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Abstract-various approaches have been proposed for the comparison or ranking of fuzzy sets. 
However, due to the complexity of the problem, a general method which can be used for any situation 
still does not exist. This paper formalizes the concept of existence for the ranking of fuzzy sets. Many 
of the existing fuzzy ranking methods are shown to be some application of this concept. An improved 
fuzzy ranking method is then introduced, based on this concept. This newly introduced method is 
expanded for treating both normal and nonnormal, convex and nonconvex fuzzy sets. Emphasis is 

placed on the use of the subjectivity of the decision maker, such as the optimistic or the pessimistic 
view points. An improved procedure for obtaining linguistic conclusions is also developed. Finally, 
some numerical examples are given to illustrate the approach. 

Keywords-hazy ranking method, Normal/nonnormal fuzzy set, Convex/nonconvex fuzzy set, 

Linguistic conclusions. 

1. INTRODUCTION 

Comparison or ranking of fuzzy numbers, or more generally, fuzzy sets, is very important for 

practical applications. When fuzzy set theory is used to establish mathematical models, manipu- 

lations of fuzzy variables or fuzzy parameters invariably involve ranking or comparison problems. 

But, unfortunately, fuzzy numbers are not in linear order and comparisons of them are not sim- 

ple. Frequently, overlaps or small separations in the supports of fuzzy sets make comparison a 

very difficult task. 

Various fuzzy ranking methods (FRMs) based on different approaches or different points of 

view have been proposed in the literature. Several reviews have also appeared [l-3]. In a more 

recent review [4], the following classification was proposed: 

(4 

(b) 

Methods using an a-cut. With this approach, a FRM ranks fuzzy numbers by simply 

comparing their a-cuts. Often, a method is developed by this approach with the purpose 

of obtaining fast results. 

Methods using the possibility concept. With this approach, a FRM uses the possibility 

or necessity concepts to rank or to compare fuzzy numbers. The degree of possibility or 

necessity of a fuzzy number satisfying a fuzzy inequality relation against one or all other 

fuzzy numbers is determined. In establishing these fuzzy inequality relations, two different 

situations may be considered. Fuzzy inequality relations may be established, between a 

fuzzy number and all the remaining fuzzy numbers. Based on these inequality relations, 
optimal alternatives can be determined. Another approach is to establish inequality rela- 
tions for each pair of fuzzy numbers. A fuzzy preference relation can then be defined on 
the entire set. 
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Table 1.1. Summary of fuzzy ranking methods [4]. 
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Table 1.1. Summary of fuzzy ranking methods [4] (cont.). 
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(c) Methods by integration. With this approach, an FRM essentially measures a fuzzy num- 

ber, with or without weighting, by its mean value. 

(d) Methods using multiple indices. With this approach, an FRM uses the results of multiple 

ranking or comparison functions as references to rank fuzzy numbers. Evidently, the devel- 

opments of multiple-index methods are greatly motivated by the dilemma of occasionally 

inconsistent outcomes when different FRMs are used. 

(e) Linguistic approach. The linguistic approach was developed mainly due to the desire to 

maintain the fuzzy characteristics of the problem. 

A subclass of FRMs within the possibility approach can be established by using the concept 

of maximizing/minimizing set. Two subclasses, o-cut and fuzzy maximum/minimum, can also 

be established within the integration approach. 

It should be noted that this classification is more based on the characteristics of the FRMs 

and one FRM could belong to several of the classifications. Most of the FRMs can be classified 

based on the first three classifications. The integration approach was essentially the probabilistic 

approach in [2]. 

Table 1.1 lists the fuzzy ranking methods reviewed in [4]. The type of functions used is also 

indicated for each FRM. A “comparison function” yields outcomes of comparisons of pairs of 

fuzzy sets. A “ranking function” yields outcomes of ranks of all the fuzzy sets. A ranking or 

comparison function is also known as the index. Another important aspect in using the FRMs is 

the participation of the decision maker. Whether the FRM allows or requires the participation 

of the decision maker is also indicated in the table. 

Most of the methods listed in Table 1.1 seem to suffer from some drawbacks. For example, 

possibilistic methods frequently suffer from the lack of discrimination. Methods using a-cuts 

may suffer from the fact that not enough information is used and thus frequently produce biased 

results. Integration met.hods appear to be too rigid and tend to defuzzify the intrinsically fuzzy 

ratings. 
In this paper, based on the concept of existence, an improved FRM is proposed. It is shown 

that several existing fuzzy ranking methods use the central idea of this concept. In developing 

this approach, the following aspects are emphasized: 

(1) comparison of nonconvex fuzzy sets, 

(2) comparison of nonnormal fuzzy sets, 

(3) linguistic conclusion, and 

(4) the subjectivity of decision-maker’s opinion such as the optimism and the pessimism view 

points in the comparison of fuzzy sets. 

Finally, in Section 7, two examples are provided to illustrate the approach. 

2. THE MEMBERSHIP FUNCTION VERSUS THE UNIVERSE 

In order to examine the problems encountered in the ranking of fuzzy numbers, let us look 

into the basic definition of a fuzzy subset. A fuzzy subset is defined based on the universe and 

the membership function. The degree of belonging to a certain fuzzy concept of a given element 

in the universe constitutes the membership function of this element. Thus, when several fuzzy 

sets are compared, there is a tendency to carry out this comparison based on both the degree 
of belonging, or the membership function, of the element and the location of the element in the 

universe. This tendency causes the confusion and, sometimes, causes the undesirable features of 

the FRM. 
Figure 1 helps us to explore this concept further, where w is used to represent the grade of 

the membership function, and a and b represent the elements in the universe for fuzzy sets A 
and B, respectively. We conclude that fuzzy set A < fuzzy set B, or A < B, if the comparison 

is carried out between a(w) and b(w), where U(W) and b(w) are based on the same degree of 

membership function ‘UI. This conclusion is possibly correct for the two entire fuzzy sets and is 
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certainly correct at this degree of membership function w. But, on the other hand, if we compare 

the membership functions based on the same element of the universe, a (= b), such as comparison 

between w(a) and w(b), a completely erroneous result would be obtained. Thus, fuzzy sets should 

be compared based on the same degree of membership or the same existence level, not based on 

the same element in the universe. Stated more explicitly: if two fuzzy sets are said to be unequal, 

then they must have different elements in the universe at least at some membership or existence 

level. Furthermore, different grades of existence or membership of a given element in the universe 

play a different role in the comparison of fuzzy sets. 

Ibn > a,) - {B, > AIRI : possible 
h > w,,l - {A, > B& : unjwti6able 

w _________ __ 

_..... j LL . ..;... 
0 ’ 

a... -~ n a b, 
b 
Figure I 

The concept of existence plays the same role as the level of presumption introduced by Kauf- 

mann and Gupta [43]. For computational purposes, these two concepts are numerically equal to 

the membership function. 

The disadvantage of using these concepts is that we cannot use the concept of possibility. 

However, as it has been pointed out by various investigators [1,43], the concept of possibility 

does not take into account sufficiently the shape and the bounds of fuzzy numbers. In fact, many 

of the inconsistent and against intuition results when FRMs are used are due to the use of the 

possibility concept. For example, if we define the possibility law on the real line Iw, as 

V’zEIW: h(z) E [O,l] and V h(x) = 1. (1) 
xen 

If A is a fuzzy subset in Iw, we call the possibility of A for the law h(x) 

poss~A = v (PA(x) A h(X)), 

XER 

(2) 

which has the meaning “as great as possible.” Kaufmann and Gupta [43] compared the possibility 

law with the agreement index, which is essentially the intersection of h(x) and PA(X) divided by 

the area of the fuzzy set A. Although the agreement index does not have the property of the 

possibility concept, from a practical viewpoint, this index is a fairly good one for the ranking of 

fuzzy numbers. 

For example, Jain’s method is essentially based on this concept of possibility and it has been 

shown [2] that this approach only considers the right hand of the membership function for a 

triangular fuzzy number. However, the advantage of this approach is that the possibility concept 

can be used, and thus the decision maker can specify whether more risk should be allowed for 

certain situations. 

Even for methods based on the integration approach, the distinction between the existence 

level and the elements of the universe is frequently confused. For example, Yager’s F4 method, 

which is based on the closeness, in term of Hamming distance, between the fuzzy number and the 

fuzzy “truth value” was shown to produce counter intuitive results [3]. Kerre’s method, which 

is also based on the Hamming distance between the fuzzy number and some goal, has shown 

to produce inconsistent results when three fuzzy numbers are compared [l]. Both the counter 

intuitive and the inconsistent results are due to the consideration of the area, which is obtained 

by considering both the membership function and the elements in the universe. 
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3. THE CONCEPT OF OVERALL EXISTENCE 

For a given existence level W, the inverse image in terms of the membership function, p(s), is 

p-‘(w) = {x : p(x) = w}. (3) 

If the membership function of the fuzzy set A is convex and continuous, then {pil(w)} al- 

ways contains two groups of elements in A, for 0 < ‘w < 1, with {/.~il(w = 1)) as the mode. 

These two groups of elements of {p-l(w)} are s&, = max{z : PA(Z) = w} and zgin = 

min{a: : PA(x) = w }, for w E (0, 11, and defined as the right and left references, respectively. 

Based on the discussions above and the concept of existence, we can formulate the following 

theorem. 

THEOREM. Consider two fuzzy sets A and B with any kind of membership functions. For any 

w E (O,l], if A is said to be larger than B at w, then it must be that {pil(w)} > {p;‘(w)}. 

Notice that the inverse of the above theorem is not generally true. One problem with this 

approach is that it only considers one point, w, and thus, not enough information is used. The 

a-cuts approaches of Adamo [5], Buckley and Channas [7], and Nanda [8] are somewhat similar 

to this approach. For example, in Adamo’s method, the concept of existence appears in an index 

as 

F&Q = max{z 1 PA,(z) L a}. 

Graphically, this index is illustrated in Figure 2. 

1 
a-O.9 ‘.“‘.“’ 

. . . . . . 
Al j ; A2 M 

0 &I k&2, 

Figure 2. Adamo’s method (o = 0.9). 

A most restrictive definition of {am’} > {pGl(w)} has been used in Buckley-Chanas’ 

method. Given the o-cuts of A and B, which can be represented by [(a~)~, (a~)“] and 

[(b~)~, (b~)~], respectively, then 

A> B, if (a~)~ > (b~)~. 

In Nanda’s method, the concept of existence seems to appear in a more reasonable manner. 

Let X = [ZL, ZR] and Y = [ye, ye] be two closed bounded intervals on the real line R; 

XIY if ZL 5 $/L and XR 5 YR. 

Consider two fuzzy numbers A and B with compact a-cuts Aa, Ba, respectively, then 

A<B if A” 5 Be for any Q E [0, 11. 

Tanaka et al. [44] also used a similar approach in modeling the “greater than or equal to” 
constraints in fuzzy linear programming. 

In order to use all the information available, all the existence levels w must be considered. This 
overall existence index can be defined as follows: 

I= I’ LJ ({Pan}) dw - 1’9 ({P,‘(W)>> dw, 
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where PA and PB are the membership functions of the fuzzy sets A and B, respectively, and the 

function g is a function of the inverse of these membership functions. Based on this index, the 

following definition can be given. 

DEFINITION 1. Consider two normal fuzzy sets A and B; if A is said to be greater than B, then 

it must be that I > E, where E is a threshold (E > 0) to be satisfied in order for A > B to be true. 

Several existing FRMs, such as the methods of Yager F3 [13], Kaufmann [31], and Campos and 

Gonzalez [36,37] are somewhat similar to this overall existence concept. 

Yager’s F3 index is defined as 

.I 

amvx 
Fa(Ai) = ~4 VP) do, (5) 

0 

where crmaX = hgt(Ai) is the maximal membership grade in Ai, and M(Aq) represents the mean 

value of the elements of the o-cut A? of Ai. For continuous and convex fuzzy sets, the Fs index 

can be obtained by using equation (4) with the function g defined as an averaging operation on 

all elements of {Gus} = {Z : PA,(Z) = W}, 

9 ({PA”$J))) = m ({PLA”1(w)}) 

The F3 index is illustrated in Figure 3. However, if nonconvex fuzzy sets are involved, the 

Yager Fs index and equation (4) may give different index values. As is shown in Figure 4, when 

the Fa index is used, the elements of the fuzzy set are counted repeatedly for different levels of 

the o-cuts. This repeated counting can be avoided by the use of equation (4) with the function g 

defined as an averaging operation on { ~1: (w)} . 

Figure 3. Yager’s F3 index. Figure 4. 

Kaufmann’s d(A) index is defined as 

where &(A) and OR p re resent the Hamming distances from the left and from the right, 

respectively, of A to the origin. Clearly, Kaufmann’s index can be obtained by using equation (4) 

with the function g defined as the average of x&, and xzin. Graphically, &,(A) and OR are 
illustrated in Figure 5. With continuous and convex fuzzy sets, Kaufmann’s d(A), equation (4), 

and Yager’s Fa should give the same results. 
Campos and Gonzalez also proposed an index, called the average value AV. It is restricted 

to convex and semi-continuous fuzzy numbers. If A, = [a,, b,] is the o-cut of A, a closed and 
bounded real interval, and Y C [0, 11, then the AV of A is 

Vb(4 = s fib, dS(a), where f;(o) = Xb, + (1 -A)&, (7) 
Y 
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where X is used to adjust the degree of optimism or pessimism and S is an additive measure 
on Y. When S(a) = Q! and dS(a) = da, the AV has the form 

v,x(A) = [ [~ba + (1 - X)a,]da. (8) 

For convex and semi-continuous fuzzy numbers, V;(A) corresponds to equation (4) with the 

function g defined as a weighted average of x:,, and xEin. Index Vi(A) is illustrated in Figure 6. 
Different functions of S were also given in [37], such as 

(1) S(x) = XT, T E lR+, 

(2) S(x) = ln(x + l)/ In 2, and 

(3) S(x) = (eZ - l)/(e - 1). 

When S(x) = xT is used, the value of I- has the effect of a concentration or a dilution operation. 

Figure 5. Kaufmann’s d(A) index. Figure 6. Campos and Gonz&lez’s method: V;(A). 

As was shown above, various different forms for the function g in equation (4) can be proposed. 

A simple and useful form appears to be the weighted summation of the inverse of the membership 

function. The index can now be expressed as 

I1 = llw (cxw) dw - llw (~dw,) dwt 

where w defines a weighting function of w; and x(w) denotes the elements of {bil(w)}, y(w) 

denotes that of { pg’(w)}, and A and B are continuous, convex, and normal fuzzy sets. 

Since it has been proven [28] that given two fuzzy numbers, A and B, if C = A 0 B, then 

C, = A, 8 B,, thus equation (9) can be rewritten as 

~~ = llw (xx(w) - cy(w,) dw = j)(~4-)) dw, (10) 

where {@‘(w)} = {z : PC(Z) = w}. 

The method of Mabuchi [35] may be compared with the above index. Let Dij denote the fuzzy 
difference set of Ai and Aj and (Dij)O = [ZL(CY), ZR(Q)] denote the a-cut of Dij. Let m’(Dij)” 
and mm(Dij)” be the length of positive and negative regions, respectively, of [zL(Q), zn(a)]. 

Mabuchi defines the function Jij (cr) as 

(11) 
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and Jij(cr) E [-l,l] is interpreted as the degree of dominance of Ai over Aj at the level of CL 

Jij (a) is zero if the length of the interval ([zL,,(cY), ZR(QI)]) is zero. Based on Jij(a), the index of 

comparison Jz between Ai and Aj is defined as 

J 
h@(Q) 

J;(a) = 2 (Y Jij (a) ~OZ (12) 
0 

and Jzoj E [-l,l]. 
If the fuzzy sets are continuous and convex, the index I and Jc are essentially equivalent, 

since { PC1 (70)} contains only two points, and m+(Dij)” and m-(Dij)a measure the positive 

and negative portions of the line between these two points. The denominator of Jij(a) is just a 

normalization factor. Moreover, it can be seen that in this case, 11 and Mabuchi’s index, as well 

as Campos and Gonzblez’s AV index are essentially equivalent, when the AV index is used with 

S(cy) = +,a” and X = f. 

However, when nonconvex fuzzy sets are involved, the results of the indexes J$ and I, may be 

different. An example of this difference is shown in Figure 7, where Dij represents a nonconvex 

fuzzy difference set. 

Figure 7. 

Yuan [34] also proposed a method related to the above discussion. This method improves the 

method of Nakamura [39] by using the fuzzy difference set (A - B) and a crisp 0 set instead of 

the two fuzzy sets A and B originally used in Nakamura’s method. In order to introduce Yuan’s 

method, let first recall the method proposed by Nakamura. 

Nakamura’s method uses a fuzzy comparison function to produce fuzzy preference relations. 

This fuzzy preference relation, denoted as P, between two fuzzy sets is defined as 

[cd (AR, &(&,BR)) + Cl- a) D (AL, z(AL, BL)) 1, if A, # 0, 

if A, = 0, 

for LY E [0, 11, where 

A0 = 0 [D (AR, z(AR, BR)) + D (BR, z(&, BR))] 

+ (1 - cr) [D (A L, %(AL, BL)) + D (BL, nz(&, BL))] ; 

D represents the Hamming distance defined as D(A, B) = s, Ip~(x) - pi = (x)1 dx, and 

pan = cz;=&aA(x) @Art(f-) = SUP fiA(x) VT E W. (13) 
(z)l6r 

When A Y- (strictly dominates) B, we should have gp(A, B) = 1. On the other hand, if A k 
(weakly dominates) B, then p&A, B) 2 $. 

Yuan improved Nakamura’s method in the following manner. In addition to the fuzzy difference 

set (Al - Aj), the real number 0 is defined with a membership function, 

PZcl(~) = 1 1, 2=0, 

0, Z # 0. 
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Using (Ai - Aj) and 20, a fuzzy preference relation between Ai and Aj, denoted as Q(Ai, Aj), 

is defined with the membership function 

PQ(&,~) = PP(& -Aj,Zo), 

which represents the degree of preference of Ai over A,; ,up(Ai - Aj, 20) 
(Ai - Aj) over 20 in Nakamura’s method, with cx = 0.5. 

is the preferability of 

4. NORMAL AND NONNORMAL FUZZY SETS 

For nonnormal fuzzy sets, the level of existence is less than one and thus direct comparison 
between normal and nonnormal fuzzy sets cannot be made. One way to overcome this difficulty 
is to normalize the nonnormal fuzzy sets. However, this is often undesirable because the original 
meaning of the problem is lost. Since equation (4), which is the definition of the index for overall 
existence, is based on fuzzy difference, a more reasonable approach can be obtained by examining 
the definition of the fuzzy difference based on the extension principle. Figure 8 illustrates the 
similarity of the results when fuzzy differences are obtained between two nonnormal fuzzy sets 
and between one normal and one nonnormal fuzzy sets. This has been called “top flattening” by 
Dubois and Prade [15]. 

Based on the concept of top flattening, the overall index of existence can be modified for 
nonnormal fuzzy sets as follows: let Wzgt = min[hgt(A), hgt(B)]. Suppose hgt(A) > hgt(B) and 
A is top-flattened to be AT, then 

I ncmnOrm = lWzgtg ({&(w)}) dw - Jdy’“s({/$(w)}) dw. 
0 

(14) 

Fuzzy maximum or fuzzy minimum based on the extension principle has the same top flattening 
effect. This is illustrated in Figure 9 for fuzzy maximum. Similar results can be obtained for 
fuzzy minimum. Thus, fuzzy maximum or fuzzy minimum based on the extension principle also 
only consider the smallest maximum membership grade of the fuzzy sets. Fuzzy maximum or 
fuzzy minimum can be incorporated into FRMs. Indirect and successful applications of the fuzzy 
maximum or fuzzy minimum in FRMs appeared in [22,38-401. The reader is referred to the 
literature for more detail [l-4]. 

Figure 8. Fuzzy difference. Figure 9. Fuzzy maximum. 

Since nonnormalities of fuzzy sets are frequently due to the lack of information at the current 
moment, and more information may become available later, the comparison results should be 
treated tentatively and the nonnormalities of the fuzzy sets should be reported to the DM. 
Mabuchi [35] has proposed a linguistic procedure to take this tentative aspect into consideration. 
The information of nonnormality in fuzzy sets compared is reported linguistically, based on the 
height of the fuzzy difference set. Four linguistic terms were used: 

(a) the height h nearly l-credible, 
(b) h over 0.5-moderate credible, 
(c) h under 0.5-little credible, and (d) h nearly O-not credible. 
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L4WM L7 L8 L9 

Figure 10. An illustration of linguistic interpretation of UQ(A~, Aj) in Yuan’s method. 
Ll: A, absolutely better than Ai. L2: Aj strongly better than Ai. L3: Aj moder- 
ately better than Ai. L4: A, weakly better than A,. L5: Indifference between Ai 
and A,. LG: Ai weakly better than Aj. L7: Ai moderately better than Aj. L8: Ai 
strongly better than A,. L9: Ai absolutely better than Aj. 

11 

5. LINGUISTIC APPROACHES 

Linguistic approaches avoid the tendency to defuzzify an intrinsically fuzzy rating and thus are 

preferred from the standpoint of retaining the fuzzy nature. Several linguistic procedures have 

been proposed. The procedures of Mabuchi [35] and Yuan [34] are briefly summarized in the 

following. Yuan’s approach appears to be closely related to the suggestions of Freeling [45]. The 

linguistic interpretation of Yuan of a fuzzy preference relation between two fuzzy sets is shown in 

Figure 10. If a fuzzy preference relation, Q(Ai, A3) = 0.5375, then it may be concluded that Ai 
is weakly better than Aj with truth level 75% and Ai is indifferent from A, with truth level 25%. 

In Mabuchi’s approach, a linguistic conclusion is drawn from the curve of a vs. Jij(cy) and 

considers the following two factors: 

(a) The range or distribution of the curve over the Jij axis is used to indicate the complication 

of the conclusion: 

(1) impulse type-no complication; 

(2) one sided-slight complication; 

(3) one sided, narrow-very slight complication; 

(4) two sided but biased to one side-moderate complication; and 

(5) widely or equally distributed on both sides-much complication. 

(b) The average position is used to indicate dominance: if the average position is 

(1) nearly l-definite dominance; 

(2) over 0.5-strong dominance; 

(3) about 0.5-moderate dominance; 

(4) under 0.5-slight dominance; and 

(5) nearly O-no dominance. 

For example, if the curve of cy - JQ (a) of the fuzzy difference of the two fuzzy sets Ai and Aj is 

widely and nearly equally distributed on both sides of the origin on the Jij axis, and its average 

position is about 0.5, then it is concluded that Ai is moderately dominant to Aj with much 

complication. 

One of the problems of Mabuchi’s approach is that the results are difficult to interpret. In 

fact, even determining a linguistic description based on factors (a) and (b) is sometimes difficult. 

Furthermore, even if such a linguistic description is obtained, the interpretation may be still too 

vague to be of any use. 

Yuan’s index Q(Ai, Aj), which is a fuzzy preference relation in [0, 11, can be modified easily 

for use for the index defined in equation (4). This modification is shown in Figure 11. Linguistic 
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*Ll L2 L3 L4LsM L7 La L9 

Figure 11. An illustration of linguistic interpretation of CL(Ai, Aj) for equation (4), 
Ll: A, absolutely better than A,. L2: Aj strongly better than Ai. L3: Aj moder- 
ately better than A,. L4: Aj weakly better than Ai. L5: Indifference between Ai 
and Aj. L6: A, weakly better than Aj. L7: A, moderately better than Aj. L8: Ai 
strongly better than Aj. L9: A, absolutely better than A,. 

preference relations can now be obtained by the combined use of Figure 11 and the index defined 

by equation (4). 

6. A FUZZY RANKING METHOD WITH 
DECISION MAKER’S PARTICIPATION 

One important aspect of a fuzzy set is its subjectivity. This is especially true when very similar 

fuzzy sets need to be ranked. In fact, from a purely mathematical or objective viewpoint, there is 

no difference between the fuzzy numbers A and B in Figure 12 or 13, provided that the degree of 

fuzziness of a fuzzy number is not considered. However, from a practical or subjective standpoint, 

the decision maker may feel some differences from his intuition or past experiences. The FRM 

index to be introduced emphasizes this subjective viewpoint with decision maker’s participation. 

DEFINITION 2. Let A and B be two fuzzy sets with membership functions PA(Z) and by, 

respectively, and let {pil(w)} and {pil(w)} b e t wo ordinary subsets, denoting the inverse 

images of the membership functions with w E (0, 11, i.e., 

{pil(w)} = {x : PA(x) = W} and {p&'(W)} = {y : pB(y) = w}, 

with x, y E R. The difference between A and B is defined as 

d(A, B) = lwEgtg~ ({/G1(w)}) dw - JWEgty, ({&w)}) dw, 
0 

w& = minw [hgt(A), hgt(B)] , (15) 

where the function g can be defined as follows. 

Let Z:(W) = maX{xi : pA,(zi) = W} and z:(W) = min{z, : PA,(q) = w}, then: 

sz ((Pi,+)}) = w(w) kl(W) 4(w) +x2(w) G(w)]. 

Definition 2 can be expanded for n fuzzy sets Ai (i = 1, . , 71) and obtains individual mea- 

surements for each fuzzy set. 

For notational convenience, let us define: 

* 

s %gt 
OM(A,) = gz ({PJll(W))) dw7 where wzgt = min [hgt(Ai)] (16) 

0 i 
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It should be emphasized that Definition 2 applies to all kinds of membership functions such as 

convex, nonconvex, normal, nonnormal, continuous, or piecewise-continuous. 

The above definition can be simplified for the L-R type of fuzzy numbers [15]. Let the left side 

of a L-R fuzzy number A be denoted as AL and the right side as AR, then 

Z’(W) = p,:(w) and Z”(W) = pi:(w). 

That is, X’(W) and X”(W) are the inverse images of the left reference (L) and the right refer- 

ence (R), respectively, of the membership function of A. Definition 2 now becomes: 

s 1 

OM(A) = w(w) [XI(W) &t(w) + x2(w) PA;(W)] dw. 
0 

(17) 

The weighting measures w(w) and xi(w), x2(w) must be determined subjectively by the deci- 

sion maker. These measures are used to emphasize different aspects at different existence levels 

and they are examined in detail in the following. 

Let us consider the weighting measure w(w) first. This measure can be used as a pure existence- 

level weighting function and is defined as follows: 

(18) 

We shall call it the pure w(w)-weighting, which is equivalent to the a-weighting in the Mabuchi’s 

method and S(Q) = ;a2 in the AV index of Campos and Gonzalez. Alternatively, different 

weights can be added to different levels of existence. For example, the DM may decide that the 

elements at the middle existence levels should weigh more. Therefore, w(w) can be defined as 

1 

w (1 - w) .I 
%gt 

w(w) = 1”L* J where A* = w(l- w)dw. 
0 

Apparently, this subjective w(w)-weighting reflects a more conservative attitude of the DM by 

weighing less the elements at higher and lower existence levels and weighing more at middle 

levels. Other subjective w(w)-weighting may also be defined, such as w(w) = w(w’)/A*, r E IR. 

The subjective weighting measures of xi(w) and x2(w), which normally require xi(w) + 

x2(w) = 1, can play even more important roles in the decision maker’s preference. To illustrate 

these situations, let us look at some examples. Consider the situation illustrated in Figure 12. 

If the degree of fuzziness is not considered and a simple comparison method is used, Al = A2 

may be concluded. However, the comparison between Al and A2 in Figure 12 could be very 

controversial and subtle if one considers the actual situation of the problem and the requirements 

of the subjective DM. For example, for a maximizing decision, when the DM is very optimistic, 

Al should be chosen, since A1 contains larger elements. On the other hand, if the DM is very 

pessimistic and is always looking for the worst situation, A2 should be chosen since its smallest 

values are larger than that of Al. Similar situations apply to Figures 13 and 14. 

Figure 12. Figure 13. Figure 14. 
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Different functions for Xi(w) and X2(w) can be conceived for different situations. The simplest 

functions are: 

Xl(W) = Xl, x2(w) = x2, XI, x2 E [O, 11 and x1 + x2 = 1, 

which will be called the fixed-X(w) type weighting. This type of weighting can be optimism 

or pessimism depending upon whether the decision is to maximize or to minimize. Figure 15 

illustrates three fixed-X(w) type weightings for Xi = 0.8, 0.5, and 0.2. If X1 = X2 = 0.5, it will 

be called indifference fixed-x(w) weighting. On the other hand, if Xi # 0.5, it is called difference 

jixed-x(w) weighting. 
0 Xl - 0.2 

Figure 15. Illustrations of the fixed-x weighting: [xl z’(w) + ~2 cc”(w)] 

A more realistic type of X(w) weighting is the linear-X(w) weighting defined below. Let Xi(w) 

and X2(w) be (piecewise) linear functions of w and Xl(w) + X2(w) = 1, for all w E (0, I]. Assume 

that there exists a wd (0 < wf 5 w&~) such that for w E (wef,w;tsJ, Xi(w) (likewise X2(w)) is 

linearly increasing or decreasing with w. For w E (0, w,f], Xi(w) and X2(w) constitute a fixed- 

X(w) weighting, i.e., Xi(w) = XT, X2(w) = X4, XT + X2 = 1. The linear-X(w) weighting can be 

defined as follows. 

(i) If xl(w&J = x7 > x4, or, Xi(w) is an increasing function of w from w,f to wgpt; therefore, 

X2(w) is a decreasing function of w during the same interval; we have 

1 

XP for O<w<w,f, 

Xl(W) = 
x7 - 

(x7 - x2 (W& - w) 
for w,f<wIw&, 

(20) 

( 
w;st f ’ - We 

> 
and X2(w) = 1 - Xi(w). 

(ii) If x1($& = xS < xE , or, Xi(w) is a decreasing function of w from w,f to w,?&; therefore, 

X2(w) is an increasing function of w during the same interval; we have 

f XP, for o<w<w,f, 

(21) 

and X2(w) = 1 -Xl(w). 

(iii) If X1 (wipt) = XT = XT or w,f = wigt, then Xi(w) = X7 and X2(w) = 1 - XT = X5 for all 

w E 0, WC@ ( 1 
Obviously, the fixed-X(w) type weighting is a special case of the linear-X(w) type weighting. 

Similarly, nonlinear-X(w) type weighting can also be defined. One simple nonlinear-X(w) type 

weighting can be obtained directly from the above definitions of the linear-X(w) type weighting 

as follows: 

(i) If 

xs = Xl (W&t> > x:1 

xl(w) = x”l _ cxs (x:1 (WigtfWY, 
f 

r E IW+, for w,f < w < w;Cgt; (22) 
W;lgt -we 



Ranking of Fuzzy Sets 15 

(ii) if 

xf = x1 (w&t) < XT, 

xl(w) = xi + M -yff) (w~gt;wr, 
f 

T E Iw+, for w,f<w<w;st. (23) 
w;zt - we 

To illustrate the meaning of these weighting functions, let us consider the following four typical 

examples for the linear-x(w) case. 

(1) 

(2) 

(3) 

(4) 

XT = x1 wcgt 
( > 

K 4, w,f = 0, and XT = f. From the definition, we know that xs > f. 

In this case, x(w) weighs very heavily for z:(w) at wept and gradually decreases to the 

indifference level of XT = xi = i at (w)f = 0. This linear weighting case is illustrated in 

Figure 16, marked with (1). Applying this weighting to the fuzzy set A shown in Figure 15, 

the curve marked (1) in Figure 17 is obtained. Note that even though the x(w) weighting 

is linear, the outcome of [xl(w) X:(W) + x2(w) z!(w)] is nonlinear. 

XT = xi w& <Z 4, x7 = i, and w,f 
( > 

> 0. From the definition, we know that JY$ >> f. 

This is a modification of Case (1) and is illustrated in Figures 16 and 17, marked with (2). 

The values of XT = 0.9, w,f = 4, and xE = $ are used in Figure 17. 

x; = x1 w;,t ( > 
< 2, wf = 0, and x4 < xf < i. By definition, we must have ~3 = 

xz(w;,,) > f and ~5 > XJ > 3. The functions xr(w),xs(w) for this case are shown in 

Figure 16 and marked as (3). The outcome of the construction for this case is shown in 

Figure 17 marked as (3) with xy = xi wigt 
( ) 

= 1, wd = 0, and XT = 0.7. 
. , 

XT = Xl wiT,t ( > < 3, XI < XI < 4, and w% 

x2 w,?,st >~andx~>x~>~. 
( > 

> 0. By definition, we must have xs = 

Figure 16. Illustrations of typical (non-) linear-x weighting 

functions. (l), (2), (3): linear-x; (4): nonlinear-x. 

Figure 17. Illustrations of linear-x weighting: 

[x1(w)r'(w) + x2(~)~“(~)1. 

An example for the functions of nonlinear-x(w) weighting is also shown in Figure 16, marked 

as (4), which corresponds with Case (3) of the linear-x(w) weighting with r = 2. 

7. NUMERICAL EXAMPLES WITH EMPHASIS ON 
LINGUISTIC CONCLUSIONS 

Two examples, which possess certain subtleness and controversy, are solved to illustrate the 

approach. Emphasis is placed on the subjective weighting of the decision maker and the resulting 

linguistic conclusions. The first example is a comparison between two normal continuous convex 

fuzzy numbers and the second example is a comparison between convex and nonconvex, and 

normal and nonnormal fuzzy sets. In order to construct meaningful linguistic conclusions, an 

improved method for reaching a final linguistic interpretation is introduced. 

CAMWA 27:9/10-c 
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EXAMPLE 1. Consider the comparison of two fuzzy numbers Al and AZ, illustrated in Figure 18. 

The membership functions of these two fuzzy numbers are 

x - 5, for 5 I x I 6, 
X 
-7 for 0 5 x 5 7, 

/4(X) = 7 - 5, for 6 5 x 2 7, /42(X) = 8’- 5, for 7 I x I 8, 

0, elsewhere, 0, elsewhere. 

Figure 18. 

Therefore, the inverse images of pi(x) and pz(x) for 0 < w I 1 are 

(1) 

(2) 

(3) 

{ad’} = ((5 + w), (7 - w)} and xi(w) = 5 + w, x:(w) = 7 -w, for A,; 

{,u~~(w)} = {(7w), (8 -w)} and x;(w) = 7w, x;(w) = 8 -w, for Az. 

Indifference fixed-x(w) weighting with w(w) = w, xi(w) = x2(w) = 0.5, for 0 < w 5 1 

and wigt = 1; 

OM(A 
1 
) = sd_ w 10.5 (5 + w) + 0.5 (7 - w)) &J = 6 

( > 

2 1 
4 w* h@ 

OM(A2) = sd_ w to.5 VW) + 0.5 (8 - w)) dw = 6 
2 9 and 

3 4gt ( > 
d(Al, A2) = 0. 

Difference fixed-x(w) weightings with w(w) = w, w;,~ = 1. The results are summarized 

in Table 7.1. The calculation of one case is illustrated in the following. For xi = 0.9, 

xz = 0.1, we have 

OM(A1) = sd_ w (0.9 (5 + w) + 0.1(7 - w)) dw = 5 73 
2 . 7 

t w;gt ( > 

OM(A2) = s; w WJ VW) + o-1 (8 - w)l dw = 4 g3 and 

t 4gt ( > 

2 . 7 

d(A1, AZ) = 0.8. 

Linear-x(w) weightings with w(w) = 20, wtgt = 1. The results for this case are again 

summarized in Table 7.1. The calculation of one case is illustrated in the following. For 
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xs = Xl w&t ( > = 0.9, W{ = 0, and XT = 0.5, we have 

Xi(W) =X; - (XI $);),“) =0.g- (““-(;*y;; -W) =0.5+0.4w, 

x2(w) = 1 - Xl(W) = 0.5 - 0.4w, 

OM(A1) = /b’ w ((0.5 + 0.4 w) (5 + w) + (0.5 - 0.4 w)(7 - w)} dw = 5 87 

~(wl?gt)2 
. 3 

OM(A2) = J; w ((0.5 + 0.4~) (7~) + (0.5 - 0.4~) (8 - w)) dw = 5 47 
and 

4 w&t ( > 

2 . 9 

d(Al,A2) = 0.4. 

(4) Nonlinear-x(w) weighting with W(W) = W, T = 2, wcgt = 1. For xi = ~1 w& = 
( > 

0.9, w,f = 0, and x4 = 0.5, we have 

w2 . . 
x~(w)=x~-(x~~~x~~;~ ) =0.g-(og-;5);;2-w)2 =0.5+0.8w-0.4w2, 

x2(w) = 1 - xl(w) = 0.5 - 0.8~ + 0.4w2, 

OM(A1)= Jiw {( 
05+0.8w-0.4w2)(5+w)+(0.5-0.8w+0.4w2)(7-w)} dw=581 

. 
f(%,t)2 

. 7 

0M(A2) = Jb’ w { (o’5 + o’8 w - 0.4~~) (7~) + (0.5 - 0.8~ +0.4w2) (8 - w)}dw =5 25 and 
2 . , 

d(A1,A2) = 0.56. 

The other results are summarized in Table 7.1. 

Table 7.1. Summary of results for Example 1. 

‘Fixed type weighting-x 2 Linear type weighting--)( 3Nonlinear type weighting-x 

XT x; OM.(Al) OM(A2) d(Al,Az) OM(A1) OM(A2) d(Al,Az) OM(A1) OM(A2) d(Al,Az) 

0.9 0.1 5.73 4.93 0.8 5.87 5.47 0.4 5.81 5.25 0.56 

0.7 0.3 5.87 5.47 0.4 5.93 5.73 0.2 5.91 5.63 0.28 

0.5 0.5 6.0 6.0 0.0 

0.3 0.7 6.13 6.53 -0.4 6.07 6.27 -0.2 6.09 6.37 -0.28 

0.1 0.9 6.27 7.07 -0.8 6.13 6.53 -0.4 6.19 6.75 -0.56 

‘Fixed-x type weighting: UJ~ = w&. 2Linear-x type weighting: W, - f-o,x;=x;=;. 

3Nonlinear-x type weighting: r = 2, W: = 0, x; = x5 = 4 

Obviously, the results for Example 1, which are summarized in Table 7.1, need some explana- 

tion. In the following, we shall draw some linguistic conclusions from Table 7.1, based on the 

subjective view point of the decision maker and for a maximizing decision problem. Since it is 
a maximizing situation, the degree of optimism refers to the degree of emphasis placed on the 

right-hand side of the fuzzy numbers, and the degree of pessimism refers to the left-hand side. 

(1) When the indifference fixed-x(w) weighting (xf = x; = 0.5) is assumed, the numerical 
results give an outcome of indifference between the two fuzzy numbers, i.e., A1 = AZ. 

However, if a pessimistic comparison is requested, e.g., x4 = 0.9, the numerical outcome 
is A1 > AZ. This outcome is equivalent to choosing a fuzzy number with a smaller spread 
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(2) 

(3) 
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as the preferred. Conversely, if an optimistic comparison is requested, e.g., x$ = 0.9, the 

numerical outcome is Al < AZ, which is equivalent to preferring a fuzzy number with a 

larger spread. 

Obviously, any set of results of Table 7.1 can be used as the final results of the comparison. 

Suppose the results of the nonlinear-x(w) weighting (r = 2, xi = xr($st) = 0.7, w,f = 0, 

and xE = 0.5) is adopted. According to Figure 11 and due to d(Al, AZ) = 0.28, we obtain 

a linguistic conclusion as: “A1 and A2 are indifferent with truth level 44% and Al is 

weakly better than AZ with truth level 56%” with “degree of optimism of 30% or degree 

of pessimism of 70%.” 

In many practical situations, the DM’s attitude can be very fuzzy and is very difficult 

to obtain a crisp level. Suppose the DM gives a range [p’,p”] regarding the degree of 

optimism or pessimism, then from Table 7.1 for [p/,p”] 3 XT, we can obtain the range 

of values for d(A1, AZ) with a given type of weighting. From Figure 11, we can obtain 

the corresponding truth level for Lk. It should be noted that the range of d(Al, AQ) may 

satisfy several truth levels of Lk. A natural tendency would be to select that LI, which is 

most suited to this range. In order to define this “most suited,” we will use the following 

integration approach: 

Tk = J 
d;‘,z 

PL, (61,2) d&z, (24) 
d;J 

where [di,z, dy,s] corresponds to the lower and upper limits, respectively, of d(A1, AZ), Tk 
represents the integrated truth level of Lk, and the integrant represents the membership 

curve of Lk. The most appropriate Lk is that one which gives the largest value of Tk. 

Suppose the DM gives the range of pessimistic degrees as from 0.7 to 0.9, then from Table 7.1, 

corresponding to xi E [p’,p”] = [0.7,0.9], we obtain the value of d(Al, AZ) = [0.2,0.4]. In this 

case, since [di,z,dy,z] = [0.2,0.4], we have 

0.4 

T:, = J 
0.4 

2 (0.5 - S) dS = 0.08, Ts = 26dS = 0.12, 
0.2 J 0.2 

and Tk = 0, for k # 5, 6. Thus 

Therefore, Le is the most appropriate linguistic interpretation. A conclusion may then be stated 

as: “A1 is weakly better than AZ” with “degree of pessimism in [0.7, 0.91 or [70%, 90%].” 

EXAMPLE 2. Consider the comparison of two fuzzy sets Al and A2 in Figure 19. Al is normal 

but nonconvex while A2 is convex but nonnormal. Numerically, Al and A2 are defined with the 

membership functions PI(X) and ~2(5), respectively, as 

1 -x, for 

Pl(“c) = $x-6), - 

0, elsev 

for 
O<x<l, 

3 2 x 5 3.5, 

for 3.5 I x 
6 <x 5 8, 

< 4.5, 
for 

for 4.5 x 
(here, 

I < 5, 

elsewhere. 

Figure 19. 
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The decision is for maximization and the DM’s attitude reflects some degree of optimism with 

(xs) between 50% and 70%, that is, between indifference and moderate optimism. The inverse 

images of pi(z) and pz(2) are 

{cl.l’(w)} = ((1 - w), (6 + 2~))) andzi(zu)=l--w, ~$‘w=6+2w, for O<w<l forAl; 

{PLZW} = 
(3 + w), (5 - w)), for 0 < w < 0.5 

[3.5,4.5], for w = 0.5, 
for Az, 

i.e., a compact continuous real interval, and 

XL(W) = 3 + w, z;(W) = 5 -w, for 0 < w < 0.5. 

The height is: wist = min[hgt(Al), hgt(A2)l = min[l,0.5] = 0.5. Let us assume that linear-x(w) 

type weighting and w(w) = w would be appropriate to reflect the DM’s degree of optimism and 

pessimism. The calculations are carried out as follows 

(1) Indifference fixed-x(w) weighting with xi = ~2 = 0.5 : 

OM(A1) = s,“‘” w (0.5 (1 - w) + 0.5 (6 + 2~)) dw 

; (o.5)2 
= 3.67, 

0M(A2) = s,“‘” w (0.5 (3 + w) + 0.5 (5 - w)} dw 

; (o.5)2 
= 4.00, and 

d(Al, AZ) = 0.33. 

(2) Linear-x(w) weighting with w,f = 0 and ~7 = 0.5. 

(a) xS = XI (w&) = 0.3, (or, x4 = x2 (w&) = 0.7) 

x1(w) = XI + (xp (x:, (-;,,-, = 0.3 + (0.5 -(;‘;““d; -W) = 0.5 _ 0.4W, 

w& - we 

x2(w) = 1 - Xi(W) = 0.5 + 0.4w, 

OM(A1) = s,“.” w ((0.5 - 0.4 w) (1 - w) + (0.5 + 0.4 w) (6 + 2~)) dw = 4 48 

f (o.5)2 
. 7 

0M(A2) = g5w I(O.5 - 0.4 ~)(3+~)+(0.5+0.4~)(5-w)}dw =417 

4 (o.5)2 
. 7 and 

d(AI, A2) = 0.31. 

(b)xT = xl (wggt) = 0.1, (or, xS = x2 (wcgt) = 0.9) 

x2(w) = 1 - XI(W) = 0.5 + 0.8~1, 

OM(A1) = s,“.” w ((0.5 - 0.8 w)(l-w)+(0.5+0.8w)(6+2w)}dw =530 

f (o.5)2 
. , 

OM(A2) = s,“,” w i(O.5 - 0. 8 w) (3 + w) + (0.5 + 0.8 w) (5 - w)} dw = 4 33 

4 (o.5)2 
. > and 

d(Al, A2) = 0.97. 
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Thus, the corresponding range of d(Al, AZ) to [0.5,0.7] 3 xl appears as [-0.33,0.31], and 

0 ’ 0.31 

T4 = J -26dS = 0.109, T5 = 
-0.33 

J (1 - 26) db = 0.531, 
-0.33 

(l+dcqdb+/ 
0 

TG = J 0.31 

26 dS = 0.096, (27) 
0 

and Tk = 0, for k # 4, 5, 6. Thus, 

T5 = kzit7j9[Tkl. 
I 1 

Hence, we may conclude that “Al and A2 are indifferent” with “degree of optimism from 0.5 to 

0.7 or 50% to 70%” and “degree of nonnormality (1 - w&) = 0.5 or 50%.” 

Suppose the degrees of optimism are [0.7,0.9] instead of [0.5, 0.71, then [d’,,,, dy,,] corresponding 

to [0.7, 0.91 for x$ is [0.31, 0.971, and 

T5 = J 
0.5 

(1 - 26) dc5 = 0.036, 
0.31 

Ts = l;:26d6+l;7d6 = 0.624, 

and Tk = 0, for /C # 5, 6. Thus, 

Ts = max 
k=1,...,9 

[Tk]. 

We can now conclude that “A1 is weakly better than AZ” with “degree of optimism from 70% to 

90%” and “degree of nonnormality 50%.” 
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