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Abstract

In this paper I explain why I believe that it is important to prove rigorous results about mean
#eld models for spin glasses, and why I think it is di,cult. I also describe at a high level what
mathematicians have been able to prove. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is assumed in the paper that the reader has at least some idea about what the title
means, and in the more detailed parts of the discussion, that he has heard of the main
models. I have already written the simplest introduction to the topic, aimed at a reader
with a mathematical background and having never heard of it. It can be found in the
“expository” section of my Web page [20]. Other more ambitious introductions are also
to be found there. The purpose of the present paper is to point to these, and to provide
the reader lacking a heavy mathematical background with a non-technical summary of
what has been done. This paper has three more sections, that explain, respectively, the
need for rigorous results, what has been proved at high temperature, and what has been
proved at low temperature. But #rst, I would like to say a few words of why and how I
came to be interested in spin glasses, despite a complete lack of background in physics.
For 20 years, I studied very happily Analysis and Probability. The closest I ever came
to an “applied” problem was in studying combinatorial optimization problems with
random data, such as Bin Packing, or those considered in [9]. However, in the brand
of probability to which I contributed, large independent families of random variables,
similar to those used to generate randomness in disordered systems, played a central
role. The triggering event occurred during summer 1993, when Erwin Bolthausen wrote
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the Hamiltonian of the Sherrigton–Kirkpatrick (SK) model,

HN (�1; :::; �N ) =
1√
N

∑
i¡j
gij�i�j; (1)

where (gi; j)i¡j are i.i.d. independent standard normal random variables. He asked for a
simple proof of the Aizenmann–Ruelle–Lebovitch theorem that at inverse temperature

¡1, we have

lim
N→∞

1
N
E log ZN (
) = log 2 +


2

4
; (2)

where

ZN =
∑
exp(−
HN (�1; :::; �N ))

for a summation over all values of �1; :::; �N = ±1. The simple proof I eventually found
will be sketched in the beginning of Section 3. It relies upon a general principle called
concentration of measure, which has been very successful for all kinds of questions
of probability (see [13] and the references therein). By the time I understood that this
early success was rather accidental, I was hooked for good by the topic.

2. What is the point of proving rigorous results ?

First, I should probably apologize for all the commonplace comments I am going to
make, but I am not totally sure that they are completely useless. Also, I should say of
course that the opinions expressed below are just that, opinions, and that I certainly
should not be sued for them.
What is the point of proving rigorous results when there is at the same time consensus

in the Physics community and overwhelming evidence (at least at high temperature)
that the “solutions have been found”?
Even though the SK model is motivated by physical phenomenon, it is di,cult to

argue that it is a realistic model for matter. In my eyes at least, it is a mathematical
object, and a rather canonical one at that. Thereby it should be studied by mathematical
methods, rather than by methods from physics. This is of course all the more true for
other problems, such as the assignment problem, that are purely mathematical, yet have
been successfully studied in [9].
In fact, one of the main motivations to obtain rigorous results is precisely that

these are so di,cult to obtain. This di,culty means that we do not understand well
these rather canonical mathematical objects, and it would be dangerous not to try to
correct this. It is largely irrelevant that the solution found by physicists to the SK
model and others is almost certainly correct. Somehow, for the future developments of
mathematics, the tools that allow reaching the solution of a problem are more important
than the solution itself. And a good way to have a small chance to #nd powerful tools
is in attacking problems with simple statements, that are yet very di,cult.
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One must also add that mathematicians like to think that future generations will
continue their work. This can be safely done over the long term only by leaving
behind rock-solid constructions.
Now, is it not true that the diJerence between the arguments of the physicists and

a mathematically rigorous proof lies only in some hair-splitting details? I will explain
that, while this might be the case in some situations, it is de#nitely not the case
concerning spin glasses. It is certainly correct that mathematicians do spend a lot of
energy to rule out with certainty possibilities that are extremely (and even sometimes
absurdly) unlikely in the #rst place, and this can indeed be viewed by others as hair-
splitting details. This typically makes mathematical papers hardly readable by anybody
else. Mathematicians feel that this work is necessary, but it might be hard to convince
other communities of this, so I will not try, because this is not the issue here.
The issue is that the arguments provided in the papers written by the physicists do

not address the facts that are mathematically the hardest to prove. As much as I can tell,
these papers rely from the very start on general principles, such as the existence of the
thermodynamical limit, and other principles to be mentioned below. There is no doubt
that these principles are very reliable, in particular when backed by clever and extensive
numerical simulation, and I am certainly not questioning the legitimacy of their use in
work of physical nature. But the use of these principles has, by its nature, little to do
with a mathematical proof. It is one thing to rely upon such a general principle, but
it is an entirely diJerent matter to be able to analyze the situation in enough detail to
obtain a mathematical argument. For example, we all agree that if a random variable
depends upon the inKuence of many independent random variables, but not too much
upon any of them, it is very likely to be asymptotically normal. Proving explicitly
central limit theorems is another story. To mention one of my favorite problems, there
is little doubt that the length of the shortest tour through N random points of the unit
square is asymptotically normal (not standard) but I do not have any hope to ever
prove it.
The amount of work needed to rely upon a general principle and the amount of work

needed to provide actual arguments are often not commensurate, but the bene#ts reaped
by the two approaches are not commensurate either. A famous paper of Gardner on
the capacity of the Perceptron [5] starts with a one-line assertion that the free energy
of a certain Hamiltonian should be self-averaging. This is proved in [16]. Despite the
existence of a well-developed set of mathematical tools designed to approach this type
of “concentration of measure” results (which is the reason behind this success, and
why we chose this example), this rigorous proof does require some work. But what
provides a better understanding, this proof, or what was after all an (educated) act of
faith?
It seems necessary to insist at length upon this diJerence between reliance upon

general heuristic principles and actual proofs, because mathematicians have the greatest
di,culties to prove statements that are taken as granted by physicists. In particular,
the high temperature phase of mean #eld models is considered as extremely easy by
physicists who rely upon such general principles but it seems very hard to analyze
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mathematically. (Think about low temperature then.) Physicists consider the fact that
the system is “in a pure state” as the “default” situation, and feel no need for further
justi#cation, anymore than they feel the need to prove the existence of limits that
“obviously” exist. (On the other hand, most of the work I have done in this area is to
prove this “obvious” fact.)
It is probably instructive to dwell in more detail on a particularly striking example

of the contrast general principle/proof. It concerns the ground state energy of the SK
model, that is the quantity

minHN (�1; :::; �N );

where HN is de#ned in (1), and where the minimum is over �1; :::; �N = ±1.
Mathematicians can prove that this quantity is self-averaging, and is of order N , so

that instead one can study

1
N
EminHN (�1; :::; �N ):

But does the limit of this quantity exist as N → ∞ ? There is no reason to think
that it does not, but I do not think that anybody has any idea of how this existence
could be actually proved. I know only two methods to prove that a quantity has a
limit. One is to prove that this limit is some actual quantity such as

√
2 or 
. Another

method is to relate problems of diJerent sizes. This second method can be applied in
a very subtle way, such as in the work of Aldous on the assignment problem [1]. It
seems hard to use either method here.
A nice feature of this problem is that it is related to other even simpler questions of

the same nature, as one observes by diagonalization of the random matrix (gij)i; j6N ,
where gij = gji.
I have used one such problem, with a strong geometric Kavor, to make the point

that there are “obvious” things one does not know how to prove. The problem is
as follows. Consider a parameter � . In the Euclidean space RN , it makes sense to
speak of a random subspace of dimension ��N� because there is a natural probability
measure on the set of these subspaces. We denote by E the corresponding expectation.
Let us denote by Q the orthogonal projection upon this random space, and consider
the quantity

E
(

1√
N
max ‖Q(x)‖

)
;

where ‖:‖ is the Euclidean norm, and where the maximum is taken over x in the unit
cube, that is in the set of vectors that have all their coordinates between −1 and 1. Is
it true that the limit

lim
N→∞

E(
1√
N
max ‖Q(x)‖)

exists? There is no reason why it should not, but saying this is simply NOT a valid
mathematical argument.
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It could also be instructive to the reader to have another example of a seemingly
obvious statement that probably nobody can prove. It deals with a diJerent issue,
the validity of approximations. (Typically, approximations behave much better than
mathematicians know how to prove.) The problem concerns again the ground state
energy of the SK model. Does this ground state energy change signi#cantly if the
variables are replaced by variables �ij that are independent “coin Kipping” variables
i.e. P(�ij = 1) = P(�ij = −1) = 1=2? Most likely it does not, but there does not seem
to exist an approach to this problem. The di,culty is that it is a diJerent matter to
apply the central limit theorem to a #xed number of random variables, or to have a
collection of random variables whose size grows very fast.
The reader might have wondered why I have not appealed to the all-too-obvious

fact that the replica method, the most used method in the physics literature, is not yet
quite mathematically justi#ed. This is simply because I felt that most readers might be
unaware that other much more innocent looking assumptions are already very problem-
atic from a mathematical point of view. Considering the replica method, it would be
very nice to understand why it allows to “guess” the correct value for the free energy.
But I personally think that trying to obtain mathematical proofs following the lines of
the replica method is not going to be a rewarding project in the short term.
All this being said, I see another reason to try to obtain rigorous results about mean

#eld models. I think there is a potential in this topic for a new direction in probability
theory. Probability theory has paid a lot of attention to independent random variables.
It has then paid attention to more complex structures, which mostly are inspired by the
idea of stochastic processes, in the sense of a time-indexed family of random variables.
The gaussian random variables HN (�1; :::; �N ) of (1) however have a global structure
rather diJerent from either of these. Their correlation is given by

E(HN (�1; :::; �N )HN (�1; :::; �N )) =
1
2N

(∑
i6N

�i�i

)2

− 1
2 :

It is nicely smooth, but in a very “high dimensional” fashion. This type of correlation
structure had hardly been investigated. The fact that it allows the emergence of very
interesting random structures is quite revolutionary, and possibly indicates that entire
new areas of probability theory awaits discovery.

3. High temperature results

First I will sketch the already announced proof of (1). The #rst observation is that

EZ2N (
)6 K(EZN (
))2;

where K depends only upon 
 . This is a simple computation. The “second moment
method”, i.e. the fact that any positive r.v. Y satis#es

P(Y ¿ 1
2EY )¿

1
4
(EY )2

EY 2
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implies that

P(log ZN (
)¿ N (log 2 +

2

4
)− K)¿ 1

K
;

where K depends upon 
 only. When one knows that the free energy is self-averaging,
(a fact that easily follows from general “concentration of measure” principles discovered
long ago [8]), it is enough to obtain (1).
Thus (1) is very easy. The real reason for this is simply that the expected free

energy is as small as it can possibly be. The natural approach in the case where the
annealed free energy is not the quenched free energy (such as in the SK model with
external #eld) seems to be the cavity method, that is induction upon the number of
spins N . For this one expresses averages in the N spin system in function of averages
in the (N − 1)-spin system. One is led to the evaluation of quantities of the type
¡ A ¿ = ¡ B ¿, where A; B are complicated random quantities, and where ¡ : ¿

denote an average with respect to Gibbs measure. How to evaluate these? Here there
is a huge diJerence between assuming from the start, as physicists do, that at high
temperature a lot of nice things happen, and trying to prove them. This is because
when attempting to produce proofs, one simply does not know anything at all about
Gibbs’ measure when the proof starts, and the greatest di,culty is to gain any control
at all. In particular, it must be stressed that mathematicians are NOT permitted to use
what I will call the “triple dot magic wand”. This remarkable tool allows a physicist
to write A = B+ ::: where A is the quantity of interest, B is a much simpler quantity,
and the magic ... represents a remainder, about which nothing is usually speci#ed,
and that is presumably small. This hypothesis is justi#ed a posteriori by checking that
its consequences are reasonable and agree with numerical simulation. Mathematicians
have unfortunately no other choice than telling what this remainder is and proving
inequalities to control it. This is a diJerent game, with a diJerent purpose, and it is
typically very much harder.
I have now succeeded to prove the validity of the so-called replica symmetric (RS)

solutions at a high enough temperature for the SK model (with external #eld), the
Hop#eld model (with external #eld), the model for the K-sat problem in the version
of Monasson and Zecchina [10], the perceptron capacity model of Gardner [5] and
Gardner–Derrida [6], and for a simpler version of the assignment problem studied in
[1, 9]. (This project occupied the best of the last #ve years.) Typically the regions where
I can do this are “proportion” of the region where the replica-symmetric behavior is
expected. (So, for the Hop#eld model, this includes a low temperature region.) With
the exception of the SK model, where a kind of miracle happens, the current proofs
of these results are really di,cult. (An alternative approach by Shcherbina [12] for
the SK model gives a slightly better region but is very much harder. An alternative
approach of Bovier and Gayrard [3] for the Hop#eld model is somewhat simpler than
the author’s approach for this model, but unfortunately seems speci#c to that case and
gives a worse region.) The papers I wrote are available on my Web page, but I will
take the unusual step to urge the reader NOT to look at any proof there, because
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this would only discourage him. Rather, he should wait for the mini-course [19] that
will eventually be available, and where the proofs, having been better understood, and
written one more time, are simpler and better explained. This mini-course treats only
the case of the SK model, and its natural extension to the p-spins interaction model
of [4], but should give a fairly good idea of the techniques used overall. For the SK
model and the Hop#eld model I have been able to gain control at the level of the
Kuctuations around the mean #eld, and to obtain very precise results (at high enough
temperature). I hope to be able to do this soon for the other models.
What about proving the validity of the RS solution in the entire high temperature

region? A #rst observation here is that the arguments of “stability” provided by physi-
cists, either with the cavity method, or the more mysterious replica method, simply
show (heuristically) something like “if the system is close to the RS solution” for N
spins, this remains true for N + 1 spins. But how can one show in the #rst place that
the system is close to the RS solution? There exists a pretty mathematical method
that solves this conceptual problem. It allows transferring information from a given
temperature to a slightly lower temperature. It is to show, at a certain temperature,
that the overlap of two independent con#gurations can hardly ever (i.e. with exponen-
tially small probability) fall outside a certain small interval. This then remains true
at a slightly lower temperature, and allows to show at this slightly lower temperature
that the overlaps are nearly constant, from which one has a chance to show that the
system is close to the RS solution at this lower temperature. This is the motivation
behind the exponential inequalities that I proved in [17]. Unfortunately, this does not
make progress on the main di,culty. This main di,culty is the possibility of “dis-
continuous” transitions, where the overlaps start to take really diJerent values below
a certain temperature, as occurs in the case of the p-spin interaction model with no
external #eld. After trying for years to #nd a way to rule these out, I believe that I
have #nally succeeded (April 2000), using in an essential way an idea of Guerre [7].

4. Low temperature results

It is at #rst hard to believe that one could prove anything at all about low temperature
without #rst having been able to control the entire high temperature region. This is
fortunately not entirely true. But before we discuss some of the results, we must discuss
some of the issues. The celebrated “Parisi solution” describes the organization of the
“states” of the SK model at low temperature. But what are really these? To paraphrase
a famous saying, when I do not think about them, I know what they are, but when I
think about them, I do not know anymore. And, for a start, why should these states exist
at all in the SK model? Certainly for a physicist, this is a natural a priori assumption,
but, as we discussed earlier, #nding a mathematical justi#cation is another story. The
very existence of these “states” implies a strong property, namely that (somewhat
imprecisely) the overlaps take essentially only a few values that depend upon the
randomness. Why should this be true?
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One of the #rst low temperature results is due to Pastur and Shcherbina [11]. It
asserts that at su,ciently low temperature, the order parameter

1
N

∑
i6N

¡�i¿2

is not self-averaging. Unfortunately, they cannot prove it using Hamiltonian (1), so that
these authors introduce a somewhat unnatural symmetry-breaking term. This result is
essentially a high temperature result “turned upside down” because it consists in proving
that if the parameter were self-averaging, then the free energy would have the value
predicted by the RS solution, which is wrong at low temperature. Somewhat of the same
nature is the “replica symmetry breaking” result of [17]. It asserts that at (essentially)
every point of the low temperature region, “an in#nitesimal coupling between two
replicas has a macroscopic eJect”, and can be seen as a rigorous identi#cation of the
low temperature region.
Some rigorous low temperature concerning the p-spin interaction model [G2] with

no external #eld are given in [18]. These are made possible by a kind of a lucky
accident. It is possible to show rigorously that if p is large, just below the critical
temperature, the overlap of two con#gurations is essentially never between 0.01 and
0.99, or between −0.01 and −0.99. This is obtained by transferring information on the
system just above the critical temperature. It is then an automatic consequence of this
fact that Gibbs measure creates “lumps”, amounts of mass that are supported by a small
subset of the con#guration space. This is the identi#cation of the predicted “states”,
which are easier to #nd in this situation because they are far from each other. (Here
one should pay homage to the prophetic intuition of Gardner, who, at the end of her
paper [5], mentions that this model might be somewhat accessible to rigorous study.)
From this point the hard work starts. The cavity method allows to show that the overlap
of con#gurations in diJerent lumps is essentially zero. The next question is whether
the lumps are pure states, that is, whether the overlap of two con#gurations in the
same lump is essentially independent of these con#gurations. This question is closely
related to the behavior of the sequence of the weights of the states for Gibbs’measure.
It is shown in [18] that if one knows a mild property of this sequence of weights, the
lumps are indeed pure states.
After being stopped at that point for several years, I got a new idea in December

1999. For large (but #xed) p, I can prove the asymptotic validity of “one level of
symmetry breaking” solution for almost all values of the temperature in an interval that
grows with p, and (allowing for technical reason a suitable in#nitesimal perturbation of
the Hamiltonian) I can even treat the case where one adds a small external #eld. The
only question that remains is the actual computation of the various parameters. I could
not prove the physicist’s belief that “the true solution maximizes the free energy”.
Despite this somewhat unexpected success, knowing when, or even whether, rigorous

and signi#cant structure results will be obtained for the low temperature phase of the
SK model is for anybody to guess.
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