Peretyat’kin [5] was the first to find an example having the fewest 
possible number of nonisomorphic countable models, namely three. We give a 
brief description of it here, since the main idea is also used in the proof of our 
theorem. 

The language of Peretyat’kin’s theory includes infinitely many constant 
symbols, one for each node of a recursive binary tree D* having exactly one 
infinite branch, where that branch is nonrecursive. The theory consists of axioms 
for a dense binary tree, together with axioms stating that the constants are related 
by the greatest-lower-bound operator of the dense tree in the same way as the 
corresponding nodes of D*. Thus every model of this theory is a dense binary 
tree in which D* is embedded. There is a single decidable model, namely the 
(prime) model having no element above the infinite branch of D*. One of the 
other two countable models has a lowest element above the infinite branch of D*, 
the other has elements above this branch but no lowest such. It is easy to see that 
both of these models must be undecidable, for otherwise with the help of a 
parameter we could tell effectively whether or not an arbitrary element of D* 
belonged to the infinite branch: we fix an element x lying above this branch, and for 
any node d in D* we need only check to see whether d is below x in the model. In 
fact, both models are decidable exactly in 0’, since a node of D* belongs to the 
infinite branch if and only if it has infinitely many successors in D*, and the latter 
statement can be shown to be II:. 

Millar [3] gave the first example of a decidable Ehrenfeucht theory having a 
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countable model which is not 0’-decidable-in fact, not even arithmetic. He 
showed that for each IZ < w there is a complete, decidable, persistently Ehren- 
feucht theory having three decidable models and fifteen models decidable exactly 
in H(n). 

Like Peretyat’kin’s example, Millar’s involves coding into the theory a 
recursive tree Tr having a single infinite branch. In order that this infinite branch 
be Turing equivalent to H(n), Tr must be a subset of oCo rather than binary. 
The underlying o-categorical theory in Millar’s example is not that of a dense 
tree but is the theory of dense linear order without endpoints, hence the coding of 
Tr is accomplished through the use of unary relation symbols instead of constants. 
Millar’s theory has a single nonrecursive l-type whose set of realizations can have 
order type 0, 1, 1 + q, 1 + q + 1, n + 1 or tl, where 77 is the order type of the 
rationals. The remaining nonprincipal l-types are all recursive; the set of 
elements which realize any one of them can have order type 0, 1 + q or 11. The 
recursive nonprincipal l-types are tied together by means of binary relation 
symbols in such a way that, in any given model, all of these l-types are realized 
by sets having the same order type; there is no similar connection between these 
l-types and the single nonrecursive l-type. It is shown that every countable model 
of the theory is characterized by the order type of the realization set for the 
nonrecursive l-type and the order type of the realization sets for the remaining 
nonprincipal l-types, and therefore there are 6 x 3 = 18 different models. 

The proof given below combines the techniques used in the two examples just 
described; the tree Tr is embedded in a dense, infinitely-branching tree, and 
binary relation symbols are used to tie together the nonprincipal l-types. We note 
parenthetically that if {f} is a fl singleton- that is, f E 0”’ is the unique 
function satisfying Vn R(f, n) for some recursive relation R in one function 
variable and one number variable- then there is a recursive tree Tr c wCo 
having exactly one infinite branch, where that branch is 6 Thus the proof of the 
theorem will actually show that the two undecidable countable models of T can 
be made to be decidable exactly in any given pi singleton. 

Part I 

The proof will consist of four parts. In Part I, we show there is an o-categorical 
theory To whose countable model is an infinitely-branching dense tree on which 
two binary relations,<, and +, are defined. To will be the model completion of 
a theory T& the theory of trees with a Kleene-Brouwer ordering <r and a 
relation SH which is intended to measure the relative ‘heights’ of nodes in the 
tree. For example, o Cm is a model of T(, if we define a sH b to mean that 
length(u) c length(b). 

In Part II, the countable model of To will be used to describe the prime model 
of the theory T. We will then show that T admits effective elimination of 



138 R.C. Reed 

quantifiers and is therefore decidable. In Part III, T is shown to have exactly five 
countable models up to isomorphism, and in Part IV we verify that T is 
persbtently Ehrenfeucht. The five models will turn out to be: 

(Ml) A decidable prime model. 
(M2) A decidable nonhomogeneous model which is the reduct of the prime 

model of a recursive nonprincipal type of T. 
(M3) A decidable homogeneous model realizing all of the recursive types of T. 
(M4) A nonhomogeneous model decidable exactly in H(n) which is the reduct 

of the prime model of the single nonrecursive l-type of T. 
(M5) A saturated model decidable exactly in H(n). 
The language of To consists of the binary function symbol A and two binary 

relation symbols, <,_ and +. We make the following notational conventions: 

xsy e&fXAy=X, 

x<y e&f x~y&x#y, 

XlY %fX+Y&Y+x> 

v(U; x, Y) edef u=xAy&xIy&x<Ly, 

w(u;X,y,z) ~&fxAy=U=yAZ&Xly 

&Y IZ&X<LY<LZ, 

x=Hy Gdef ~sHy&y~“~, 

x<Hy edef x+y&x#,y. 

“vY xvz 
U U 

V(u;x, Y) W(u; x, y, z) 

The axioms of T; are: 

(1) XAy=yAX, 

(2) (XAy)AZ=XA(yAZ), 

(3) XAX=X, 

(4) [X~Z&&y~Z] + [(xCy)v(yCx)], 

(5) XAy<yAZ+ XAy=XAZ, 

(6) [~<LY~Y<LZl--, X<LZ, 

(7) (X<LY) " (x ‘Y) v (Y <LX), 

(8) X<LY + Ix +Y &Y {L-d, 

(9) x<y-,x<,y, 

(10) [x<~Y&x$Y&x A~<XAZ] + zcLy, 



A decidable Ehrenfeucht theory 139 

(11) ]6_Y&X-#Y& xAy<yAz] + x<L‘z, 

(12) XSHX, 

(13) Lx +y&ySHZ] + XCHZ, 

(14) (x SHY) v (Y %x), 

(15) x<y --, X<HY. 

Lemma 1. Every quantifier-free formula q(xO . . . x,-r) in L(G) is equivalent in 
TA to a finite Boolean combination of atomic formulas of the following forms: 

Xi AXj=X& AX!, Xi A Xi <L Xk A Xl, Xi A Xi SH Xk A XI, 

where i, j, k, 1~ n. 

Sketch of proof. It suffices to prove the lemma for atomic formulas q.~ From the 
axioms in Tb easily follows 

(1) W=XAyAZ fs [WcX&WsJ’ 

&[(W=XAZ)V(W=yAZ)]]. 

Next one shows that if s(xi - - * x,) and t(yi . . . y,,) are any two terms in L( TO) 
with exactly the free variables displayed, then in T& 

(2) S(XI * * * x,) = t(y1 . . . Yn) ++ O(% j9 

for some formula 0(X, J) which is a Boolean combination of atomic formulas of 
the form u A u = w A z, where u, u, w, z are variables from among those 
occurring in s and t. Without loss of generality, one may assume that s is 
XlAX2A*- *AX,,, and tisy,Ay,A** - A y,, for some m S n. Then (2) is proved 
using (l), by induction on m and by induction on IZ for each m ; we omit the 
details. 

Finally, it is easy to show by induction on m that for all m 2 2, 

,,yS, [xl A . . . A Xrn = Xi A X,1. 

Hence if R is a binary relation symbol, and s =x, A . . . A x, and t = y, A * * * A 

y,,, then in T& 

R(s, 4 @ ,$I-, LR( 
X 

; 
A Xi, y& A y,) & S = Xi A Xi & t = y& A yl] f 

l=sk./ei 

which completes the proof of the lemma when (2) is applied to the formulas 
S=X;AXjatldt=ykAy,. 0 

A basic n-type r(x,. . .x,_,) of a theory T is a maximal set 
formulas in the variables x0 * - . x,_~ which is consistent with T. 
immediately follows the next corollary. 

of quantifier-free 
From the lemma 



140 R.C. Reed 

Corollary 1.1. Each basic n-type r(x, * * . x,-J of Tb is generated by a single 
formula of L(T,), which will be denoted by /j T(x, . . . x,_,). 

Lemma 2. Let & t= T& and let a,. . * a,, _ 1 be any elements of A closed under A. 
If a,, E A, then exactly one of the following cases (1)-(X1) holds in ti. 

(1) 

(11) 

(III) 

(IV) 

09 

WI) 

(VII) 
(VIII) 

(IX) 

(X) 

(XI) V(a,,; a4, a,), for some p, q <n such that lV(a,; a4, a,), Vi <n. 

a, = ap, for some p < n, 

a, < a4, 

a, Iaq&a,5_a,, 

a, 1 aq&aq%an, I 

for q < n such that ai qk a4, Vi < n, 

ap <a,, for some p < n such that ap 4: ai, Vi < n, 

ap<a,<a,, 

a,<a,Aa,<a,&a, Iaq&a,<,a,, for some p, q < n such that 

a,<a,r\a,<a,&a, [aq&aqCLa,, 1 i[a, < ai < a4], Vi < n, 

V(a,; a,,, a,), for some p, q <It such that lV(a,; ai, a,), Vi < n, 

W(a,; ap, a,,, ar), for some p, q, r < n such that 
iW(a,; a4, ai, a,), Vi <n, 

Proof. It is easy to check that at most one of cases (1)-(X1) can hold. So it 

remains to show that at least one of them must hold. Assume none of cases 

(I)-(VIII) holds. Then there is p <n such that ap <a, and for no i <n, 
aP < ai < a,. The element ap is unique by axiom (4). Since case (V) does not hold, 

there is at least one q <n such that ap < a,. For any such q it is clear that 

a,, < a, A a4 < a,; since cases (VI)-(VIII) do not hold we actually have a,, 1 a4 and 
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up = a, A uq for all 4 such that a, < u4. Axioms (6)-(8) imply that <r linearly 

orders the set consisting of a, and those a4 which are distinct. Depending on where 

a, falls in this ordering, one of cases (IX), (X) or (XI) must hold. This completes 

the proof of Lemma 2. q 

Corollary 2.1. Let ~4 k Th and let a, . . . a,_, by any n elements of A closed under 
A. Zf a, EA, then either {a,, * * . an-,, a,} is closed under A, or there is a unique 
u~Asuchthut{u,~~~u,_,,u}und{u,~~~ a,_,, a, a,} are each closed under A. 

Proof. If one of cases (I), (II), (V), (VI), (1X)-(X1) holds, then {uO. . . a,_,, a,} 

is closed. Otherwise, let a be a, A a4 (in cases (III), (IV), (VII), (VIII)). 0 

Let us say that an n-type T(x,, . . . x,-J of TI, is closed if for all i, j < n there is 

k <n such that the formula xi A Xj = xk belongs to r. Clearly Lemma 2 implies 

that if T(.r,. * * X,-l) c qx, * * * x,-~, x,) are basic n- and (n + 1)-types of T& 
where Tis closed, then corresponding to 2 there is a unique case from (1)-(X1) in 

Lemma 2 which holds for every realization of Z in a model & of T,!,. 
If I& . . . x,-J c 2(&j. . . x_~, x,) are n- and (n + 1)-types of a theory, T, 

and @(x0. . - x,_~, x,) is a set of formulas in the language of T with only the free 

variables shown, then we say that @ generates Z over r if E is the unique 

(n + 1)-type of T containing both r and @. In Lemma 3 we show that every 

closed basic (n + 1)-type extension of a closed basic n-type of T{, is a principal 

extension, that is, generated over the n-type by a single formula. In fact, for any 

m < w, every closed basic (n + m)-type extension of such an n-type is principal, 

but the lemma as stated below will suffice for our purposes. 

Lemma 3. Zf I+, * . . x,-J c 2(x0 . . . xn-,, x,) are closed basic n- and (n + l)- 

types of T& then C is generated over r by the formulas from among x, dH xi and 
xi sH x, (for i <n) contained in 2, and the formula describing the unique case 
(1)-(X1) of Lemma 2 corresponding to 2: 

Proof. This is obvious if 2 contains x, = Xi for some i < n, so assume otherwise. 

Since r and 2 are closed, it follows from Lemma 1 that 2 is generated over r by 

the formulas it contains from among the following, for all i, j < n: 

X, A Xi = XI, x~ <L xi, X” =s HXi, 

X, AXi=X,, Xi<LXn, xi +,x,. 

We prove that membership in _Z of all of these formulas, except for those 

involving +, is decided by rand the formula describing the case from (1)-(X1) 

of Lemma 2 which corresponds to 2. Since E is closed, cases (III), (IV), (VII) 

and (VIII) of Lemma 2 do not apply. Of the remaining nontrivial cases, the proof 

of case (IX) is fairly typical. 
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Case (IX). {V( xP; x,, x,)} c 2, for some p, q -=cI~ such that {lV(X~; Xi, x,): 

i<n}cr. 

We first show that 1 contains x, A xi = xP A xi, for all i < n. This is easy if x,, 1 xi 

or xi sx,,. If x,, <Xi, then it suffices to show that X, A Xi = xp. Because xp < xq, we 

have xP GX; A xq. If this inequality is strict, the desired result follows from 

xP = x, A xq and axiom (5). Suppose xP = xi A xq. Note that xP G X, A Xi, since 

xP < x,. One now checks that xq <,_ Xi and xq f Xi, then uses axiom (11) to derive 

a contradiction from xP <x, A Xi. 

For all i < it, Xi <,_x,, if and only if either Xi cr_xP or Xi = xP. We leave the 

verification to the reader. 0 

Let the axioms of a theory To be those of Td together with the following: 

(*I) V_r 3Y [X<Yl, 

(*2) v_x 3Y [Y <xl, 

(*3) VxVy3z[x<y+x<z<y], 

(*4) Vx Vy 3z [x <y + V(x; z, y)], 

(*5) VX VY 3z [v(X A Y; X, Y)+ w(x A Y; X, z, Y)], 

(*6) VxVy32[x<y+V(x;y,z)], 

(*7) vxvy3z[z=,x&[y~zvz~y]]. 

7;, is consistent: a countable model & for To is an infinitely-branching dense tree 

in which <r is interpreted to be a Kle*ne-Brouwer ordering and dH has the 

following interpretation: fix a map h :A +Q onto the rational numbers Q such 

that for all a, b E A, if a < b, then h(u) <h(b), and such that for all a E A, q E Q, 
there is b E A with h(b) = q and either a G b or b =S a. Define a sH beSdefh(u) s 

h(b). 

Lemma 4. Zf r(x, * * * x,_~) c 2(x0 . . . x,-~, x,) are basic n- and (n + 1)-types of 
T& then 

T,tVxo* . . vx,_i [A T(X” . * *x,-1)+3x, A-Z(x,* “X,-1, x,)1. 

Proof. It suffices to show that, for any model d of To which realizes r, if 

&4 t= A r(u, * * * a,_,), then there is a, in A such that .&k A Z(u, * . * a,_,, a,). 

Assume, for the moment, that the lemma holds when r and 2 are closed; we 

prove the lemma for r and Z not necessarily closed. Any type A(xO + * * x,-J of 

TA is contained in a closed type Ao(xo . * * x,_~, yo. . . yP-i) such that any model 

realizing A also realizes do: just expand A by adding, for each i, j < n, a new 

variable yk and the formula xi A xi = y,. Fix such a closed basic type G(Z, Y) 

containing r(f). Then because of the way in which r. was defined, there is a 

unique basic type Zo(~, x,, Y) containing both r. and E(Z, x,). By Corollary 2.1, 
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either (1) & is closed, or (2) there are closed basic types &(Z, 7, y,) c 
.Z’&, X,, J, y,) such that &c &. Let ti be any model of To realizing r (and 
therefore realizing To), and suppose ti k A r,(E, 6) for elements G = a, - - * a,_, 

and d = bO. . . bp--l of A. If (1) is the case, then by our assumption that the 
lemma holds for closed types of T& there exists a, E A such that .&k 

A &(a, a,, 6). Clearly ~4 k A Z(ti, a,). If, on the other hand, (2) is the case, 
then the lemma for closed types gives b, E A such that & F A Zi(ti, 6, $,). Then 
another application of the lemma gives a,, E A such that .& k A &(ii, a,, b, b,). So 
again, & k A Z(f?, a,). 

It remains to prove the lemma under the assumption that r and 2 are closed 
types. Let Z$ be any model of TO realizing r and suppose that &k 
A T(a, - . . a,_,). By Lemma 3, it suffices to find a, E A such that a,. . . a, satisfy 
the formulas from among x, +xi and xi +X, (for i < n) contained in E, as well 
as the formula describing the case from (1)-(X1) of Lemma 2 corresponding to 2. 
Since axioms (12)-(14) say that + is a linear ordering of =,-equivalence classes, 
the cases in the proof are divided into subcases depending on where 2 might say 
X, is located in this ordering. We illustrate by giving case (V) in detail. 

Case(V). {X,,<X,}cZ: forsomep<nsuchthat {X,+Xk:k<n)cr 

Subcase (1). {x, =H Xi} c 2, for some i < Iz. 

By axiom (15) we have x,, <nX,, hence x, <n xi E r. Therefore Al k a, -CH ai, 
and now by axiom (*7) there is a, E A such that a, =n Ui and up < a,. 

Subcase (2). {Xi <H X, <n Xi} c 2, for SOme i, j < 12 such that {l[Xi <HXk <Hxj]: 

k<n}cr. 

Since xP < x,, We must have XP + i x by axiom (15) and the choice of i. So 
.& k up + ai, and axiom (*7) gives a’ and u” in A such that a,, C a’ < a”, a’ =H ai, 
and a” =H uj. By axiom (*3), there is a, E A such that a’ < a, < a”. 

Subcuse (3). {xi <n X,} c 2, for all i < n. 

Fix j < 12 such that ai s H uj for all i < it. By axiom (*7) there is a E A such that 
a=,aj and ap G a. By axiom (*l) there exists a, E A such that a <(I,. Hence 

aP <a,, and ui <n a, for all i < n since Uj <H a,. 0 

Lemma 5. TO admits elimination of quantifiers. 

Proof. Let q(xO - - - x,) be any quantifier-free formula in L(T,). We show there is 
quantifier-free 6(x, . * * x,-~) such that 

To t PX, r~(Xo * . * X,-l, x,) @ qx,. * * X,-l)]. 
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If TI, U {q} is not consistent then neither is To U { cp}, and in this case we let 8 be, 
say, ‘I’ (a 0-ary predicate symbol introduced for ‘false’). So suppose Th U { rp} is 
consistent. According to Lemma 1, every basic (n + 1)-type of Th in the variables 
Xg * . . x, is generated by the formulas it contains from among those in the finite 
set consisting of the following formulas and their negations: 

xi r\xj=xk AxI, xi A xi-+.,& Ax,, Xi r\XjGHXk AXI 

for all i, j, k, 1 s n. So there are just finitely many distinct basic (n + 1)-types of 
T& Fix K such that &(x, * - * x,) for i < K are those basic (n + 1)-types which 

contain f&o - * . x,). For each i < K, let 4(x,. . . x,-~) be the corresponding 
n-type projection. Then 

Using the fact that To extends T& 

. . X,) * iyK3xn /j zi(xO * . . xrz) 
1 

* 

From Lemma 4 we have, 

To k [3X, A Zi(X,. . . xn) e A &(XO * . * X,-I)], 

for all i < K. Hence 

. x,) f, ,4/, A CCQI . . . G-1) 
1 
> 

and therefore we let 13(x, * - - x,-J be VicK A c(x, * - - x,-J. This completes the 
proof of Lemma 5. q 

By Lemma 5, every n-type of & is determined by the basic n-type which it 
contains. Because Tb is contained in To and the theories are in the same language, 
every basic n-type of To is a basic n-type of T& Therefore Corollary 1.1 implies 
that for every n, each n-type of To is principal. Hence To is o-categorical (see [l, 
p. 1011). 

Since To admits elimination of quantifiers, To is submodel complete. To show 
that To is the model completion of T& it therefore remains to verify that the two 
theories are mutually model consistent. One direction is immediate, since 
Th c To. For the other direction, it suffices to show that every finitely generated 
submodel of a model of Th can be embedded in some model of To. But any such 
submodel is a model of T& since Tb is universal; and every finitely generated 
model of Th is finite, since it is only necessary to close downward under A. 
Clearly any finite model of TA can be embedded in the countable model of To. 
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Part II 

Fix 12 < o and a recursive tree Tr c oCw having exactly one infinite branch f*, 
where f* =T H(n). The existence of such a tree was first remarked on by Kreisel. 
(See [6, p. 4561.) Without loss of generality, assume that if 77 E Tr and there is 
m < o such that rl h (m ) E Tr, then for all m -=c w, q h (m ) is in Tr. For if Tr does 
not have this property we can replace Tr by 

The language of T consists of one binary function symbol A, infinitely many 
constant symbols c,, (one for each r,r in Tr), and infinitely many binary relation 
symbols: =+, +, E& L& H,, A,,, B; (for all 7, Z$ E Tr). 

Define a model .& for this language by letting (A, A, $, +) be the countable 
model of TO and interpreting the constant symbols and remaining relation symbols 
as follows. 

By the axioms of TO, fix a map h :A - Q onto the rational numbers, such that 
h(a) s h(b)ea =sH b, for all a, b E A. 

Interpretation of the constant symbols c,, 

Let 1 q 1 denote the length of the sequence rl E Tr. Fix an embedding g : Tr+ A 
such that for all rl ETr, h(g(q)) = 1~1, and such that for all nonterminal q E Tr, 

1(3a~A)[g(r)<a&(Vm<w)[g(rl^(m))<~all. 
Define cV =defg(n), for all rl E Tr. 

From now on, we identify Tr with its image in A under g. We will write ‘77’ 
instead of ‘g(q)‘, and Greek letters will be reserved for (the images under g of) 
elements of Tr, as opposed to arbitrary elements of A. In particular, p will denote 
the root node (e) of Tr. 

The condition h(q) = 1~1 given above implies that no element of A is 
+-higher than every node in Tr (and therefore no element of A lies above the 
infinite branch f *). The second condition on g is needed for (3) in the definition 
off, below. 

Interpretation of the relation symbols E& etc. 

For each rl E Tr, let U,, =,+f {a E A: q < a}. For each 9 which is nonterminal in 
Tr, fix a map f, from U,, onto Q such that for all a, b E U,, and all m < CO, 

(1) f,(a)<f,(b) e q =a A b and a cL 6, 

(2) f,(a) =f,(b) e v <a A b- 

(3) f,(rl^(m)) = m. 

For each terminal node rl in Tr, fix a map f, from U,, onto the negative rational 
numbers such that for all a, b E U,,, (1) and (2) above hold. Note that for all 
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q E Tr and all q E range(&), clause (2) implies that f;l(q) is a dense subtree 
isomorphic to the countable model of To. Now define for all 11, 5 in Tr and all 
a, b EA, 

E$(a, b) edef rl <a and 5 <b and f,(a) =f&), 

L$(a, b) edef v <a and 5 <b and f,(a)<.&(b), 

K,(a, b) @def 17 <b and h(a) =f,(b), 

A,@, b) edef rl <b and h(a) >f,@), 

&,(a, b) edef rl <b and h(a) <f,(b). 

This completes the definition of ~4. 
It may be helpful to think of H,,, A, and B, as defining a way of measuring 

height in the tree by means of the relation cL. If b is an element of U,,, define the 
q-tree containing b to be the set {a E A: q < a A b}. (Each f;l(q) is therefore an 
q-tree.) For each n in Tr, the q-trees are ordered by cL in an obvious way, and 
because of the density of A this ordering is isomorphic to Q. Fix a nonterminal 
node 7,~ in Tr. To each element a E A there corresponds a single q-tree in such a 
way that the higher the element a is with respect to +, the further to the right is 
its corresponding q-tree with respect to cL. Specifically, this correspondence is 
defined by the relation H,(a, b), which says that the height of element a is 
‘measured’ exactly by the q-tree containing b. The relation A,(a, b) (respectively 
B,(a, b)) says that the height of a is above (below) that measured by the q-tree 
containing b. By checking through the definitions, it is easy to see that if q is a 
terminal node of Tr, then the q-trees only measure heights less than the height in 
A of the root node of Tr. 

Define T=defTh(&). It will turn out that T is the model completion of the 
universal theory T’ whose axioms are listed below. This list is not a minimal set 
of axioms for T’; several of the axioms can be derived from the others, but have 
been included in order to simplify later proofs. Axiom schemes (20)-(50) become 
axioms for all q, 5, C in Tr and m < w, with the following exceptions: in 

(29)-(31) rl and 5 must be nonterminal, as must be 11 in (32) and in (36)-(38); in 
(32), E must be terminal. It is easy to check that L& is a model of T’. 

The axioms of T’ are: 

(l)-(15) Axioms of T& 

(16) co A cE = cC (for all 77, 5, 5 such that Tr L q A E = 5;), 

(17) cq A CE # cg (f or all n, 5, 5 such that Tr L n A ij # 0, 

(18) c,, cL cE (for all 11, Zj such that Tr b 77 cL E), 

(19) cg <H cE (for all n, E E Tr such that Jql c 151), 

(20) E$(n,y) - c,<x&c~<y&l~~(x,y)&~~5,(y,~), 

(21) Lgx, y) - cq <x 6% c* < y &-q(x, y) &q(y, x), 

(22) L$(y,x) - c,<x&c~<y&lE~(X,Y)&lL~(X,Y), 



(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 
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qx, Y) & =q(Y, 2) -+ Jq(4 z), 

Q(-& Y) & L&Y, 2) -+ G!(% z), 

q(4 Y) & Jq(Y, z) + q(& z), 

E+, x) & q4 Y) --;, &$(G Y )I 

qx, Y) - c7j <x A Y, 

/!qx,y) * c,<x&c,<y&c,=xr\y&x<,y, 

E&+,), x) - cg <x A con, 

L&(,),X) - cc <x&c* =x A CEA(m) &C@A(m) <LX, 

L$(x, Ctl+$)) f, c5 <x kc, =x A CeA(m) &x <LC5qm), 

L:(x, cs,,(,,)) f) cE <x (for 5 terminal in Tr), 

M@, Y) - cq <Y&+,(X, Y)&-,(x, Y), 

A& Y) f, c., <Y&-&(X, Y)&-,(x, Y), 

B,(x, Y) f, cq <Y &-4& Y)&%(x, Y), 

4(% x) c, ED, cPvEI))~ 

A&E, x) - 4(x, cv(,~,)), 

B&El x) - C&J^(I5,)7 x), 

H& Y) 3 W&J z) --WY, Z)ll 
f&(x, Y) + [A& z) f, %> ~11, 

K&x, Y) + [4(x, 2) f, WY, z>l, 

A& Y)&&@, ~1 + WY, zh 

A&, Y)& [WY, z) v L$(z, ~11 + A& z>, 

f&(x, YP[E~“Y, z) v Q(Y, ~11 ---, W-G ~1, 

qx, Y) --, [fqz, Y> -x =H ZIP 

f6& Y) + [A&, Y)++X <HZ], 

fh& Y) + [B,(z, Y) f,z <H x]~ 

A&, _Y) &&(z, J’) + Z <HX, 

A&, Y)&x dH Z - A,(z, Y), 

&(x, y)&z <Hx + &(z, y). 

147 

The goal for the remainder of this part is to show that T is decidable. For 

N > 0, define S, to be the finite tree Tr n NcN. Let L(T) r N denote the 

restriction of L(T) to the following symbols: 
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Let T’ 1 N denote the sentences of T’ which are in the language L(T) r N. Thus 
T’ r N is a finite subset of T’. 

Lemma 6. Let N > 0. Every quantifier-free formula Q, in L(T) 1 N is equivalent in 
T’ 1 N to a finite Boolean combination of atomic formulas of the following forms: 

UAv=WAZ, U<LW, Eg(u, w), f+ A v, w), 

UAV=z”WhZ, Jq(u, WI, A,(u A v, ~1, 

where each u, v, w, z is either a variable from among the variables occurring in cp, 
or a constant in L(T) 1 N. 

Proof. Since Th c T’ r N, it follows by a proof just like that of Lemma 1 that if 
s(x1 - . . x,) and t(yI * . . y,J are any two terms in L(T) r N with exactly the free 
variables displayed, and R is a binary relation symbol, then 

(1) T’ r N I- [4x, . . . x,) = t(yl - . . yn) - v% 31, 

(2) T’ r N k [N+, . - . ~2, t(yl- . . Y,)) f, 0% Y)], 

for some formula ~(3, y) which is a Boolean combination of atomic formulas of 
the form u A v = w A z, and some formula O(Z, jj) which is a Boolean combina- 
tion of atomic formulas of the forms R(u A v, w A z) and u A v = w A z, where in 
both cases U, v, w, z are variables or constants from among those occurring in the 
terms s and t. Thus every quantifier-free formula QI in L(T) 1 N is equivalent in 
T’ r N to a Boolean combination of atomic formulas of the following forms: 

UAV=WAZ, Eg(u A 21, w A z), H,(U A 21, W A Z), 

UAV=+WAZ, Lg(U A V, W A Z), A,(u A v, w A z), 

UAV<LWAZ, 

where u, v, w, z are variables or constants from among those occurring in ~1. 
(Note that, by the axioms in (35), any formula containing the relation symbol B, 
is equivalent to a formula not involving BV.) To complete the proof of the lemma, 
it therefore remains to prove (3)-(7) below in T’ 1 N, and apply (1) to the 
right-hand sides of each of these where necessary. The proofs are fairly 
straightforward using the axioms, and will be omitted here. 

(3) UAV<~WAZ f) [uAv<WAZ 

V[U<LW&(UAV)A(WAZ)<(WAZ)]], 

(4) Ez(u A v, w A z) f, ~~<uAV&Cg<w~z&E@.d,w), 

(5) J!$U A V, W A Z) f, C,<U AV&Cg<W AZ&Lg(U, W), 

(6) &(U A 21, W A Z) f, C,+WAZ&&(UAV,W), 

(7) A,(u A v, w A z) f-, cD < w A z &A,(u A V, w). 0 
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Corollary 6.1. Any basic n-type T(x, . . . x,-J of T’ 1 N is generated by a single 
formula of L(T) 1 N, which will be denoted by /j T(x, - * . x,_ 1). 

Proof. Immediate from the lemma, since L(T) r N is finite. Cl 

At this point it is convenient to have the following notation: 

cq +x edef CTJ <x and -I(~E E Tr)[c, < cE <xl. 

Lemma 7. Let N > 0 and n > 0. If r(x,. . * x,-,) c 2(x0 . * . x,_~, x,) are basic n- 
and (n + 1)-types of T’ r N, then 

TtVxO* * * k-l [A 00. . *x,-,)+3x, /p(X,*. ‘X,-1,X,)]. 

Proof. Since T = Th(d), we assume ti k A r(a, . * * a,_,) for some a0 . . * a, _, in 
A and show there is a, E A such that a k A E(a,, . - * a,_, , a,). By the first part of 
the proof of Lemma 4, it suffices to prove this under the assumption that rand 2 
are both closed. To further simplify matters, we may also assume without loss of 
generality that for all g ES,, the formula xi = cE belongs to r for some i <n. 
Therefore it is enough to find a, so that & k o(a,, - . . a,_,, a,) for every atomic 
formula CJ E 2 whose only terms are single variables. 

Fix 7 ES, such that ctl 4 x, is in 2. If no such q exists, then the proof is 
considerably simpler; it is like that given below when one ignores those 

statements containing references to q or r. In the following, h and fE (for 5 in S,) 

are the functions that were used in defining the model &. 

Claim 1. There are rational numbers q and r such that (l)-(5) hold: 

q<h(ai) e x,<Hx~EZ, 

(1) q = h(ai) e X, =H Xi E 2, 

h(aJ<q e Xi<HX, ~2, I 

Vi<n, 

(2) 

4 <h(aj) G B~(429 xj) E Z Vg E S, and 

4 =fE(aj> e &(-GzT xj> E 27 

q >fk(aj) Q AE-(x,, Xj) E Z I 

Vj < n such that 

CE < Xj E r, 

q<r e &(x,,x,)~Z 

(3) 4 = r e H,(x,, x,) E Z 

‘q>r G Av(x,,x,)~Z 

h(a,) < r e B,(xi, x,) E 2, 

(4) h(ai)= r CJ Hq(xi,~,)E 2, 

h(a,) > r e A,(x;, x,) E 2, I 

Vi <n, 

(5) 

r<f&j) @ L@,, xj) E Z Vg E S, and 

r =fE(aj) e EF(Xn7 xj) E Z Vj < n such that 

fE(aj) < r e Lz(xj9 X,) E -T Cg ( Xj E IY 
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Proof of Claim 1. Because J& != A T(a,, . . . a,_,) and _Z is consistent with axioms 
(12)-( 14), it is certainly possible to find q E Q satisfying (1). By the consistency of 
_Z with the axioms in T’, q can be found satisfying both (1) and (2). For example, 
suppose that n > 2 and that (1) says q must satisfy 

(*) 01) < 4 <h(%), 

where there is no k <n such that h(q) < h(a,) <h(q). Let E E S, and j <it be 
such that cg <xi E I'. We show that q can be chosen satisfying (2) for this E and j 

as well as satisfying (*). If h(a,)<fs(uj), then by the definition of ge, 
SB F [B,(u,, Uj) v Hc(u~, Uj)], hence r contains BE(x,, Xi) v &(x2, Xi). Also X, <” 

XZE 2 by (*) and (l), SO B,(x,, Xj) E 2 by axioms (47) and (50). Thus any q 
satisfying (*) will satisfy (2) for E and j, since q <fE(uj). Similarly, (2) can be 
satisfied if fE(Uj) s h(ul), using (46) and (49). Suppose h(ui) <fs(Uj) < h(uJ. 
Axioms (33)-(35) imply that 2 contains exactly one of B,(x,, xi), H,(x,, xi) or 
A,(x,, Xi)* If B,(X,, Xi) E 2, choose q SO that h(~l) <q <fs(~,); if f&(x,,, xi) E 2, 
let q =fc(Uj); if A,(x,, xj) E 2, choose any q satisfying fE(uj) <q < h(u,). 

Suppose q has been found satisfying (1) and (2). Since 2 is consistent with 
axioms (12)-(14). (33)-(35) and (45)-(50), it is clear that r E Q can be found 
satisfying (3) and (4). By an argument similar to that just given above, r can be 
chosen so that (5) holds as well. 0 Claim 1 

Claim 2. If q and r satisfy Claim 1, then there is a, in A such that h(u,) = q, 
fn(u,) = r, and a, * . . a,_ 1, a, realize the retiriction of 2(x, . . . x,-, , x,) to L( To). 

Assuming this claim for the moment, let q, r E Q and a, E A satisfy Claims 1 
and 2. To show that (a0 * + . a,) realizes 2, it remains to show that, for all i, j s rz 

and all 5, [ E S,, 

(**) d k R(Ui, Uj) e R(Xi, Xj)E 27 

where R can be B,, HE, A,, Eg or Lg. If both i < n and j <rz, (**) follows 
immediately from the fact that ti k A r(u, . . . u,_J. Let R be B,, and suppose 
i < n and j = it. If cE $ x, E Z; then & k c5 yk a, by Claim 2; hence ~2 k-~B~(u,, a,) 

and lB,&Xi, x,) E 2 by axiom (35). If 6 = 7, then (**) follows from (4), since 

s8kB,(~i,~,) e h(Ui)<fq(U,) e h(u,)<r e Bq(Xi,X,)EZ. 

We are left with the case where cE cc,, 4 x, E 2. Then cE < cr) A x, E .Z’, thus 
ti k cE < co A a, by Claim 2, hence & F E&c,, a,) and Ei(c,, x,) E 2, by axiom 
(27). So 

by axiom (44). The cases where i = n are proved similarly, as are the cases 
involving substitution of the other relation symbols for R in (**)_ 
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Proof of Claim 2. By (1) and Lemma 3, it suffices to find a, E A such that 
h(a,) = q, fV(a,) = r, and (a0 * * . a,_,, a,) satisfies the formula describing the 
case (1)-(X1) of Lemma 2 corresponding to _Z. The cases to be considered are 
the same as those in the proof of Lemma 4, without the subcases needed there. 
We sketch the proof of case (V), which is typical. 

Case(V). {xi<x,}cZ:forsomei<nsuchthat{x~~~~:k<n}c~ 

Since by assumption ctl 4 x, E 2, we have crl <xi E r First assume c,, <xi E lY 
Let a E A be an element such that h(u) = q. Since xi cHx, E Z by axiom (15), 
z$ k uj <n a by (1). Axiom (*7) gives a, E A such that /~(a,) = h(u) and co < a, < 
a,. Since the formula c,, <Xi <x, is in 2, we obtain &(a,) =fq(ui) = r from (5) 
and axiom (27). 

Now assume ctl = Xi E r Note that if q is a terminal node of Tr, then r < 0 by 
(5) since in that case Lz(xn, ctO)) E 2 by axiom (32), and since fP(cc,,,) = 0. So, 
whether or not q is a terminal node, T is in the range of fq and we can let 
D =f;l(r), a dense subtree of .~4 growing above c,,. Fix a E A such that h(u) = q, 
and let a’ be an element of D. As above, & k Ui <n a, and there is a, E A such 
that !~(a,) =h( ) a an d u, and a ’ are comparable. This implies C~ = ai < a,, hence 

CO<& AU’, so fq(u,) =fq(u’) = r by axiom (27) and the choice of a’. 0 

Define %‘E to be the set of all models of L(T) r N having for their universe the 
complete finite tree McM, with A and <,_ interpreted as usual. Since L(T) 1 N is 
finite, so is the set %?f, and clearly the models in %Yg can be constructed uniformly 
effectively given M and N. 

Lemma 8. Fix N > 0 and let QI(X~. . * x,-J by any quantifier-free formula in 
L(T) 1 N with the n free variables shown. Zf T’ 1 N U { cp} has a model, then it has 
a model in %‘,“, where M = $n2 + I&l . n + I&l. 

Proof. Suppose $?8 is a model of T’ 1 N and % b q(bO - - * b,_,) for some 
boa.. b,_I in B. Let 

B’ =def {bi A bi: i, j <n} U {bi A co: i <n, r] E &} U &. 

Note that IB’I s in” + I&,[ . n + I$,,(. From (1) in the proof of Lemma 1, we have 

So B’ is closed under A. Therefore let 3’ be the submodel of 9 with universe B’. 
$23’ is a model of T’ r N because T’ is universal, and 9’ l= &bO * - . b,_,) because 
Q, is quantifier-free. Let 9&, be the reduct of 9’ to the language {A, CL}. It 
suffices to prove the following claim. 
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Claim. Zf SJ = ( BO, A, cL) is a finite model of axioms (l)-(11) of T’, then for 
any M such that lBol s M, there is an isomorphic embedding L?&, E MCM. 

Proof of Claim. By induction on IBol. The claim obviously holds if lB,I = 1. 
Assume JB,,l > 1 and fix M 2 IB,,l. Because B, is finite, axioms (6)-(8) imply there 
is do E B, which is <,-minimal in BO. For all d E BO, .%3,, b d,, c d. (If there were 
d E BO with do =# d, then do A d < d,, contradicting the <,-minimality of d,.) Map 
d,, to the root of kP”. 

Since BO is finite, there is a maximal set {d, * - * dk} of distinct elements of BO 
such that for all 1 s i s k, di # do and there is no d E BO with do < d < di. For each 
such i, define Bi =def {d E B,: di s d}. Clearly 

By axiom (4), Bi II Bi = 0 whenever 1 s i #j 6 k. From axioms (l)-(3) it also 
follows that each Bi is closed under A, so for each i there is a submodel $%i of .5&, 
having universe Bi, and pi is a model of axioms (l)-(ll), since these axioms are 
universal. Now for each 1 G i c k, we have lBil < lBol and I Bil s M - 1, so by the 
induction hypothesis there is an isomorphic embedding 93i Z (M - l)<“-’ sending 
di to the root of (M - l)<“-‘. For each such i, there is also an obvious 
isomorphism (M - l)‘“-’ Z MCM sending the root of (M - l)<“-’ to the node 
(i) in MiM. Without loss of generality assume dI cL d2 cL . . . cL dk. Map each 
Bi to the isomorphic copy of (M - l)<“-’ having root (i) in MCM. 

This completes the definition of the isomorphic embedding @, 2 MCM, proving 
the Claim and Lemma 8. 0 

Lemma 9. T admits effective elimination of quantifiers. 

Proof. We show that uniformly effectively in quantifier-free I&,, - - . x,) there is 
quantifier-free 0(x, * . * x,-J such that 

T 1[3x, &x0. . * X,-l, x,) ++ qx, * * * X,-l)]. 

Fix such &x0. . -x,) and let N be least such that rp is in L(T) 1 N. By Lemma 8, 
we can effectively determine whether or not T’ 1 N U {cp} is consistent. If it is not 
consistent, then neither is T U {q}, and in that case we just let 0(x,. . . x,-~) be, 
say, cp#cP. If T’ lNU{cp} is consistent, then by Lemma 8 we can effectively 
determine all basic (n + 1)-types of T’ 1 N containing cp, as follows. By Corollary 
6.1, each basic (n + 1)-type of T’ r N is generated by a single formula which is the 
conjunction of certain formulas from a fixed finite set of atomic formulas. This 
fixed set can be effectively obtained uniformly in n and N, so by Lemma 8 we can 
effectively determine all of the formulas A 2(x, - - - x,) which generate different 
basic (n + 1)-types 2(x, * - -x,) of T’ r N. For each one of these formulas, we use 
Lemma 8 again to determine whether or not the conjunction with q is consistent 
with T’ r N. 
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Therefore fix K such that &(x,, - - . x,) for i < K are those basic (n + 1)-types of 
T’ r N which contain q, and let /j ~i(~O~ . . x,) denote the formula which 
generates the type. The proof is completed as in Lemma 5, using Lemma 7 and 
the fact that T extends T’ r N. 0 

Corollary 9.1. Every formula cp in L(T) is equivalent in T to a finite Boolean 

combination of atomic formulas of the following forms : 

UAV=WAZ, U<LW, -q(U, w), f&(u A v, w), 

UAV SHWA.2, q(u> W>, A,(u A V, W), 

where each u, v, w, z is either a variable from among the free variables occurring 

in q, or a constant in L(T). 

Proof. By Lemma 9, q~ is equivalent to a quantifier-free formula I/J having the 
same free variables. Letting N be least such that 3 is in L(T) 1 N, the corollary 
now follows from Lemma 6. 0 

Corollary 9.2. T is decidable. 

Proof. It suffices to show that any quantifier-free sentence o in L(T) is decidable. 
This follows from the axioms in T’ and the fact that Tr is recursive. Cl 

Since T admits quantifier elimination, T is submodel complete. The verification 
that T is the model completion of T’ is similar to that which showed TO to be the 
model completion of Th (at the end of Part I). In particular, a finitely generated 
model of T’ has for its universe the tree Tr with finitely many additional nodes 
attached, and any such model can be embedded in the model .& defined at the 
beginning of Part II. We do not give further details since we will not make 
explicit use of the fact that T is the model completion of T’ in what follows. 

Part III 

In this part we show that T has exactly five countable models up to 
isomorphism: three decidable models and two models decidable exactly in H(n). 

We first characterize all l-types of T. Fix a recursive map I: w ---, Tr such that 
lZ(k)l = k for all k < o. 

Lemma 10. Each l-type T(X) of T contains exactly one of the sets (Al)-(A12) 
below (for unique r,~ in Tr and m < CO where applicable, and for a unique choice of 

l&,(x, x), A,@, x) or B,(x, x) if this set is (AlO) or (All)), and contains exactly 

one of the sets (Bl)-(B4) below (for a unique k < o if this set is (B2) or (B3)). 
Moreover, r is generated by these two sets. 

(Al) {x = c,>, 

642) {x Kc,>, 
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(A3) {x 1 c,,x<,cpI, 

(A4) {x 1 cp> cp <LX), 

(A9 {c, <x>, where q is terminal in Tr, 

(A6) {ctl <x < ctl+,>> 

(A7) {c, <x A co+) <c+(m), x 1 +(m), x <L c,p(m)h 

w3) {c, <x A C@(m) < Gj^(m), x I f+(m), Gp(m) <LX), 

(A9) {I%+~ G,,(O))), 

(AIO) WC,; cob, x, c,+z+i))> U V>, 

(All) {c, <x, c,,~(~) <,_x: m < w} U {?}, 

(A12) {cc <x: 5 of*}, 

(BI) {X <H Cpb 

(B2) {X =H C,(q), 

(B3) {cl(k) <Hx <H Cl(k+l))r 

(B4) {Ce <,X: 5 E Tr}. 

Proof. Let T(x) be any l-type of T. Clearly r contains a unique set from 

(Bl)-(B4), since axioms (12)-(14) make + a linear ordering of =,-equivalence 

classes. A proof like that of Lemma 2 shows that r must contain a unique set 

from (Al)-(A12). To prove that r is generated by these two sets, it suffices to 

show that they decide all the atomic formulas listed in Corollary 9.1 (for all 77, 

5 E Tr) having the single free variable x. That all such formulas of the form 

u A u = w A z are decided is easily checked with the help of the following claim. 

Claim. Zf p E Tr, then T(x) contains at least one of the following four formulas: 

x A cp =x, 

X A Cp = C,, for some Y E Tr, 

XACw=XACp, 

X A Cp =X A C,p(m), for some q and m such that r contains (A7) or 

(A8). 

Proof of Claim. The Claim is immediate if r contains (Al). If r contains (A2), 

then clearly x A cp =x is in r; if (A3) or (A4), then x A cp =x A cp; and if (A5) 

for some terminal n E Tr, then x A cp = c9 A ccc. Suppose (A6) is in r for some 

r,~ E Tr and m < w. It is not hard to show that r then contains x A clr =x if 

crlA+) S cP, and contains x A c, = crlAlrn) A cp otherwise. Cases (A7) and (A8) are 

similar. If r contains (A9), (AlO) or (All) for some ?I, then x A cp = c,, A cp. 

Finally, suppose (A12) is in r. Then there is 5 l f * such that cE + cP, and r 

contains x A cc1 = cE A cp for any such 5. This completes the proof of the Claim. 

0 Claim 
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Next we consider formulas of the form u <L w. Fix any p E Tr. If r contains 
(A2) or (A3), then clearly x <r C~ is in r; if (A4), then c,, <,x. In the remaining 
cases (A5)-(A12), one can show using axioms (l)-(11) that x <= C~ is equivalent 
in r to a formula involving only constants. For example, if r contains (A5), then 
the equivalent sentence is C~ <,_ cfl; if (A8), it is [cVAcrn) <=c~ &++) 4: c,]; if 
(A12), then xcr_ cI1 *cE cL C~ for any SJ ef* such that cE $ clc. With axioms (7) 
(8) and (16)-(U) this shows that membership in r of all formulas of the form 
u <,_ w is determined by the set from (Al)-(A12). 

It is easy to see that x s H cI1 E r if and only if r contains either (Bl), or (B2) 
for k 6 1~1, or (B3) for k < 1~1. A similar result holds for the formula C~ +x. 
Other formulas of the form u A v + w A z are equivalent in r to formulas whose 
membership in r we already know is decided. In showing this, one makes 
extensive use of the Claim to reduce the number of cases that need to be 
considered. 

Axioms (20)-(50) can be used to show that the remaining formulas also are 
equivalent to formulas previously dealt with. For example, consider A.&, c,). 
This formula is clearly not in Tif cE 4: c~, by axiom (34). Otherwise there is k < o 
such that c@^(k) S Cp, hence @(cE^(k), c,) by (27), so 

A&, c,) @ A& cg~(r+) f, cl(k) <HX, 

using (43), (46) and &(c[(k), cE^(k)) (axiom (36)). 
The proofs for formulas of the forms Eg(u, w) and Lg(u, w) tend to split 

into two cases depending on whether or not 5_ is a terminal node of Tr. Cl 

As in Part I, we say that an s-type Z(n, * - -x,-J of T is closed if for all i, i <s 
there is k <s such that Xi A Xj = xk is in 2. 

Lemma 11. Each closed type of T is generated by ifs l-type projections and finitely 
many formulas of L(T). 

Proof, Let 2(x, . . . x,-J be a closed s-type of T, and let I for i <s be its 
l-type projections. Fix N least such that for each i <s, 

q ESN, if c contains (Al), (A5), (A9), (AlO) or (All) for r~, 

% q”(m) l SN? if & contains (A6), (A7) or (A8) for r~ and m. 
Define 

GSN=def{UA21=WA2,UAU~HWA2,U<LW, 

Eg(u, w), L$(u, w), H,(u A v, w), A,(u A u, w): 

7, 5 e 5N, u, 2), w, r e {xi: i <s} u {c,: q E SN}}, 

Gen, (x0 . . .X,-I) =def{Q)(%. . * x,-J: QI E GSN r-l 2} 

u {7(X” * . .x,_,): q E G>-- Z}. 

We show that _Z is generated by its l-type projections 4 and the finite set Gen=. 
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Since 2 is closed, and since the Claim in the proof of Lemma 10 is true of the 
l-type projections 4, it follows that each formula in Z of the forms u A v = w A z 
or u A v sH w A z is equivalent to either a formula in a single variable or a 
formula in CL. Membership in _Z of formulas of the form u <r w is obviously 
determined by the l-type projections if u and/or w are constants. Otherwise we 
have a formula xi <r Xj which occurs in Cs,. 

Next we consider the formulas Et&, Xi) and L~(x~, Xi) where i, i <s and 
p, Y E Tr. These formulas do not belong to 2 if cP { Xi E 4 or c, # Xj E 4 (axioms 
(20) and (21)). Recall that if cP 4x, then by definition cP <x and there is no 
7 E Tr such that cP < crl <x. If both cP 4 xi E c and c, 4 Xj E q, then by the 
choice of N both ~1 and Y belong to S,, hence membership in _Z of the formulas 
under consideration is determined by Gen,. Now suppose there is n E Tr such 
that cP < cQ <xi E c. Then E:(c,, xi) by axiom (27), hence 

Et(Xi, Xj) f, EXc?J, xi)p Lt(Xi, Xj) ++ Lt(c,p xi) 

by (23) and (26), respectively, so membership in 2 of the formulas on the left is 
determined by q. Similarly, if q contains c, < ctl <xi for some n, then & 
determines whether or not these formulas belong to 2:. 

Formulas of the forms H,,(u A v, w) and A,(u A II, w) are treated in a similar 
manner. Note that if we have a formula like Hy(xI A cp, Xi) for some i, j <s, and 
if c, 4 xi E q, then one can use the Claim from the proof of Lemma 10 to make a 
substitution for xi A cp which results in a formula which either is in one variable 
or belongs to G&. 0 

Let 

r*(x) =dq <x: 5 Ef*>, 

c&(x) =def{~l <x, coA(m) <,x: m < w}. 

By Lemma 10, a l-type of T is nonprincipal if and only if it contains at least one 
of these sets. It may contain at most two, namely A(x) together with either T*(x) 
or Q,(x) for some q. Note that of these sets of formulas only T*(x) generates a 
complete type, since any l-type containing (A12) of Lemma 10 contains (B4). 
This type is the single nonrecursive l-type of T. Also note that, by the axioms in 
(28), G,(x) is equivalent to {L:(c~(,), x): m < o}. 

In the next three lemmas, we show that realization of any nonprincipal l-type 
(in particular the nonrecursive l-type) in some model of T forces all the recursive 
l-types of T to be realized in that model. We first note the following. 

Every model d of T satisfies one option from (Ia)- and one option from 
(IIa)-(IIc) below. 
(Ia) A is omitted, 
(Ib) @a c A)[A(a’) & (Va c A)[A(a) e d !=a’ + a]], 
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(Ic) Otherwise; that is, A is realized and 

(Vu’ E A)[A(a’) + (3a E A)[A(a) & & k a cH a’]], 

(IIa) r* is omitted, 
(IIb) (5 E A)[Z-‘*(u’) & (Vu E A)[T*(u) e s4 ku’ s a]], 

(11~) Otherwise; that is, r* is realized and 

(Vu’ E A)[Z-*(a’) j (3 a E A)[Z-*(a) & ~4 k a < a’]]. 

Lemma 12. Let & be any model of T. Zf d satisfies option (IIb), then & satisfies 

option (Ib). Zf s4 satisfies option (IIc), then d satisfies option (1~). 

Proof. (IIb) j (Ib) Suppose that a’ EA realizes r*, and that for all a EA, 

T*(u) e Se k a’ s a. Clearly u’ realizes A. We show that if a E A, then A(a) if and 
only if &! bu’ GH a. One direction is immediate: if d I= a’ cH a, then clearly A(u). 

For the other direction assume .& b a -CH a’ in order to prove the contrapositive. 
Then by axiom (*7), there is b E A such that b =H a and b <a’. By choice of a’, b 

does not realize r* , so there is q E f * such that & k b < crl. Hence & b b cH c, by 
axiom (15), and therefore J& b a cH ctl ; so a does not realize A. 

(11~) + (Ic) Any element realizing r* realizes A, so (11~) implies A is realized. 
Suppose A(u’) for some a’ in A. We want to show there is a E A such that A(u) 

and & k a <Hu’. Fix any element a, E A realizing r*. If & k a,, cH a’, then using 
(11~) we take a E A to be an element realizing r* such that & bu <a”, hence 
J-& La <Hu’ by axioms (13) and (15). So assume that & ka’ -CH a,,. There is b E A 

such that b =Ha’ and b <a, (axiom (*7)). Necessarily b realizes I’*, since 
otherwise there would be r,r E f * such that ti b b < co, and we would have 
& k a’ cH c,,, which contradicts A(u’). By (IIc), there is a E A realizing I’* such 
that d k a < b. Clearly A(a) and ti b a -=CH a’. This completes the proof of Lemma 
12. 0 

In Lemma 15, we will prove that any two countable models of T satisfying the 
same options from (Ia)- and (IIa)-(IIc) are isomorphic, so Lemma 12 will 
imply that T has at most five countable models up to isomorphism. The existence 
and Turing degree of each of these models will be verified following the proof of 
Lemma 15. Referring to the list at the beginning of Part I, (Ml) will be the model 
satisfying (Ia) and (IIa), (M2) the model satisfying (Ib) and (IIa) (the reduct of 
the prime model of Z(u), where T(x) is any recursive l-type of T containing 
A(x)), (M3) the model satisfying (Ic) and (IIa), (M4) the model satisfying (Ib) 
and (IIb) (the reduct of the prime model of r*(a)), (M5) the model satisfying 
(Ic) and (11~). 

Lemma l3. Let ~4 be a model of T, let n, 2j be any nonterminal nodes of Tr, and 

let a, b EA. 
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(1) Zf [ZZq(a, b) v B,(a, b)] and A(a), then av(b). 
(2) Zf [Hq(u, b) v A,(u, b)] and Q,(b), then A(u). 
(3) Zf [Eg(u, b) v L’&u, b)] and Gv(u), then Q,(b). 

Proof. (1) Let m < o. Fix 5 ETA such that 151 =m. Then Hq(cc, cqACmj) by 
axiom (36). Now A(u) implies ci <uu, hence axiom (46) yields A,(u, Cam). If 
H,(u, b), then L:(c~~(~), b) by (40). If &(a, b), use (42) instead of (40). The 
proofs of (2) and (3) are similar. 0 

The following lemma implies that if & is a model of T and & realizes A or 
realizes Qq for some q in Tr, then d realizes aI, for every nonterminal 77 in Tr. 
Statement (b) in this lemma says that if & satisfies option (Ib), then growing above 
any nonterminal node q of Tr there is a <,-leftmost subtree of A every element 
of which realizes @?, namely the subtree {a E A: E;(b’, a)}. 

Lemma 14. Let ti be a model of T and let q be any nonterminal node of Tr. 
(a) Zf .d satisfies option (Ia), then & omits @,,. 
(b) Zf d satisfies option (Ib) and u’ E A is us in (Ib), then 

(3b’ cA)[Gv(b’) and .& kH,(u’, b’) and 

(Vb EA)[@,Jb)@&[[E;(b’, b) v L;(b’, b)]]]. 

(c) Zf &! satisfies option (Ic), then .# realizes Qq and 

(Vb’cA)[@,,(b’)J(3b~A)[@,(b)&&L;(b, b’)]]. 

Proof. (a) To prove the contrapositive, assume there is b in A realizing GI,. 

Because the map h defined in Part II is onto, T kVx 3y [c, <x-, H,,(y, x)], so 
there is a E A such that d k H,(u, b). Then A(u) by Lemma 13(2). 

(b) Suppose that a’ in A realizes A and that, for all a EA, A(u)G.& La sH a, 
as asserted in (Ib). Since q is nonterminal, the map fq defined in Part II is onto Q, 
hence T I-V_x 3y H,(x, y). So there is 6’ in A such that &(a’, b’), and this b’ 
realizes Qq by Lemma 13(l). If some b E A realizes Gq, then, as in the proof of 
(a) above, there is a EA realizing A such that Hq(u, b). By choice of a’, 
&/=a’<” a, hence either H,(u, b’) or A,(u, b’) by (45) and (46), so &k 

[E;(b’, b) v L$(b’, b)] by (39) and (40). The converse follows from Lemma 

13(3). 
(c) Since & satisfies (Ic), & realizes A, hence d realizes Qq by Lemma 13(l) 

because T t Vx 3y H,,(x, y). So suppose that b’ realizes $ in A. Then there is a’ 
in A realizing A such that A? k H,(u’, b’). Because d satisfies option (Ic), there is 
a E A realizing A such that a CH a’, hence d k B,(u, b’) by axiom (47). Finally, 
there is b E A such that e,(b) and ti k H,(u, b), so by axiom (41) we have 
d k Li(b, b’), as was to be shown. 

This completes the proof of Lemma 14. 0 
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Corollary 14.1. Any model of T satisfying option (Ia) is prime. 

Proof. If & is a model of T satisfying option (Ia), then s~4 clearly omits any l-type 
containing (B4) of Lemma 10. By Lemma 14, & also omits any l-type containing 
(All), and by Lemma 12, &Z cannot realize (A12). Therefore Lemmas 10 and 11 
imply that the only closed types realized by ti are principal. Since any 
nonprincipal type of T is contained in a nonprincipal closed type realized by 
exactly the same models of T, it follows that ti realizes only principal types. q 

Lemma 15. If two models J& and S of T satisfy the same option from (Ia)- 
and the same option from (IIa)-(IIc), then S& = 3. 

Proof. If d and $3 satisfy option (Ia), then by Corollary 14.1 they are prime 
models of T and therefore isomorphic. So in the proof below we assume that &? 
and 53 satisfy either (Ib) or (1~). 

We construct the isomorphism f :A+ B in stages, defining finite partial 
functions fs so that f =defIJs fs. At each stage s > 0, elements a, E A and b, E B are 
chosen so that 

is a partial isomorphism. The construction is a modification of the usual 
‘back-and-forth’ method, with the added complexity of the construction resulting 
primarily from the necessity of guaranteeing that the type of (a0 * * - a,) is closed 
at every stage s. 

Suppose that at the beginning of a ‘forth’ stage s > 0 we have s-tuples 

(6.. .a,_l) in A” and (b,. * * b,_,) in B” such that the partial function fs_1, 
defined by fs_I(ai) =defbi for all i <s, is an isomorphism. How do we find an 
image b, E B for a given element a, E A? If T(x, . . . x,-~) c 2(x, . . . x,_~, x,) are 
the types realized in A by (a0 - * * a,_,) and (a0 * - * a,_,, a,), respectively, then 

(b,. . . b,_,) realizes r and we need only find b, E B such that (b,, . . . b,_I, b,) 

realizes 2. To do this it will suffice to find a formula 0(x,. . - x,) in &x,. . . xs) 

which generates E over r, that is, such that 

r(d,. - - d,_,) t O(d, . . . dS_I, x,)-+ a(d,, . . - d,_I, x,) 

for all UE _Z. For since r contains 3x, 0(x, * . .x,-i, x,), we have $+?b 
3x, i3(b,. . . b,_I, x,), and we can let b, be any element of B such that 
L?ake(bo** - b,_I, b,). Usually it will be possible to define 8 with the help of 
Lemmas 10 and 11; this is where we need the restriction that r and _Z be closed. 
When it is not possible to define such 8, it will be necessary to find b, by more 
direct means. 

Before describing the construction in detail, we give an informal outline. We 
start things off at stage 0 by simply letting a, =def~p, b, =def~p, and defining 
fo =def { ( ao, b,)}. At stage 1, we find elements a, E A and bI E B realizing A if the 



160 R. C. Reed 

models satisfy option (IIa) and realizing r* otherwise. If the models satisfy (Ib) 
(respectively (IIb)), these elements are chosen so that they witness the existential 
statement in (Ib) (respectively (IIb)). (The proof of Lemma 12 shows that any 
element witnessing (IIb) also witnesses (Ib).) The elements a, and b1 will make it 
easier to define fs at stages s > 1 should a, and b, happen to realize a nonprincipal 
type. At the stages s = 12k + 2, for k 3 0, we first choose a E A least (with respect 
to some well-ordering of A fixed throughout the construction) such that 
a $ dom(fs_i); this element will enter dam(f) at stage 12k + 7, ensuring that 
dam(f) is A. In case {a0 * * * a,_,, a} is closed under A, f is trivially extended at 
stages 12k + 2, 12k + 3 and 12k + 4; then at stages p = 12k + 5 and q = 12k + 6, f 
is extended, if necessary, so that up and u4 satisfy certain conditions involving the 
element a which will make it easy to find the image b, E B of a, =defu at stage 
r = 12k + 7. But if {uO. * * a,_,, a} is not closed, then by Corollary 2.1 there is 
u’ EA such that {a,, . * . u,_~, a’} and {aO. . . u,_~, a’, a} are each closed; in this 
case a’ must enter dam(f) before a does, and we make sure this happens at stage 
12k + 4, if necessary with the help of elements a,, and u4 chosen at stages 
p = 12k + 2 and q = 12k + 3 to satisfy certain conditions related to a’. In both 
cases, the elements up and u4 are chosen in such a way that {a,, - . - a,} is closed 
under A for every s, 12k + 2 G s < 12k + 7. Thus six consecutive stages are used 
in order to define f so that dam(f) includes the element a E A chosen at the 
beginning of stage 12k + 2. 

At stage s = 12k + 8, we will choose b E B to be the least element (with respect 
to some fixed well-ordering of B) such that b $ rng(fs-J. This element will enter 
rng(f) at stage 12k + 13, ensuring that rng(f) is B. Stages 12k + 8 through 
12k + 13 are just the ‘back’ versions of stages 12k + 2 through 12k +7, 
respectively. This concludes the informal outline of the construction. 

In the description below, to extend f trivially at stage s will mean to define 

a, =def%-1, b, =defbs-1. 

The construction 

Stage 0. Let a0 =defCp, bo =def$, fo =def { (a0, bo)). 

Stage 1. Fix a terminal node r in Tr. Depending on which options are satisfied by 
&, choose any al E A such that 

(Ib) & (IIa): c, <a,, A@,)> (Va E A)[A(a) t, a, sH a], 

(Ic) & (IIa): c, < al, &l), 

(Ib) & (IIb): r*(a,), (Va E A)[T*(u) f* a, s a], 

(Ic) & (IIc): r*(q). 

Similarly choose b, in B. According to Lemma 10, a, and bI realize the same 
l-type T(x,), namely the type generated by the sets (A5) and (B4) if the models 
satisfy option (IIa), and generated by (A12) and (B4) otherwise. Clearly the 
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2-type &x,,, xi) generated by this l-type and the formula x0 = c,, is closed and is 
realized by both (ao, al) and (b,, b,), so we can definef, to be&U {(al, b,)}. 

Stage s = 12k + 2 (k 20). Choose the least a E A such that a $ dom(fs-,). If 

{a, * * . u,_~, a} is not closed, let a’ EA be the unique element such that 

{all * * . u,_~, a’} and {a,, . . . u,_~, a’, a} are each closed (Corollary 2.1); other- 

wise a’ is undefined. 
If u’ is undefined, or if there is i <s such that H,(u’, Ui) for some n, then 

extend f trivially. Otherwise choose a, to be the least element in A such that 

(1) CP <a,. 

(2) a, =H c(O). 

(3) &(a’, US). 

(4) E;(u,, a) + [US c a v a c a,]. 

It is routine to check that a, satisfying (l)-(4) always exists, using 
T ttlx 3y H,(x, y) and axioms (*7) and (39). Let r(x,. . .x,-~) c 

Go. . ~x,-~,x,) be the s- and (s + 1)-types of (uo. * -u,_~) and 

(a0 * * * 4-1, a,). 2 is closed (as is easily verified) and is therefore generated over 
r by the l-type of a, and the finite set Gen, (Lemma 11). 

If the l-type of a, is principal, then, supposing this l-type to be generated by 

cp(x,), we take 

Wo * - . -4 =def q,(xJ & A Gendxo - * * -4 

for the formula generating 2 over r. 
Assume that the l-type of a, is nonprincipal. Because of (2), this l-type cannot 

contain T*(x,) or A(x,), and therefore Lemma 10 implies that it is generated by 
@,(xS) and one other formula q(xS). (It can be shown that q(x) is the formula 
B,,(x, x)&x =H~(o).) If there is i <s such that A(q) and either &(a;, us) or 
B,(ai, a,), then let 

0(x0. . . -4 =~efWp(~~, 4 v B,(xi, x,)1 & d-4 & A Gen.dxo . . * x,), 

since Hp(Ui, x) v Bp(Ui, X) generates G,(x) in Th(&, ui) by Lemma 13(l). If there 
is no i <s as above, then we make a second attempt at defining 8: if there is i <s 

such that @,(ui) and Llj(u,, 4) for some 9, we let 

(3(x, * . . x,) =defL3j(~i, x,) & Q)(x~) 8~ A Gen&, - - * x,). 

For Lz(ui, x) generates e,(x) in Th(& ui) by Lemma 13(3). If both attempts at 
defining 8 fail we are forced to find b, directly. The failure of the first attempt 
implies that J& b A,(q, a,) for all i < s such that A(u,) (axiom (34)). It also implies 
that the models satisfy option (Ic), for otherwise option (Ib) together with 
Lemma 14(b) and the choice of a, to witness (Ib) would give the existence of a” in 

A such that Z-$(ui, a”) and E$u”, a,) v LP,(u”, a,), hence &(a,, a,) v B,(ul, a,) 
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via axioms (39) and (41). The failure of the second attempt means that 
& k ~!&(a,, ai) for all i <s and q E Tr such that @,(aJ. This follows from axiom 
(21); Efj(u,, ai) is ruled out because otherwise we would have H,(u’, ui) by (3) 
and axiom (39), contradicting the choice of a, since we did not extend f trivially at 
this stage. Therefore (uO. * * u,_~, a,) satisfies all of the formulas in 

~(~0~ * * ~,-I), @&A xs =H c(O), 

(*) Ap(Xi, x,), for all i <S such that A(Xi) c r, 

c+s, Xi) for all i < s and n in Tr such that QJ~ (xi) c K 

It can be shown that (*) generates a unique (s + l)-type of T. One verifies that 
for any formula q(xo. . . x,) in L(T), either I,!J or 1~ is a consequence of (*), and 
as usual it suffices to consider formulas $J having the forms given in Corollary 9.1. 
In particular, it is easy to check that (*) implies B,(xi, x,) for all i <s such that 
A(xi) q! r, and Lz(xi, xs) for all i < s and q E Tr such that c, <xi and @ll (xi) r# JY 
Other formulas 3 may first be simplified by observing that Tis closed and that (*) 
implies X, A xi = cp A xi and X, A cp = cp for all i <s and p E Tr. The easiest way to 
treat formulas whose only free variable is x, is to verify that aP(xs) and x, =H ccoj 
generate a unique l-type. 

It remains to show that there is b, in B such that (bo. - . b,_l, b,) satisfies (*). 
Of course, we already have r(b, - * * b,_,). By the definition of the prime model, 

T 1 VX 3y &(x, Y 1, 

T I- Vx 3y [c, < x + E;(x, y)] 

for any n in Tr. So for each i <s, choose b(i) E B such that 9 k H,(b;, b(i)), and, 
if c,, 4 bi, choose b’(i) E B SO that $J?? kEz(bi, b’(i)). By Lemma 13, we have 

@,(W)) if A(bi), and Qp(b’(i)) if @q(bi). Since % satisfies (Ic), there is b E B 
satisfying G,(b) as well as 

LP,(b, b(i)) for all i <s such that A(bi), and 

Lg(b, b’(i)) f or all i <s such that @,(bi) for some r]. 

Let b, be any element in B such that b, =H ccc,) and b, c b v b s b, (axiom (*7)). 
It is easy to check that Ez(b,, b), hence @,(b,). Now for each i <s such that 
A(b,), we have 

Lz(b, b(i)) + LP,(b,, b(i)) + A,(bi, b,) 

by axioms (26) and (40). For each i <s such that @q(bi), 

Lz(b, b’(i)) -+ LP,(b,, b’(i)) + L$b,, bi) 

by axioms (26) and (25). 

,Stuge s = 12k + 3. If a’ is undefined, or if there is no E in Tr such that $(a’), or 
if there is such E and there is i -C s such that EE;‘(ui, a’) for some 77, then extend f 
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trivially. Otherwise, fix 5 such that @;(a’), and choose a, to be the least element 
in A such that 

(1) 

(2) 

(3) 

(4) 

cp <a,, 

as =H c(O), 

QX% a’), 

Jqu,, a) ---, [a, s a v a c us]. 

Continue as in stage 12k + 2. 

Stage s = 12k + 4. If a’ is undefined, extend f trivially. Otherwise set a, =defu’. 
Let T(xo . . . x,-J c .x(x, * . . x,_~, x,) be the s- and (s -t 1)-types of (ao. * . a,_,) 

and (a0 * - . ql, a,). 2 is closed (as will be verified shortly) and is therefore 
generated over r by Gen, and the l-type of a,. We show that this l-type is 
principal over r, so that if it is generated over r by q(xo 9 . * x,) we just let 

(3(x, * * -&) =defQ)cXO * - . x,) & /j GenE(xo . - - x,). 

By the remark following the proof of Lemma 11 it suffices to show that A(x,), 
es(xs) and T*(x,) are principal over r whenever these sets happen to be in Z. 
By previous stages, we have p S 12k + 2 such that &(a,, a,,) for some y, and if 
GE(us), q c 12k + 3 such that ,?;(a,, a,) for some Y. 

If A(a,), then @,(a,) by Lemma 13(l), hence Lemma 13(2) implies that A(x) is 
generated by H,(x, a,) in Th(d, a,,). 

If @*(a,), then @,,(uq) by Lemma 13(3), hence Q+(x) is generated by _!?;(a,, x) 
in Th(s&, u4). 

Finally, suppose r*(u,). Then A(q), so @,(a,) by Lemma 13(l). Since d 
realizes r*, we must have r*(a,). Then there is r <s such that r*(a,) and either 
u,~a,ora,~a,:namelyr=1ifu,~a,=u,, otherwise r is such that a, A a, = a, 
(using the fact that ,Z’ is closed). We leave it to the reader to show that T*(x) is 
generated by 

H,(x,u,)&[x~a,va,~x] 

in Th(&, up, a,). 

Verification that 2 is closed. r is closed, and by the choice of a’ at stage 12k + 2, 
{ao. * . a 12k+l, a,} is closed, so it only remains to show that a, A ai is in {a, * * . a,} 

for i = 12k + 2 and i = 12k + 3. This is fairly easy if +:(a,, a,), in which case one 
verifies that a, A ai = a, A cP = a, A a,. So assume ,??:(a,, a,). We have ,?$(a,, a) 
since c,<a’<a and a,=a’, thus Ez(a;, a) by axiom (23). So (4) at stage i 

guarantees that a and ai are comparable, hence so are a, and ai (use axiom (4)). 
Therefore either a, A ai = a, or a, A ai = ai. 
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Stage s = 12k + 5. If there is i <s such that Hq(a, ai) for some ?I, then extend f 
trivially. Otherwise choose a, to be the least element of A such that 

(1) cp <a,, 

(2) a, =H c(O)> 

(3) HP@, a,), 

(4) E$(u,, a) + [a, G a v a G a,]. 

Continue as in stage 12k + 2. 

Stage s = 12k + 6. If there is no 5 in Tr such that @&a), or if there is such E and 
there is i <s such that Eg(q, a) for some q, then extendf trivially. Otherwise, fix 
5 such that $(a), and choose a, to be least in A such that 

(1) c&J <a,, 

(2) a, =H c(O)~ 

(3) Q@,, a), 

(4) Jq(u,, a) + [us G a v a c UJ. 

Continue as in stage 12k + 2. 

Stage s = 12k + 7. Let a, =defa, and let r(x, * * * x,-~) c 2(x0 . . . x,_~, x,) be the 
s- and (s + 1)-types of (a0 * * -a,_,) and (a0 - * - a,_,, a,). Continue as in stage 
12k + 4, with the help of p G 12k + 5 such that &(a,, a,,) for some p, and if 

@&G), using 4 G 12k + 6 such that E;(u,, a,) for some Y. 
Stages 12k + 8 through 12k + 13 are the ‘back’ versions of stages 12k + 2 

through 12k + 7, respectively: simply replace ‘dom’ by ‘rng’, and ‘u’ by ‘b’, 
everywhere. This completes the description of the construction and the proof of 
Lemma 15. 0 

Corollary 15.1. T has exactly jive countable models up to isomorphism: three 
decidable models and two models decidable exactly in H(n). 

Proof. By the remark following the proof of Lemma 12, T has at most five 
nonisomorphic countable models. 

The decidability of the prime model (Ml) follows from the effective version of 
the omitting-types theorem and the fact that T has only finitely many countable 
models up to isomorphism. (See, for example, [5].) By results in [2], T must also 
have a homogeneous decidable model (M3) realizing all of the recursive types of 
T. 

Let T(x) be a recursive l-type of T containing A(x). Then (M3) can be 
expanded to a decidable model of the theory T(d), and the expanded model 
realizes all of the recursive types of T(d). Thus there exists an r.e. list of all of the 
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recursive types of T(d), and so by the effective version of the omitting-types 
theorem there is a decidable model of T(d) omitting all of the nonprincipal types 
in this list - i.e., a decidable prime model of T(d). The reduct of this model to 
L(T) must be (M2) since it is not homogeneous. (The prime model of T(d) omits 
any type containing A(x) U {x CH d}, so the element d is +-minimal realizing 

A.) 
Models (M4) and (M5) exist and are decidable in H(n) by relativizations of the 

arguments given above. If either of these models were decidable in a set S of 
degree below that of H(n), then with the help of a parameter we could tell 
effectively in S whether or not an arbitrary element 17 E Tr belonged to f * : we fix an 
element x lying above f* in the model, and simply check to see if n is below x. 
Thus (M4) and (M5) are decidable exactly in H(n). Cl 

Part IV 

We prove that T is persistently Ehrenfeucht, namely that whenever 
T(xo . * . x,-J is an n-type of T, then the theory r(d,. . * d,_,) in the language 

L(T) U {do. . - da_,} has finitely many countable models up to isomorphism. It is 
enough to prove this for closed n-types. For suppose r(xo * * . x,-~, x, * . . x,,_,) is 
the closure of I’(x, * . . x,-J (so that r says x, . . * x~-~ are precisely all xi A xi for 
i, j < n). Then clearly any model of T(d, - * . d,_,) can be expanded to a model of 
i=‘(d, - . * d,_,) in only one way, and any isomorphism of models of r(d,, . . . d,_,) 

induces an isomorphism of models of r(d, * . . d,_,). 

Suppose that (~4, ao. . . a,_,) and ( 33, b, + . . b,_,) are models of 

r(do . . . d,_,) such that the reducts & and 53 are isomorphic homogeneous 
models of T. If f : d --, 93 is the isomorphism, then (fao . . * fa,_ 1) also realizes r. 
Therefore, since 93 is homogeneous, there is an automorphism g : .%A-, 93 sending 
fa, to bi for each i < n, and so g of is an isomorphism from (Se, a, . . . a,_ ,) to 
(3, bo. . . b,_,). 

That T is persistently Ehrenfeucht will be an immediate consequence of this 
observation, Lemma 16 below, and the fact that T is Ehrenfeucht. In order to 
state Lemma 16, we first note that if .& is any model of T, then each element a’ in 
A satisfies exactly one of eleven ‘l-type options’, namely: either a’ is minimal 
realizing I’* (that is, a’ witnesses (Ilb)); or a’ realizes r* but is not the minimal 
such element; or a’ does not realize r*, in which case there are nine possibilities 
depending on whether or not a’ realizes A (and if a’ does, whether or not it 
witnesses (Ib)), and whether or not a’ simultaneously realizes GI, for some 
(necessarily unique) 7,~ E Tr (and if a’ does, whether or not it satisfies 

(Va E A)[ @,(a) e ES(a’, a) v L:(a’, a)]). 

Lemma 16. Let d and $23 be isomorphic nonhomogeneous models of T, and let 

r(xo. . .x,_,) beany closed n-typeof T. i’f (ao.. *a,_,) and (b,,. .*b,,_,) realize 
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I’ in d and 93 respectively, and if for each i < n, ai and bi satisfy the same ‘l-type 
options indicated above, then 

(&a”.. * a,_,) = (93, bO * - - b,_,). 

Proof. We may assume without loss of generality that f contains x,, = cP. We 
wish to use the construction from the proof of Lemma 15 to obtain the 
isomorphism. The difficulty here is in finding ‘nonhomogeneous’ elements a, E A 
and b, E B to play the roles of the elements that were chosen at stage 1 in the 
earlier construction. Suppose we have found these elements, so that (a,, * * . a,) 
and (b,...b,) realize the same closed (n + 1)-type of T. Define fn =def 
{(a,, bj):iGn}, and let k be least such that n+1<12k+2. If n+1<12k+2, 
then let fs be a trivial extension of f,-i for each s such that n + 1 G s < 12k + 2. 
Now starting from stage 12k + 2, the construction duplicates that used in the 
proof of Lemma 15, except that all references to a, (respectively b,) in the earlier 
construction are replaced by references to a, (respectively b,). The resulting map 
f is actually an isomorphism from (~2, a, . . . a,_,) to (93, b, . . a b,_,) because of 
the definition of fn. It remains to show how to obtain the elements a,, and b,. 
Since & and 53 are nonhomogeneous models of T they must satisfy option (Ib), 
and therefore there are just two cases. 

Case 1. SB and 93 satisfy options (Ib) and (IIa). 

We need a,, E A and b, E B satisfying the first condition listed in stage 1 of the 
earlier construction. Fix a terminal node z E Tr such that ~4 klE$(c,, ai) for all 
i <n. Without loss of generality we may assume that r contains Xj = c, for some 
i < n. Since &4 satisfies (Ib), axiom (*7) gives the existence in A of elements above 
c, which are +-minimal realizing A. Because the map fr used in defining the 
prime model of T is onto the negative rational numbers, we have for all 5 E Tr, 

T t Vx 3y [cE < x + L”,(y, x)], 

T ~VX 3yA,(x, y). 

Thus it is possible to choose a,, such that 

(1) c, <a,, A@& (Va E A)[A(a) -a,, + a], 

(2) c, <a, + ti(a,, a,), for all i < n and 5 in Tr, 

(3) A,(ai, a,), for all i < n. 

It may not be obvious that we can choose a, to satisfy (2) if there is i <n such 
that cE < ai for infinitely many 5 in Tr. But in that case r*(ai), and for each such 
E there is m < w such that E[(cEAcm), ai). Since r is terminal we have 
L$(a,, cEACmj) by axiom (32). Now apply axiom (25). 

Using the same t, choose b, E B to satisfy (l)-(3) in 9. It remains to show that 

(a0. - .a,) and (b,*. * b,) realize the same closed (n + 1)-type of T. It suffices to 
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check that for each atomic formula v(xO. . ex,) listed in Corollary 9.1, 
satisfaction of 111 by (a0 * * . a,) depends only on the following properties: (l)-(3), 
the options satisfied by & and by a,. - - a,, and the fact that (a, * * . a,_,) realizes 
r. We omit the details. Since the same properties hold for .% and bo. . * b,, it 
follows that (b. . . - 6, ) realizes the same type as ( cl0 - * . a, ). In particular, these 
properties imply a, A ui = c, A ui for all i < 12, hence the type of (a, - . . a, ) is 
closed, since r is closed and contains c, = xi for some j < n by assumption. 

Case 2. d and .5% satisfy options (Ib) and (IIb). 

Choose a, E A and b, E B minimal elements realizing r*. Without loss of 
generality we may assume a, # ui for all i < IZ, since otherwise we are done. We 
may also assume there is j < IZ such that Xi = q E r for some c in f* having the 
property that, for all i <it, cc < ui implies I’*(u,). Then a, A Ui = a, if ui realizes 
r*, and II, A Ui = cc A Ui otherwise (use axiom (5)), so the (n + 1)-type of 

(ao* . . a,) is closed. As in Case 1, one shows that (b. - * . b,) also realizes this 
type by showing that satisfaction of a formula q(xo * - - x,) depends only on the 
following properties: the options satisfied by ti and by u. * * * a,, and the fact that 
(uo* * * u,_~) realizes r. Cl 

Corollary 16.1. T is persistently Ehrenfeucht. 

Proof. Let T(xo. . * x,-J be an n-type of T. As noted earlier, we can assume 
without loss of generality that Tis closed. Since T has three isomorphism types of 
countable homogeneous models, the observation made at the beginning of Part 
IV implies that the theory r(d,. * * dn_l) has at most three isomorphism types of 
countable models whose reducts to L(T) are homogeneous. Since T has two 
isomorphism types of countable nonhomogeneous models, and since any element 
of a model of T satisfies exactly one of the eleven options listed prior to Lemma 
16, that lemma implies that T(d, . . . d,_,) has at most 2 - 11” isomorphism types 
of countable models whose reducts to L(T) are nonhomogeneous. 

Finally, the fact that T is not o-categorical prevents r(d, . . * d,_,) from being 
o-categorical. (See, for example, [l, Theorem 2.3.131.) El 

Corollary 16.2. There is a l-type I’(x) of T such that the theory r(d) has fewer 

than five countable models up to isomorphism. 

Proof. Let r(x) be the type generated by T*(x). The theory T(d) has only three 
nonisomorphic countable models: one countable model whose reduct to L(T) 

satisfies options (Ic) and (IIc), and two countable models whose reducts to L(T) 

satisfy (Ib) and (IIb). In one of the latter two, the interpretation of d is minimal 
realizing r*, while in the other it is not. Cl 
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Corollary 16.3. There is a l-type T(x) of T such that the theory T(d) has more 
than five nonisomorphic countable models. 

Proof. Let T(X) be the type generated by c, <X and A(x), for some terminal 
node t E Tr. The theory T(d) has six countable models up to isomorphism. It has 
one model whose reduct to L(T) satisfies (Ic) and (IIa), and one model whose 
reduct satisfies (Ic) and (11~). There are two models whose reducts to L(T) satisfy 
(Ib) and (IIa): one in which the interpretation of d is +-minimal realizing A, 
and one in which it is not. Similarly there are two models whose reducts satisfy 
(Ib) and (IIb). Cl 
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