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Abstract

In this paper we study existence, uniqueness and regularity of solutions for the equations governing
the forced elongation of fluids with differential constitutive law of Jeffreys type. These equations
consist of nonlinear first-order hyperbolic equations in one spatial dimension. Forced elongation is
imposed through velocity boundary conditions at the domain entry and exit. The existence result is
based on the Schauder fixed point theorem and energy methods in the space of boundary-regular
functions.

0 2003 Elsevier Inc. All rights reserved.

Keywords:Viscoelasticity; Existence theory; Energy estimates; Schauder fixed point theorem

1. Introduction

The mathematical description of thin viscoelastic fluid fibers formed by forced elon-
gation is an analytically challenging issue which promises new insights in the physical
mechanisms governing these elementary flows. This description takes the form of a sys-
tem of nonlinear coupled first-order hyperbolic partial differential equations which are not
readily accessible for analysis.

Forced elongation occurs frequently in the formation of filaments both in nature (e.g.,
spider silk) and in industry (e.g., nylon, manufactured by fiber spinning). The common
theme in these flows is that a polymeric fluid, contained in a reservoir, is pressed through a
hole (spinneret) and axially stretched by a pulling force to form a thin circular liquid fiber.

In industrial processes such as fiber spinning the material is extended by a winder and
made to solidify at a fixed point along the axis of elongation. The term “forced elongation”
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refers to the requirement that the “inflow” velocity of the fluid (when it leaves the reservoir
to enter the domain of extension) be smaller than the “outflow” velocity imposed by the
pulling force.

Simple models of forced elongation are based on two assumptions: thinness of the
axisymmetric fiber and dominant viscous/viscoelastic forces. As a result the governing
equations are one-dimensional in space and do not account for inertia. In the purely viscous
case the governing equations were first posed by Kase and Matsuo [11] and first formally
derived by Matovich and Pearson [12]. Recent analytical studies of these equations fo-
cused on linear stability and related issues [2,3,7-9]. A few results address existence and
unigueness of solutions, both in viscous and viscoelastic regimes [4—6]. In this article we
will treat the viscoelastic case where the viscoelasticity is modeled by the constitutive the-
ory of the upper convected Jeffreys fluid (or Oldroyd-B fluid) [1,10,13]. This constitutive
theory is based on a simple macroscopic spring-dash pot model and entails a linear super-
position of non-Newtonian and Newtonian stresses. It is well known that the constitutive
model of the Jeffreys fluid has major shortcomings in real-world flow predictions, some of
them even very serious in certain elongational regimes. However, the Jeffreys fluid is well
accepted as a theoretical fluid model that is capable of shedding light on the “qualitatively
correct” viscoelastic flow behavior. In addition, the Jeffreys model is the basis for a variety
of other important fluid models (among them the Giesekus, Phan-Thien—Tanner and FENE
models), thus deserving appropriate attention.

Our main objective in this work is to study (local in time) existence, uniqueness and reg-
ularity of solutions in the case of “forced elongation boundary conditions.” These boundary
conditions are the ones one would naturally hope to impose. Previous studies of viscoelas-
tic fiber flow were restricted to “inflow boundary conditions” [4,6]. Our objective will
be tackled by fixed point methods and functional-analytic arguments in an appropriate
function space: the space of boundary-regular functions. To the author’s knowledge, the
fundamental strategy for proving existence of solutions for nonlinear transport equations
by means of boundary-regular functions was first published in [5] and later extended in [6].
In this article we will give a brief summary of the most important features of these func-
tions in Section 3. In contrast to related results published in [4—6] the principle ideas for
proving existence in this work are geared toward the Schauder fixed point theorem, not the
Banach contraction mapping principle. This approach proves shorter and technically far
less demanding. In general, fluid models with constitutive equations in differential form
that include both Newtonian and non-Newtonian stresses can be analyzed with techniques
similar to the ones developed here. Moreover, there is hope to believe that the forced elon-
gation of a Maxwell fluid arising as a singular limit of the Jeffreys fluid with vanishing
Newtonian stresses can be discussed in this way as well.

2. Thegoverning equations

In this section we state the equations governing the forced elongation of a Jeffreys fluid
in dimensionless terms. To this end, we denote time ,bihe axial variable by, the
cross-sectional fiber area ly= a(¢, z) (assumed as circular), and the axial velocity by
v = v(t, z). The quantities;, = T,,(¢, z) andT;, = T;.(¢, z) denote the radial and axial
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components of the viscoelastic extra stress tensor. Then the governing equations can be
cast in the form (see [14])

d;a + 9; (va) =0, (2.1)
3:(3xad.v+ (1 — y)a(T.. — Tp)) =0, (2.2)
We(d; Tyr + vd, Ty + Tr0;0) + Trr = =00, (2.3)
We(9,T;, + vd,T,, — 2T,,0,v) + T,, = 20,v. (2.4)

The flow domain is &< z < 1, ¢ > 0. The positive parameter We, the Weissenberg num-
ber, is a dimensionless relaxation time and serves as a measure for the viscoelasticity of
the fluid. The quantity € [0, 1] is a concentration parameter, related to an intrinsic fluid
retardation time, and models the contribution of the Newtonian stresses to the momentum
balance. The case = 1 yields a purely viscous momentum balance where the stress equa-
tions decouple from the mass and momentum balances, while theg cagecorresponds

to a purely viscoelastic regime. In this latter case the total stresses reduce to what is known
as the constitutive theory of the upper convected Maxwell fluid. For all our purposes in this
paper we shall assume

O<yxy<1l (2.5)

To close the formulation of the problem we pose the “forced elongation boundary condi-
tions”

a(t,0)=1, (2.6)
v(t,0)=1, (2.7)
v(t,1)=D > 1, (2.8)
Tor(t,0) = T;.(1), (2.9)
T (t,0) =T/ (1) (2.10)
together with initial conditions of the form
a(0,2) =a’(), (2.11)
T,+(0,2) = T2(2), (2.12)
T..(0,2) = T2 (2). (2.13)

The quantityD > 1, referred to as “draw ratio,” is a dimensionless outflow velocity. We
remark that the Maxwell regime = 0 cannot be treated within the framework above since
Egs. (2.1)-(2.13) would be overdetermined. For this reason previous studies of Egs. (2.1)—
(2.4) with x = 0 (see [4]) concentrated on the “inflow boundary conditions”

a(t,0)=1, (2.14)
v(t,0)=1, (2.15)
Ty, (t,0) = T (1), (2.16)

T (t,0) =T/ (1). (2.17)
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Similar conditions were imposed in nonisothermal viscoelastic flow [5]. The more relevant
problem of forced elongation boundary conditions (i.e., with the conditign®) = 1,
v(t,1) = D and other boundary conditions dropped in (2.14)—(2.17)) has yet to be done
for the Maxwell fluid.

3. Boundary-regular functionsand the elementary transport equation

In the following, we will need some technical results which are crucial for the exis-
tence theory of the governing equations. In the current chapter we briefly summarize these
nonstandard results for the reader’s convenience.

3.1. Definitions

Letris < rp, s1 < s2, 10 > 0 andm, n, k € Ng. We will interpret the following norms and
seminorms with respect to (w.r.t.) the entire domain of the particular function. Hence the
meaning oftg, r1, r2, s1, andsz will become clear from the context. Throughout we will
use the following abbreviations:

(1) II'- I, for the norm on the Lebesgue spdck(ry, r2), 1 < p < o0,

(2) || - Il zx for the norm on the Sobolev spagk (r1, r2),

(3) I - llm.n for the norm on the Sobolev spad&™ > ([r1, r2]; H"(s1, 52)),

(4) || - || gmn for the norm on the Sobolev spaé®” ([r1, r2]; H"(s1, 52)),

(5) Il - llm,n.1n7 for the seminorms on the spaBé&™ > ([0, fo]; H" (s1, s2)), defined for 0<
t < tg by

def
1 f i) = 1 N0l (3.1)

The notion of boundary-regularity will play a prominent role in the following existence
theory.

Definition 3.1. The spaceBR(t,, t,; a, b) of boundary-regular functions consists of all
functionsg = g(z, x) on[t, t,] X [a, b] such that
g € W[ty to]; HYa, b)) N L ([ta. to]: H(a, b)), (3.2)
0:8(.a), d:g (- b) € H (ty. 1). (3.3)
The spac®R({,, 1,,; a, b) is endowed with the energy norm

£(g) &

(18032 + g1 1 + 3 (@) s + s . 0)[[7) . (3.4)
3.2. The general transport equation

The importance of the notion of “boundary-regularity” lies in the following theorem
and its corollary. For details and proofs we refer to the comprehensive account in [5].
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Theorem 3.2. Let f and p be functions ori0, 70] x [0, 1], «° on [0, 1], andu® on [0, fo]
such that

p and f are boundary-regular, (3.5)
p>0 onl0,1] x [0, 1], (3.6)
u® e H?(0, 1), (3.7)
u® € H%(0, 19), (3.8)
u®(0) = u*(0), (3.9)
3u®(0) + p(0,0)8,u°(0) = (0, 0). (3.10)
Then the boundary-initial value problem
du(t,x)+ p(t, x)dcu(t,x)= f(t,x), tel0, 1], x €[0,1], (3.11)
u(0,x)=u’(x), xe[0,1], (3.12)
u(t, 0 =u%@), rel0,10], (3.13)
has a boundary-regular solution such that
u € CL([0, 10]; H1(0,1)) N C([0, 10]; H?(0, 1)), (3.14)
u is unique inW>°([0, 1]; L4(0, 1)) N L™ ([0, 10]; H*(0, 1)). (3.15)

Corollary 3.3. Let the function:® € H2(0, t*) be given for some* > 0. For 1o € (0, *],
suppose that the functiong, p, u® and u® satisfy the condition§3.5)—(3.10) Then, for
0 <t < 1y, there exist continuous, nonnegative functidghs- E(¢), F = F(¢r) and G =
G (¢t) which depend o&'(p), £(f), ||u0||H2, lu® || 2 andt* such that

E0) = [u°]%2. (3.16)
F(O) = 1121 + | p(©, )3,u® + £(0.) |51, (3.17)
G0 =0 (3.18)

and such that the solutiom of the boundary-initial value problei(8.11)—(3.13pbeys the
estimates

1§ 2,11y < E() for0< 1 <o, (3.19)
lulfy < F@) foro<t <o, (3.20)
|9xu(, D)1 < Fo), (3.21)
|0xu(, 0)|21 < Gto). (3.22)

The proof of Theorem 3.2 proceeds as follows: first one establishes the existence results
and estimates for the boundary-initial value problem (3.11)—(3.13) assuming sufficient
smoothness of the coefficient functiopsand f; then one shows that boundary-regular
coefficients can be approximated by smooth coefficients. Finally one applies weak and
weak* convergence arguments to deduce the necessary estimates for the given problem.
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4. Existence and uniqueness of solutions

Our principal strategy for proving (local in time) existence of solutions is the Schauder
fixed point theorem and a discussion of uniqueness of solutions. As it turns out this ap-
proach is more elegant and less technical than related discussions employing the Banach
contraction mapping principal.

4.1. Statement of the main result

Definition 4.1. A vector field(a, v, T,,, T;;), defined or{0, 7] x [0, 1], is a solution of the
boundary-initial value problem (2.1)—(2.13) if

a, v, Tyr, To € WH([0, 101; H(0, 1)) N L*([0, 10]; H%(0, 1)), (4.1)
a,v, T, T, satisfy Eqgs. (2.1)—(2.4), (4.2)
a satisfies Egs. (2.6), (2.11) and> 0, (4.3)
T, satisfies Egs. (2.9) and (2.12), (4.4)
T, satisfies Egs. (2.10) and (2.13), (4.5)
v satisfies Egs. (2.7), (2.8) and> 0. (4.6)

The requirement > 0 is physically plausible and would certainly be expected. The
following existence theory hinges on this assumption to be valid at least initially. Equa-
tions (2.2), (2.7) and (2.8) imply the relation

p-1 [ 1
v(t,z) =1+ I dx
Joa(t,x)"tdx , a(t, x)

Z

1-—x
- ? /(TZZ(tsx) - Trr(tsx))dx
0
. (1—x)fol(Tzlz(r,x)— T (1, x)) dx / 1 )
3x fO a(t,x)"ldx 5 a(t, x)
For the initial velocityv® we obtain
Y@ =v0=1+ 1 g_—ll /aotc) dx
Joa®(x)~tdx 4
x Z(T0 () — TO(x)) dx
3X yaod rr
0
1— ) [MTo) = TO(x))dx [
n 1-xJ5 (1ZZ(X) (X)) X/ 1 I 4.8)
3x 3 a%(x)Ldx

a%(x)
0
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Theorem 4.2. Let the initial values:®, 7.2, 72 and the boundary valueg?., T be given
such that

a®, 19,12 € H?(0, 1), (4.9)
a°>0 onl0,1], (4.10)
T}, T € H?(0,r*) for somer* > 0. (4.11)

Assume that the initial velocity, defined by(4.8), is positive and that the compatibility
conditions

O =1 T20=T;0, T20=T:0), (4.12)
8Za0|Z:0 + 3zU0|z=0 =0, (4.13)
We(d, T} lr=0 + 3: T2 | =0 + T, 1,209, v°| :=0) + T, |.=0 = —3:1°|.—0, (4.14)
We(d, T |1=0 + 9. T2 | =0 — 2T2|.=08,v°|.=0) + T2|:=0 = 20,v°|,=0 (4.15)

hold true. Then there exists € (0, r*] such that the boundary-initial value problgh1)—
(2.13)has a unique solutiotu, v, 7;,, T;;) on[O0, fo] x [0, 1]. This solution(a, v, T}, T;;)
has the properties

2
a,Tyr, Too € () C(10. 10): HZX(0, 1)), (4.16)
k=0
2
ve () k(0. 0l: H350, 1), (4.17)
k=0
a,v, T,,, T, are boundary-regular. (4.18)

The conditions imposed on the initial and boundary values can easily be satisfied, e.g.,
by assuming a Newtonian-like regime:
y=InD, 4% =exp(—yz), (4.19)
T)(@) =—yexpyz),  To()=2yexpyz). (4.20)

The remaining conditions on the boundary values are readily determined. For the following
it will be understood without further reference that the assumptions made in Theorem 4.2
are fulfilled.

4.2. Proof of the main result

Definition 4.3. For L > 0 andt’ € (0, t*], let S(#, L) be the set of function@, S, 7)T on
[0, 1] x [0, 1] such that
b,S,T € BRO,?';0,1), (4.21)
ED? +E(S)*+E(T* < L?, (4.22)
b(0,2)=a%z) and b(,0 =1, (4.23)
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5(0,2)=T%(z) and S(,0)=T/"(t), (4.24)
T(0,2)=T2(z) and T(t,0) =T (). (4.25)

Lemma 4.4. For all sufficiently smallz’ € (0,¢*] and sufficiently largel. > 0, the set
S(#', L) is nonempty such that, for ea¢h, S, T)” € S(¢', L), the conditions > 0 and

p Z
D-1 1 1—y
1 dx === [ (T, x) = 5t 0))d
+folb(t,x)—1dx0/b(t,x) T T3y (T(t.x) = S(t,x)) dx

Z

. (1—X)f01(T(t,x)—S(t,x))dx/ 1
3x fo b(t,x)~Ldx

dx >0 (4.26)

hold true.

Proof. For all sufficiently largeL and sufficiently small’, S(z’, L) contains the ini-
tial values(a®, 72, 72)T. Now there exists a constadt = C(L) such that, for each

’ rr? Iz

(b,S,T)T eS(t', L),

t
b(t,2) — a®(2)| < /‘&b(s, 2)|ds < cr, (4.27)
0
t
S(t.2) - T2(2)| < /|a,5(s, 2)|ds < Cr, (4.28)
0
t
|T(t,2) - T2(2)| < /|8,T(s, 2)|ds <Cr. (4.29)
0

Hence the claim follows. O

In the following we will tacitly assume that the s&:’, L) is nonempty such that the
conclusions of Lemma 4.4 are true. Note that this assumption remains automatically correct
forS(t,L),0<t <t'.

Theorem 4.5. S(¢’, L) is convex and compact ii.([0, '] x [0, 1]))°.

Proof. Convexity is clear by definition ofS(z’, L). Since S(+/, L) is contained in
(H([0, 1] x [0, 1]))® and since the latter space is compactly embedded [0, /'] x
[0,1])3, S(7/, L) is relatively compact ifL?([0, '] x [0, 11))2. Now let (p,) = (by, Sn,
T,)T be a sequence if(¢/, L) that is Cauchy in the spadd.?([0, '] x [0, 1]))2 with
limit p*. We want to show thap* € S(, L), thus proving closedness &', L) in
(L2([0,1'] x [0,1]))3. Since&(b)? + £(S)? + £(T)? < L?, there exists a subsequence
of (pn), say(q,), with the following properties:



642 T. Hagen / J. Math. Anal. Appl. 288 (2003) 634-645

(1) (gn) is weak* convergenti.®°([0, #']; H2(0, 1)) N W1-°([0, #']; H1(0, 1)) with the
unigue weak* limitg*,

(2) (3:gn(-,0)), (8:¢n(-, 1)) are weakly convergent itf1(0, /') with weak limitsd®, d?,
respectively.

Since the weak* convergence implies strong convergendé fd[0, '] x [0, 1]))3, we
haveq™ = p*. Next we note that the sequencésy, (-, 0)), (3.¢, (-, 1)) converge strongly
in L2(0,¢') to their respective weak limits. On the other hand the sequéheg) is
weakly convergent inL2([0,¢']; H1(0, 1)) with weak limit 8, p*. Hence the sequences
(0:¢n (-, 0)), (3.9,(-, 1)) converge weakly inL?(0,1) to d.p*(-,0), 3,p*(-, 1), thus im-
plying 3, p*(-,0) = d°, 8,p*(-, 1) = 4%, respectively. Hence* is boundary-regular and
belongstdS(, L). O

Definition 4.6. The operatox is defined orS(’, L) by

b c
2:(3).—><U), 430
T \%

wherec =c(t,z), U =U(t,z), V = V(t, z) solve the boundary-initial value problem for
0<r<?,0<z<1,

c c —w'(b, S, T)b
9 (U) +w(b, S, T)d, (U) = (—u/(b, S, T)(S +We™1 —Wels> . (4.31)
Vv 1% 2w'(b, S, TY(T +We 1) —wWe 1T

c 1 C ao
(U) :<T;;) and (a) =<T,9). (432
V /=0 T V/ =0 TZ%

The operatorsy andw’ are defined foth, S, T)T € S(¢, L) by

Z
D—-1 1
wib, S, T)(t,2) L1+ /

dx
1 -1 b(t,
Jobt.x)~tdx ] bt)
_ 13__X (T(t,x)— S(t,x))dx
X 0
1= ) fo(T(t.x) = Z
L xx@<1a~m SU:dexu/ o (4.33)
3y Jab(t, x)~Ldx bit, x)

0
D-1 1 1—

W' (b, 8. 7)1, )% — -t
Jo b, x)"Ldx b, 2) 3x

. L=y [g(T(t,x) = St,x)dx 1
3x folb(t,x)*ldx b(t,z)

(T(t,2)—S(t,2))

(4.34)
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Lemma 4.7. The operatorX is well defined o1$(¢/, L).

Proof. The initial and boundary values and all the coefficient functions appearing in prob-
lem (4.31), (4.32) are such that the regularity and compatibility conditions (3.5)—(3.10) of
Theorem 3.2 hold true. Hence the claim followsz

Theorem 4.8. There exist. > 0 andr € (0, t*] such that, for all’ € (0, 0], the operator
¥ mapsS(¢/, L) into S(¢/, L) continuously w.r.t. the topology ¢£.2([0, 1] x [0, 1])3.

Proof. Itis an immediate consequence of Corollary 3.3 that theré ared large andp >
0 small such tha® (S(¢’, L)) ¢ S(t', L) for all 0 < ¢’ < 9. For (b, S, T)T, (0', S, T"T €
S, L), let

.U, V) L2 (k,5,1)7), (4.35)

.U VvHT L 2w, s ). (4.36)

By the Sobolev embedding theorem, there exists a conStant (L) such that

1
|w'(b, S, T) —w'(¥, 8", T"| < C(lb—b’l —i—/lb—b/ldx—i— T —T'|+|S -5
0

1 1
+/|T—T’|dx+/|S—S/|dx). (4.37)
0 0
We also obtain

1 1
lw(b, S, T)—w®', S, T| gc(/|b—b/|dx+/|T—T/|dx
0 0

1
+ |S—S’|dx>. (4.38)
/

As we take the difference of the governing equations (4.31)dot/, V) and (¢/, U’,
vT, multiply the components by — ¢/, U — U’ andV — V', respectively, and integrate
over the spatial domaii®, 1], the estimates (4.37), (4.38) lead to an inequality of the form
d
(e —colz+vn-vol+[vo Vol
< (o) = b O3+ e = < O3+ |50 = S W5
+ue —U O+ |TO-T O3+ |Ve) - Vo2 (4.39)

with ¥ = « (L) constant. A straightforward application of Gronwall's lemma vyields the
estimate
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le) =03+ v - O3+ Ve - Vol

t

<k / expct — ks)(]|b(s) — b'(s) Hg + [ S(s) = S'(9) ||§ + | T(s) = T'(s) Hg) ds.

0
(4.40)
Hence the claim follows. O
The preceding proof implies the following important corollary.
Corallary 4.9. The operatorX has at most one fixed point8(+, L).
Proof. Suppose there ax®, S, )7, (', §', T")T € S(t', L) such that
®.5, 7)Y =3(.5, 7)), (4.41)
w,s, ' =x(®, s, 1h"). (4.42)
For these values estimate (4.39) reads
d
(b =03+ |50 =S5+ [T0) - T'0]5)
<2([b@) =V O3+ SO =S O |5+ |T0) - T'®)]3). (4.43)
However, this inequality implies
2 2 2
|6 =b' @) |5+ [|S@) =S O|5+ | T@0) —T'1)|5 <O0. (4.44)

Hence the claim is proved.O
We conclude this section with the proof of Theorem 4.2.

Proof of Theorem 4.2. For to sufficiently small, the Schauder fixed point theorem ap-
plies to the operatoE on S(rg, L) by Theorems 4.5 and 4.8. Hengghas a fixed point
(a,Tyr, T:;)T in S(19, L). By Corollary 4.9, this is the only fixed point. The regularity
results fora, T,, andT,, stated in (4.16) and (4.18) are immediate consequences of The-
orem 3.2 when the velocity is defined by Eq. (4.7). The regularity (4.17) ois clear

as well. By definition of> andv, (a, v, T;,, T;;) Solves the governing equations (2.1)—
(2.4). On the other hand, (&, v, T,,, T;;) is a solution of Egs. (2.1)—(2.4), thersatisfies

Eq. (4.7) and(a, T,,, T,;)" is a fixed point of the operataE on some spacB(to, L).
Hence the proofis finished.O

Finally we remark that the developments in this work do not require any novel ideas to
cover the more general situation of nonconstant boundary conditioasdor = 0 andv
atz=0,z=1.
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5. Conclusion

Theorem 4.2 is the first instance of an existence result for the forced elongation of a
viscoelastic fluid where velocity boundary conditions are prescribed at the inflow and out-
flow boundaries. We have focused on the important constitutive theory of Jeffreys fluids.
The class of boundary-regular functions proved an essential tool in the analysis of the gov-
erning equations. In particular, the compact embedding of the space of boundary-regular
functionsBR(0, #'; 0, 1) in L2([0, '] x [0, 1]) allowed an elegant study by means of the
Schauder fixed point theorem. Forced elongation of Maxwell fluids which arise as a singu-
lar limit of the constitutive theory of Jeffreys fluids has yet to be discussed.
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