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Abstract

In this paper we study existence, uniqueness and regularity of solutions for the equations go
the forced elongation of fluids with differential constitutive law of Jeffreys type. These equa
consist of nonlinear first-order hyperbolic equations in one spatial dimension. Forced elonga
imposed through velocity boundary conditions at the domain entry and exit. The existence r
based on the Schauder fixed point theorem and energy methods in the space of boundary
functions.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The mathematical description of thin viscoelastic fluid fibers formed by forced e
gation is an analytically challenging issue which promises new insights in the ph
mechanisms governing these elementary flows. This description takes the form of
tem of nonlinear coupled first-order hyperbolic partial differential equations which ar
readily accessible for analysis.

Forced elongation occurs frequently in the formation of filaments both in nature
spider silk) and in industry (e.g., nylon, manufactured by fiber spinning). The com
theme in these flows is that a polymeric fluid, contained in a reservoir, is pressed thr
hole (spinneret) and axially stretched by a pulling force to form a thin circular liquid fi
In industrial processes such as fiber spinning the material is extended by a wind
made to solidify at a fixed point along the axis of elongation. The term “forced elonga
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refers to the requirement that the “inflow” velocity of the fluid (when it leaves the rese
to enter the domain of extension) be smaller than the “outflow” velocity imposed b
pulling force.

Simple models of forced elongation are based on two assumptions: thinness
axisymmetric fiber and dominant viscous/viscoelastic forces. As a result the gove
equations are one-dimensional in space and do not account for inertia. In the purely v
case the governing equations were first posed by Kase and Matsuo [11] and first fo
derived by Matovich and Pearson [12]. Recent analytical studies of these equatio
cused on linear stability and related issues [2,3,7–9]. A few results address existen
uniqueness of solutions, both in viscous and viscoelastic regimes [4–6]. In this artic
will treat the viscoelastic case where the viscoelasticity is modeled by the constitutiv
ory of the upper convected Jeffreys fluid (or Oldroyd-B fluid) [1,10,13]. This constitu
theory is based on a simple macroscopic spring-dash pot model and entails a linea
position of non-Newtonian and Newtonian stresses. It is well known that the consti
model of the Jeffreys fluid has major shortcomings in real-world flow predictions, som
them even very serious in certain elongational regimes. However, the Jeffreys fluid
accepted as a theoretical fluid model that is capable of shedding light on the “qualita
correct” viscoelastic flow behavior. In addition, the Jeffreys model is the basis for a v
of other important fluid models (among them the Giesekus, Phan-Thien–Tanner and
models), thus deserving appropriate attention.

Our main objective in this work is to study (local in time) existence, uniqueness an
ularity of solutions in the case of “forced elongation boundary conditions.” These bou
conditions are the ones one would naturally hope to impose. Previous studies of vis
tic fiber flow were restricted to “inflow boundary conditions” [4,6]. Our objective w
be tackled by fixed point methods and functional–analytic arguments in an appro
function space: the space of boundary-regular functions. To the author’s knowledg
fundamental strategy for proving existence of solutions for nonlinear transport equ
by means of boundary-regular functions was first published in [5] and later extended
In this article we will give a brief summary of the most important features of these f
tions in Section 3. In contrast to related results published in [4–6] the principle ide
proving existence in this work are geared toward the Schauder fixed point theorem,
Banach contraction mapping principle. This approach proves shorter and technica
less demanding. In general, fluid models with constitutive equations in differential
that include both Newtonian and non-Newtonian stresses can be analyzed with tech
similar to the ones developed here. Moreover, there is hope to believe that the force
gation of a Maxwell fluid arising as a singular limit of the Jeffreys fluid with vanish
Newtonian stresses can be discussed in this way as well.

2. The governing equations

In this section we state the equations governing the forced elongation of a Jeffrey
in dimensionless terms. To this end, we denote time byt , the axial variable byz, the
cross-sectional fiber area bya = a(t, z) (assumed as circular), and the axial velocity
v = v(t, z). The quantitiesTrr = Trr(t, z) andTzz = Tzz(t, z) denote the radial and axia
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components of the viscoelastic extra stress tensor. Then the governing equations
cast in the form (see [14])

∂t a + ∂z (va)= 0, (2.1)

∂z
(
3χa∂zv + (1− χ)a(Tzz − Trr )

)= 0, (2.2)

We(∂tTrr + v∂zTrr + Trr∂zv)+ Trr = −∂zv, (2.3)

We(∂tTzz + v∂zTzz − 2Tzz∂zv)+ Tzz = 2∂zv. (2.4)

The flow domain is 0� z � 1, t � 0. The positive parameter We, the Weissenberg n
ber, is a dimensionless relaxation time and serves as a measure for the viscoelas
the fluid. The quantityχ ∈ [0,1] is a concentration parameter, related to an intrinsic fl
retardation time, and models the contribution of the Newtonian stresses to the mom
balance. The caseχ = 1 yields a purely viscous momentum balance where the stress
tions decouple from the mass and momentum balances, while the caseχ = 0 corresponds
to a purely viscoelastic regime. In this latter case the total stresses reduce to what is
as the constitutive theory of the upper convected Maxwell fluid. For all our purposes
paper we shall assume

0< χ < 1. (2.5)

To close the formulation of the problem we pose the “forced elongation boundary c
tions”

a(t,0)= 1, (2.6)

v(t,0)= 1, (2.7)

v(t,1)=D > 1, (2.8)

Trr(t,0)= T ∗
rr (t), (2.9)

Tzz(t,0)= T ∗
zz(t) (2.10)

together with initial conditions of the form

a(0, z)= a0(z), (2.11)

Trr(0, z)= T 0
rr (z), (2.12)

Tzz(0, z)= T 0
zz(z). (2.13)

The quantityD > 1, referred to as “draw ratio,” is a dimensionless outflow velocity.
remark that the Maxwell regimeχ = 0 cannot be treated within the framework above si
Eqs. (2.1)–(2.13) would be overdetermined. For this reason previous studies of Eqs
(2.4) withχ = 0 (see [4]) concentrated on the “inflow boundary conditions”

a(t,0)= 1, (2.14)

v(t,0)= 1, (2.15)

Trr(t,0)= T ∗
rr (t), (2.16)

Tzz(t,0)= T ∗
zz(t). (2.17)
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Similar conditions were imposed in nonisothermal viscoelastic flow [5]. The more rel
problem of forced elongation boundary conditions (i.e., with the conditionsv(t,0) = 1,
v(t,1) = D and other boundary conditions dropped in (2.14)–(2.17)) has yet to be
for the Maxwell fluid.

3. Boundary-regular functions and the elementary transport equation

In the following, we will need some technical results which are crucial for the e
tence theory of the governing equations. In the current chapter we briefly summarize
nonstandard results for the reader’s convenience.

3.1. Definitions

Let r1< r2, s1< s2, t0> 0 andm,n, k ∈ N0. We will interpret the following norms an
seminorms with respect to (w.r.t.) the entire domain of the particular function. Henc
meaning oft0, r1, r2, s1, ands2 will become clear from the context. Throughout we w
use the following abbreviations:

(1) ‖ · ‖p for the norm on the Lebesgue spaceLp(r1, r2), 1� p � ∞,
(2) ‖ · ‖Hk for the norm on the Sobolev spaceHk(r1, r2),
(3) ‖ · ‖m,n for the norm on the Sobolev spaceWm,∞([r1, r2];Hn(s1, s2)),
(4) ‖ · ‖Hm,n for the norm on the Sobolev spaceHm([r1, r2];Hn(s1, s2)),
(5) ‖ · ‖m,n,[t ] for the seminorms on the spaceWm,∞([0, t0];Hn(s1, s2)), defined for 0�

t � t0 by

‖f ‖m,n,[t ] def= ‖f |[0,t ]‖m,n. (3.1)

The notion of boundary-regularity will play a prominent role in the following existe
theory.

Definition 3.1. The spaceBR(tα, tω;a, b) of boundary-regular functions consists of
functionsg = g(t, x) on [tα, tω] × [a, b] such that

g ∈W1,∞([tα, tω];H 1(a, b)
)∩L∞([tα, tω];H 2(a, b)

)
, (3.2)

∂xg(·, a), ∂xg(·, b) ∈H 1(tα, tω). (3.3)

The spaceBR(tα, tω;a, b) is endowed with the energy norm

E(g) def= (‖g‖2
0,2 + ‖g‖2

1,1 + ∥∥∂xg(·, a)∥∥2
H1 + ∥∥∂xg(·, b)∥∥2

H1

)1/2
. (3.4)

3.2. The general transport equation

The importance of the notion of “boundary-regularity” lies in the following theo
and its corollary. For details and proofs we refer to the comprehensive account in [5
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Theorem 3.2. Let f andp be functions on[0, t0] × [0,1], u0 on [0,1], anduα on [0, t0]
such that

p andf are boundary-regular, (3.5)

p > 0 on [0, t0] × [0,1], (3.6)

u0 ∈H 2(0,1), (3.7)

uα ∈H 2(0, t0), (3.8)

u0(0)= uα(0), (3.9)

∂tu
α(0)+ p(0,0)∂xu0(0)= f (0,0). (3.10)

Then the boundary-initial value problem

∂tu(t, x)+ p(t, x)∂xu(t, x)= f (t, x), t ∈ [0, t0], x ∈ [0,1], (3.11)

u(0, x)= u0(x), x ∈ [0,1], (3.12)

u(t,0)= uα(t), t ∈ [0, t0], (3.13)

has a boundary-regular solutionu such that

u ∈ C1([0, t0];H 1(0,1)
)∩C([0, t0];H 2(0,1)

)
, (3.14)

u is unique inW1,∞([0, t0];L2(0,1)
)∩L∞([0, t0];H 1(0,1)

)
. (3.15)

Corollary 3.3. Let the functionuα ∈H 2(0, t∗) be given for somet∗ > 0. For t0 ∈ (0, t∗],
suppose that the functionsf , p, u0 anduα satisfy the conditions(3.5)–(3.10). Then, for
0 � t � t0, there exist continuous, nonnegative functionsE = E(t), F = F(t) andG =
G(t) which depend onE(p), E(f ), ‖u0‖H2, ‖uα‖H2 andt∗ such that

E(0)= ‖u0‖2
H2, (3.16)

F(0)= ‖u0‖2
H1 + ∥∥p(0, ·)∂xu0 + f (0, ·)∥∥2

H1, (3.17)

G(0)= 0 (3.18)

and such that the solutionu of the boundary-initial value problem(3.11)–(3.13)obeys the
estimates

‖u‖2
0,2,[t ] �E(t) for 0 � t � t0, (3.19)

‖u‖2
1,1,[t ] � F(t) for 0 � t � t0, (3.20)∥∥∂xu(·,1)∥∥2

H1 � F(t0), (3.21)∥∥∂xu(·,0)∥∥2
H1 �G(t0). (3.22)

The proof of Theorem 3.2 proceeds as follows: first one establishes the existence
and estimates for the boundary-initial value problem (3.11)–(3.13) assuming suf
smoothness of the coefficient functionsp andf ; then one shows that boundary-regu
coefficients can be approximated by smooth coefficients. Finally one applies wea
weak* convergence arguments to deduce the necessary estimates for the given pro
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4. Existence and uniqueness of solutions

Our principal strategy for proving (local in time) existence of solutions is the Scha
fixed point theorem and a discussion of uniqueness of solutions. As it turns out th
proach is more elegant and less technical than related discussions employing the
contraction mapping principal.

4.1. Statement of the main result

Definition 4.1. A vector field(a, v, Trr , Tzz), defined on[0, t0]× [0,1], is a solution of the
boundary-initial value problem (2.1)–(2.13) if

a, v,Trr , Tzz ∈W1,∞([0, t0];H 1(0,1)
)∩L∞([0, t0];H 2(0,1)

)
, (4.1)

a, v, Trr , Tzz satisfy Eqs. (2.1)–(2.4), (4.2

a satisfies Eqs. (2.6), (2.11) anda > 0, (4.3)

Trr satisfies Eqs. (2.9) and (2.12), (4.

Tzz satisfies Eqs. (2.10) and (2.13), (4

v satisfies Eqs. (2.7), (2.8) andv > 0. (4.6)

The requirementv > 0 is physically plausible and would certainly be expected.
following existence theory hinges on this assumption to be valid at least initially. E
tions (2.2), (2.7) and (2.8) imply the relation

v(t, z)= 1+ D − 1∫ 1
0 a(t, x)

−1dx

z∫
0

1

a(t, x)
dx

− 1− χ

3χ

z∫
0

(
Tzz(t, x)− Trr(t, x)

)
dx

+ (1− χ)
∫ 1

0 (Tzz(t, x)− Trr(t, x)) dx

3χ
∫ 1

0 a(t, x)
−1dx

z∫
0

1

a(t, x)
dx. (4.7)

For the initial velocityv0 we obtain

v0(z)= v(0, z)= 1+ D − 1∫ 1
0 a

0(x)−1dx

z∫
0

1

a0(x)
dx

− 1− χ

3χ

z∫
0

(
T 0
zz(x)− T 0

rr (x)
)
dx

+ (1− χ)
∫ 1

0 (T
0
zz(x)− T 0

rr (x)) dx

3χ
∫ 1

0 a
0(x)−1dx

z∫
1

a0(x)
dx. (4.8)
0



640 T. Hagen / J. Math. Anal. Appl. 288 (2003) 634–645

y

d, e.g.,

owing
m 4.2
Theorem 4.2. Let the initial valuesa0, T 0
rr , T

0
zz and the boundary valuesT ∗

rr , T
∗
zz be given

such that

a0, T 0
rr , T

0
zz ∈H 2(0,1), (4.9)

a0> 0 on [0,1], (4.10)

T ∗
rr , T

∗
zz ∈H 2(0, t∗) for somet∗ > 0. (4.11)

Assume that the initial velocityv0, defined by(4.8), is positive and that the compatibilit
conditions

a0(0)= 1, T 0
rr (0)= T ∗

rr (0), T 0
zz(0)= T ∗

zz(0), (4.12)

∂za
0|z=0 + ∂zv

0|z=0 = 0, (4.13)

We
(
∂tT

∗
rr |t=0 + ∂zT

0
rr |z=0 + T 0

rr |z=0∂zv
0|z=0

)+ T 0
rr |z=0 = −∂zv0|z=0, (4.14)

We
(
∂tT

∗
zz|t=0 + ∂zT

0
zz|z=0 − 2T 0

zz|z=0∂zv
0|z=0

)+ T 0
zz|z=0 = 2∂zv

0|z=0 (4.15)

hold true. Then there existst0 ∈ (0, t∗] such that the boundary-initial value problem(2.1)–
(2.13)has a unique solution(a, v, Trr , Tzz) on [0, t0]× [0,1]. This solution(a, v, Trr , Tzz)
has the properties

a,Trr , Tzz ∈
2⋂
k=0

Ck
([0, t0];H 2−k(0,1)

)
, (4.16)

v ∈
2⋂
k=0

Ck
([0, t0];H 3−k(0,1)

)
, (4.17)

a, v, Trr , Tzz are boundary-regular. (4.18)

The conditions imposed on the initial and boundary values can easily be satisfie
by assuming a Newtonian-like regime:

γ = lnD, a0(z)= exp(−γ z), (4.19)

T 0
rr (z)= −γ exp(γ z), T 0

zz(z)= 2γ exp(γ z). (4.20)

The remaining conditions on the boundary values are readily determined. For the foll
it will be understood without further reference that the assumptions made in Theore
are fulfilled.

4.2. Proof of the main result

Definition 4.3. ForL> 0 andt ′ ∈ (0, t∗], let S(t ′,L) be the set of functions(b, S,T )T on
[0, t ′] × [0,1] such that

b,S,T ∈ BR(0, t ′;0,1), (4.21)

E(b)2 + E(S)2 + E(T )2 � L2, (4.22)

b(0, z)= a0(z) and b(t,0)= 1, (4.23)
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S(0, z)= T 0
rr (z) and S(t,0)= T ∗

rr (t), (4.24)

T (0, z)= T 0
zz(z) and T (t,0)= T ∗

zz(t). (4.25)

Lemma 4.4. For all sufficiently smallt ′ ∈ (0, t∗] and sufficiently largeL > 0, the set
S(t ′,L) is nonempty such that, for each(b, S,T )T ∈ S(t ′,L), the conditionsb > 0 and

1+ D − 1∫ 1
0 b(t, x)

−1dx

z∫
0

1

b(t, x)
dx − 1− χ

3χ

z∫
0

(
T (t, x)− S(t, x)

)
dx

+ (1− χ)
∫ 1

0 (T (t, x)− S(t, x)) dx

3χ
∫ 1

0 b(t, x)
−1dx

z∫
0

1

b(t, x)
dx > 0 (4.26)

hold true.

Proof. For all sufficiently largeL and sufficiently smallt ′, S(t ′,L) contains the ini-
tial values(a0, T 0

rr , T
0
zz)

T . Now there exists a constantC = C(L) such that, for each
(b, S,T )T ∈ S(t ′,L),

∣∣b(t, z)− a0(z)
∣∣�

t∫
0

∣∣∂t b(s, z)∣∣ds � Ct ′, (4.27)

∣∣S(t, z)− T 0
rr (z)

∣∣�
t∫

0

∣∣∂tS(s, z)∣∣ ds � Ct ′, (4.28)

∣∣T (t, z)− T 0
zz(z)

∣∣�
t∫

0

∣∣∂tT (s, z)∣∣ds �Ct ′. (4.29)

Hence the claim follows. ✷
In the following we will tacitly assume that the setS(t ′,L) is nonempty such that th

conclusions of Lemma 4.4 are true. Note that this assumption remains automatically
for S(t,L), 0< t < t ′.

Theorem 4.5. S(t ′,L) is convex and compact in(L2([0, t ′] × [0,1]))3.

Proof. Convexity is clear by definition ofS(t ′,L). Since S(t ′,L) is contained in
(H 1([0, t ′] × [0,1]))3 and since the latter space is compactly embedded in(L2([0, t ′] ×
[0,1]))3, S(t ′,L) is relatively compact in(L2([0, t ′] × [0,1]))3. Now let (pn) = (bn, Sn,

Tn)
T be a sequence inS(t ′,L) that is Cauchy in the space(L2([0, t ′] × [0,1]))3 with

limit p∗. We want to show thatp∗ ∈ S(t ′,L), thus proving closedness ofS(t ′,L) in
(L2([0, t ′] × [0,1]))3. SinceE(b)2 + E(S)2 + E(T )2 � L2, there exists a subsequen
of (pn), say(qn), with the following properties:
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(1) (qn) is weak* convergent inL∞([0, t ′];H 2(0,1)) ∩W1,∞([0, t ′];H 1(0,1)) with the
unique weak* limitq∗,

(2) (∂zqn(·,0)), (∂zqn(·,1)) are weakly convergent inH 1(0, t ′) with weak limitsd0, d1,
respectively.

Since the weak* convergence implies strong convergence in(L2([0, t ′] × [0,1]))3, we
haveq∗ = p∗. Next we note that the sequences(∂zqn(·,0)), (∂zqn(·,1)) converge strongly
in L2(0, t ′) to their respective weak limits. On the other hand the sequence(∂zqn) is
weakly convergent inL2([0, t ′];H 1(0,1)) with weak limit ∂zp∗. Hence the sequence
(∂zqn(·,0)), (∂zqn(·,1)) converge weakly inL2(0, t ′) to ∂zp∗(·,0), ∂zp∗(·,1), thus im-
plying ∂zp∗(·,0) = d0, ∂zp∗(·,1) = d1, respectively. Hencep∗ is boundary-regular an
belongs toS(t ′,L). ✷
Definition 4.6. The operatorΣ is defined onS(t ′,L) by

Σ :

(
b

S

T

)
�→
(
c

U

V

)
, (4.30)

wherec = c(t, z), U = U(t, z), V = V (t, z) solve the boundary-initial value problem f
0 � t � t ′, 0� z� 1,

∂t

(
c

U

V

)
+w(b,S,T )∂z

(
c

U

V

)
=
( −w′(b, S,T )b

−w′(b, S,T )(S + We−1)− We−1S

2w′(b, S,T )(T + We−1)− We−1T

)
, (4.31)

(
c

U

V

)∣∣∣∣∣
z=0

=
( 1
T ∗
rr

T ∗
zz

)
and

(
c

U

V

)∣∣∣∣∣
t=0

=
(
a0

T 0
rr

T 0
zz

)
. (4.32)

The operatorsw andw′ are defined for(b, S,T )T ∈ S(t ′,L) by

w(b,S,T )(t, z)
def= 1+ D − 1∫ 1

0 b(t, x)
−1dx

z∫
0

1

b(t, x)
dx

− 1− χ

3χ

z∫
0

(
T (t, x)− S(t, x)

)
dx

+ (1− χ)
∫ 1

0 (T (t, x)− S(t, x)) dx

3χ
∫ 1

0 b(t, x)
−1dx

z∫
0

1

b(t, x)
dx, (4.33)

w′(b, S,T )(t, z) def= D − 1∫ 1
0 b(t, x)

−1dx

1

b(t, z)
− 1− χ

3χ

(
T (t, z)− S(t, z)

)

+ (1− χ)
∫ 1

0 (T (t, x)− S(t, x)) dx

3χ
∫ 1

0 b(t, x)
−1dx

1

b(t, z)
. (4.34)
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Lemma 4.7. The operatorΣ is well defined onS(t ′,L).

Proof. The initial and boundary values and all the coefficient functions appearing in
lem (4.31), (4.32) are such that the regularity and compatibility conditions (3.5)–(3.1
Theorem 3.2 hold true. Hence the claim follows.✷
Theorem 4.8. There existL > 0 and t0 ∈ (0, t∗] such that, for allt ′ ∈ (0, t0], the operator
Σ mapsS(t ′,L) into S(t ′,L) continuously w.r.t. the topology of(L2([0, t] × [0,1])3.

Proof. It is an immediate consequence of Corollary 3.3 that there areL> 0 large andt0>
0 small such thatΣ(S(t ′,L))⊂ S(t ′,L) for all 0< t ′ � t0. For (b, S,T )T , (b′, S′, T ′)T ∈
S(t ′,L), let

(c,U,V )T
def= Σ

(
(b, S,T )T

)
, (4.35)

(c′,U ′,V ′)T def= Σ
(
(b′, S′, T ′)T

)
. (4.36)

By the Sobolev embedding theorem, there exists a constantC = C(L) such that

∣∣w′(b, S,T )−w′(b′, S′, T ′)
∣∣� C

(
|b− b′| +

1∫
0

|b− b′|dx + |T − T ′| + |S − S′|

+
1∫

0

|T − T ′|dx +
1∫

0

|S − S′|dx
)
. (4.37)

We also obtain

∣∣w(b,S,T )−w(b′, S′, T ′)
∣∣� C

( 1∫
0

|b− b′|dx +
1∫

0

|T − T ′|dx

+
1∫

0

|S − S′|dx
)
. (4.38)

As we take the difference of the governing equations (4.31) for(c,U,V )T and (c′,U ′,
V ′)T , multiply the components byc− c′, U −U ′ andV − V ′, respectively, and integrat
over the spatial domain[0,1], the estimates (4.37), (4.38) lead to an inequality of the f

d

dt

(∥∥c(t)− c′(t)
∥∥2

2 + ∥∥U(t)−U ′(t)
∥∥2

2 + ∥∥V (t)− V ′(t)
∥∥2

2

)
� κ

(∥∥b(t)− b′(t)
∥∥2

2 + ∥∥c(t)− c′(t)
∥∥2

2 + ∥∥S(t)− S′(t)
∥∥2

2

+ ∥∥U(t)−U ′(t)
∥∥2

2 + ∥∥T (t)− T ′(t)
∥∥2

2 + ∥∥V (t)− V ′(t)
∥∥2

2

)
(4.39)

with κ = κ(L) constant. A straightforward application of Gronwall’s lemma yields
estimate
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ap-
t
ity
The-

)–

as to
∥∥c(t)− c′(t)
∥∥2

2 + ∥∥U(t)−U ′(t)
∥∥2

2 + ∥∥V (t)− V ′(t)
∥∥2

2

� κ

t∫
0

exp(κt − κs)
(∥∥b(s)− b′(s)

∥∥2
2 + ∥∥S(s)− S′(s)

∥∥2
2 + ∥∥T (s)− T ′(s)

∥∥2
2

)
ds.

(4.40)

Hence the claim follows. ✷
The preceding proof implies the following important corollary.

Corollary 4.9. The operatorΣ has at most one fixed point inS(t ′,L).

Proof. Suppose there are(b, S,T )T , (b′, S′, T ′)T ∈ S(t ′,L) such that

(b, S,T )T =Σ
(
(b, S,T )T

)
, (4.41)

(b′, S′, T ′)T =Σ
(
(b′, S′, T ′)T

)
. (4.42)

For these values estimate (4.39) reads

d

dt

(∥∥b(t)− b′(t)
∥∥2

2 + ∥∥S(t)− S′(t)
∥∥2

2 + ∥∥T (t)− T ′(t)
∥∥2

2

)
� 2κ

(∥∥b(t)− b′(t)
∥∥2

2 + ∥∥S(t)− S′(t)
∥∥2

2 + ∥∥T (t)− T ′(t)
∥∥2

2

)
. (4.43)

However, this inequality implies∥∥b(t)− b′(t)
∥∥2

2 + ∥∥S(t)− S′(t)
∥∥2

2 + ∥∥T (t)− T ′(t)
∥∥2

2 � 0. (4.44)

Hence the claim is proved.✷
We conclude this section with the proof of Theorem 4.2.

Proof of Theorem 4.2. For t0 sufficiently small, the Schauder fixed point theorem
plies to the operatorΣ on S(t0,L) by Theorems 4.5 and 4.8. HenceΣ has a fixed poin
(a, Trr, Tzz)

T in S(t0,L). By Corollary 4.9, this is the only fixed point. The regular
results fora, Trr andTzz stated in (4.16) and (4.18) are immediate consequences of
orem 3.2 when the velocityv is defined by Eq. (4.7). The regularity (4.17) ofv is clear
as well. By definition ofΣ andv, (a, v, Trr , Tzz) solves the governing equations (2.1
(2.4). On the other hand, if(a, v, Trr , Tzz) is a solution of Eqs. (2.1)–(2.4), thenv satisfies
Eq. (4.7) and(a, Trr, Tzz)T is a fixed point of the operatorΣ on some spaceS(t0,L).
Hence the proof is finished.✷

Finally we remark that the developments in this work do not require any novel ide
cover the more general situation of nonconstant boundary conditions fora at z= 0 andv
at z= 0, z= 1.
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5. Conclusion

Theorem 4.2 is the first instance of an existence result for the forced elongatio
viscoelastic fluid where velocity boundary conditions are prescribed at the inflow an
flow boundaries. We have focused on the important constitutive theory of Jeffreys
The class of boundary-regular functions proved an essential tool in the analysis of th
erning equations. In particular, the compact embedding of the space of boundary-
functionsBR(0, t ′;0,1) in L2([0, t ′] × [0,1]) allowed an elegant study by means of t
Schauder fixed point theorem. Forced elongation of Maxwell fluids which arise as a
lar limit of the constitutive theory of Jeffreys fluids has yet to be discussed.
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