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The von Neumann-Hahnos theory of ergodic transformations with discrete 
spectrum makes use of the duality theory of locally coinpact abelian groups to 
characterize those transformations preserving a probability measure, which are 
defined by a rotation on a compact abelian group. We use the recently developed 
duality between general locally compact groups and Hopf-von Neumann algebras 
to characterize those actions of a locally compact group, preserving a o-finite 
measure, which are defined by a dense embedding in another group. They are 
characterized by the property of normality, previously introduced by the 
author, and motivated by Mackey’s theory of virtual groups. The discrete 
spectrum theory is readily seen to come out as the special case in which the 
invariant measure is finite. 

1. INTRODUCTION 

The notion of a normal ergodic action of a locally compact group G, with an 
invariant probability measure, was introduced by the author in [I 1, 131 in 
order to study a generalization in the case in which G is not abelian of the 
von Neumann-Halmos uniqueness-existence theorems for ergodic transforma- 
tions with discrete spectrum. More generally, we defined the notion of a normal 
ergodic extension of a given action to study the uniqueness-existence theorems 
in the context of relatively discrete spectrum [I 11. For extensions, these consid- 
erations are necessary even if G is abelian. The motivation for our definition 
came from Mackey’s theory of virtual groups. Normal actions and extensions 
are the virtual subgroup analogues of normal subgroups in group theory. 

It follows from [5, Theorem 1; 11, Theorem 5.71 that for a normal G-space X 
with discrete spectrum, we have up to isomorphism modulo null sets, X = K, 
a compact group, and the action k * g is given by k$(g) where 4: G + K is 
a homomorphism with dense range. A generalization of this result to normal 
extensions with relatively discrete spectrum is also contained in [1 11. Although 
it was not explicitly stated, the results of [I 1, 121 in fact imply that every normal 
action (or extension) with an invariant probability measure has discrete (or 
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relatively discrete) spectrum, and hence is of the above form. A proof of this 
appears in Section 2, 

The main point of this paper, however, is to remove the condition that the 
action of G on X preserves a finite measure, an assumption which plays a crucial 
role in the proof of the above theorem. Thus, we suppose only that X has a 
u-finite measure invariant and ergodic under G. The notion of normality applies 
equally well to this more general situation (see Section 2), and the main result of 
this paper is the following. 

THEOREM. If X has a o-Jinite invariant measure p under G, and the action 
is normal, then there is a locally compact (second countable) group H and a homo- 
morphism q5: G --+ H with dense range such that up to isomorphism modulo null 
sets, X = H, p is equivalent to the Haar measure, and the action is given by h * g = 

Wg)- 

This result can be looked at in two ways: as describing the structure of normal 
actions, or alternatively, as providing a new criterion for an action to be defined 
by a homomorphism into a locally compact group. 

The proof of the theorem is itseIf of some interest. One of the first results in 
this direction, when G is the group of integers or the real line, goes back to 
Halmos and von Neumann [2], where the duality theory of locally compact 
abelian groups was exploited. In this paper, we employ the more recently 
developed duality between general locally compact groups and Hopf-von 
Neumann algebras. In particular, the main theorem of Take&i’s paper [IO] 
will be the device we use to construct the group H. 

The outline of this paper is as follows. Section 2 contains some preliminary 
definitions and the result about normal actions with finite invariant measure, 
based on the techniques of [I 1, 121. Sections 3-5 establish various properties 
of normal actions, which are then applied in Section 6 to the construction of a 
suitable Hopf-von Neumann algebra which yields the main theorem. Most of 
the difficulties however, appear in Sections 3-5, which are quite technical and 
measure theoretic in nature. Finally, Section 7 applies the main theorem in an 
alternate approach to the case of finite invariant measure. 

2. NORMAL ACTIONS AND EXTENSIONS WITH FINITE INVARIANT MEASURE 

We begin by recalling some basic definitions. (See [8, 1 I] for details and dis- 
cussions of these ideas. We suppose that (S, CL) is a standard measure space, 
that there is a right Bore1 action of G and S, and that p is u-finite, invariant, and 
ergodic under G. Here, G is a second countable locally compact group. A Bore1 
function CL: S x G -+ M is a standard Bore1 group, is called a cocycle if for 
each g, h G G, OT.(S, gh) = CI(S, g) or(sg, h) f or almost all s. If 01 and B are cocyles 
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into RI, then a and /I are called equivalent, or cohomologous, if there is a Bore1 
function a: S -+ M such that for each g, a(s) a(s, g) a(sg)-l = ,!3(s, g) for almost 
all s. If rr is a unitary representation of G on a Hilbert space H, then the restriction 
of v to S x G is the cocycle defined by a(s, g) = r(g). Thus, a: S x G + U(H). 
The term restriction is used because it is the virtual subgroup analog of the 
restriction of a group representation to a subgroup (see [I 1, Example 2.71). 

Since G acts on S, there is a naturally induced unitary representation of G on 

L’(s) defined by (U(g) f)(s) = f (4. 

DEFINITION 2.1. (S,p) is a normal G-space if the restriction of the representa- 
tion U to S x G is equivalent to the identity cocycle. 

PROPOSITION 2.2. Suppose H C G is a closed subgroup. Then G/H is a normal 
G-space if and only if H is a normal subgroup. 

Proof. This is [l I, Proposition 5.37 (where the implicit assumption that G/H 
had a finite invariant measure was not needed.) 

When p is finite and invariant, the structure of a normal action can be com- 
pletely described using results of [S, 11, 121. 

PROPOSITION 2.3. Suppose (S, p) is a normal G-space wbe p is an invariant 
probability measure. Then S has discrete spectrum; i.e., the natural induced repre- 
sentation U of G on L2(S) is the direct sum of finite-dimensional representations. 

Proof. Let H C L2(S) be the orthogonal complement of the subspace 
generated by the finite dimensional G-invariant subspaces, and suppose H # (0). 
Let v be U 1 H. Let A: S + U(L2(S)) such that for each g, A(s) U(g)A(sg)-l = I 
for almost all s. Let P: L2(S) -+ H be the orthogonal projection. Choose an 
element f EL2(S) with PA(s)-If # 0 for s E S, , where S, is some set with 
positive measure. Let h EL~(S x S) be defined by h(s, t) = (A(s)-y)(t). We 
claim that h is essentially invariant under the product action of G on S x S. 
For any g E G, and almost all (s, t) E S x S, we have 

4s tg) = Ms&W&> 
= WF14WW 
= (A(s)-‘f)(t) = h(s, t). 

Now let I’: L2(S; La(S)) -+ Ln(S; H) be the orthogonal projection, so that 
P” = So P, dp, where P, is a copy of P. IdentifyingL2(S; La(S)) withLz (S x S), 
we see that H C La(S) G-invariant implies that L2(S; H) is G-invariant. Thus, 
ph is also G-invariant and by the choice off, pi; # 0. We can identify L2(S; H) 
with Ls(S) @ H, and under this identification, the product G-action on 
L2(S; H) C L2(S x S) corresponds to the representation U @ T. Since ph is 
G-invariant, U @ r contains the identity representation, and it follows [4, 
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Lemma 8.11 that n contains a nonzero finite-dimensional subrepresentation. 
This contradicts the choice of H, and so S must have discrete spectrum. 

COROLLARY 2.4. If S is a normal G-space with a jinite invariant measure, 
then there is a compact group K and a homomorphism 4: G ---f K with dense range 
such that S is essentially isomorphic to K, with the action of g E G on K given by 
right translation by 4(g). 

Proof. This follows from Proposition 2.3, [5, Theorem 11, and [l 1, Theorem 
5.71. 

We note that there are analogs of Proposition 2.3 and Corollary 2.4 for exten- 
sions. We include them, modulo a few details, for completeness. Thus, let 
(X, p), (Y, u) be ergodic Lebesgue G-spaces, TV and u invariant probability 
measures, and p: X -+ Y a measure-preserving G-map. See [ 11, Definition 5.41 
for the definition of X being a normal extension of Y. 

PROPOSITION 2.5. Suppose X is a normal extension of Y. Then X has relatively 
discrete spectrum over Y [l I, Definition 5.11. 

Proof. Let F, = p-r(y), p = j” pr dy, H, = L2(F, , pzI) and or(y, g): 
H,, -+ H, the naturally induced cocycle [l 1; Example 2.31. Let ,9(x, g) = 

a(p(x), g) and H, = HA,) . Normality means that /I is equivalent to the identity. 
Thus, there is a Hilbert space H, and a Bore1 field A,: H, + H,, , unitary for 
almost all x, and such that for each g and almost all x, A(x) #I(x, g) A(xg)-l = I. 

Suppose X does not have relatively discrete spectrum over Y. Let V C,V(X), 
V # (O}, be the orthogonal complement of the space spanned by the G-invariant 
finite-dimensional subbundles of I?(X) = J’@ La(F,) du( y). Then F’ = J’” V, . 
Let Vv, = Vstz) C H, , and y = OL 1 Vv; i.e., y( y, g) = a( y, g) / V,, . By the 
choice of V, y has no nontrivial finite-dimensional subcocycles. Let P,: H, ---f V, 
be orthogonal projection, and P: s” H, dp ---f so V, be orthogonal projection; 
i.e., P = so P, dp(x). Now choose an element z E H, such that P,$(x)-~z # 0 
for x in a nonnull set. Define h ES” H, dp(x) by h = J@ h, , where h, = 
A(x)-lz. Let u be the representation of G on $” H, dp induced by /I[1 I, Example 
2.41. Then 

44z = Rx, g) hz, 
= B(x, g) 4%Y~ 
= A(x)-lz = h, 

for almost all x. Thus, h is invariant under 0. 
Since V = so V, is invariant under the representation of G induced by (Y, 

J” V, C J” H, will be invariant under the representation of G induced by p. 
Thus ph E J” V, will also be G-invariant, and by the choice of z, Fir # 0. 
Now J” V, can be indentified with J@ (V, @ La(F,)) dv( y), and the representa- 
tion (T becomes the representation induced by the Y x G cocycle y @ (Y. Since 

5W2s/3-6 
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ph is G-invariant, y @ a! contains the identity cocycle representation, and it 
follows from [ll, Lemma 2.133 that y must have a finite-dimensional subcocycle. 
This contradicts the choice of V, which shows that X must have relatively 
discrete spectrum over Y. 

COROLLARY 2.4. If X is a normal extension of Y, where X and Y have finite 
invariant measures, then there is a compact group K and a minimal coqcle [I 1, 
Definition 3.71 c: Y x G + K such that up to isomorphism module null sets, 
X = Y x CK [ll, Sect. 31. 

It is Corollary 2.4 that we will generalize to the case of a u-finite measure. 
The proof given below provides a new proof of Corollary 2.4. It seems likely 
that Corollary 2.6 can be generalized as well, perhaps using similar methods. 
We will not attempt that here, but rather leave it to a future paper. 

3. TIXE INDUCED POINT TTANSFORMATIONS 

In this section, we begin the proof of the theorem stated in the introduction. 
Thus, suppose S is a normal G-space, with m a u-finite invariant ergodic 
measure on S. It will often be convenient to work with an equivalent finite 
quasi-invariant measure TV, on S. We remark that there is a natural isomorphism 
ofLs(S, m) with L2(S, p), and we usually use the same symbol to denote naturally 
identified unitary operators. Let T denote the natural induced representation of G 
on L2(S) described in Section 2. Normality implies that there is a Bore1 field of 
unitary operators U(s): L2(S) ---f L2(S) such that for each g and almost all s, 
U(s) T(g) U(sg)-l = I. The idea of the proof is to use the operators U(s) to prove 
that L”(S) has the structure of a commutative Hopf-von Neumann algebra with 
an involution and invariant measure [lo]. We will then apply Takesaki’s 
theorem [lo, Theorem 21 to obtain our result. 

We begin by showing that we can modify U(s) so that these maps induce point 
transformations of S. Let B be the Boolean u-algebra of projection operators 
in L2(S) defined by multiplication by the characteristic functions of subsets of S. 
Then it is well known that T(g) leaves B invariant, i.e., T(g)-lBT(g) = B for 
all g E G. Let B, be the Boolean u-algebra defined by B, = U(s) BU(s)-I. The 
space a of Boolean a-algebras of projection operators on H has a standard 
Bore1 structure [l; 11, Lemma 4.51, and since U(s) is a Bore1 field, s + B, 
is a Bore1 function. We claim that this function is G-invariant. For g E G, we 
have, for almost all s, 

B,, = U(sg) BU(sg)-1 

= Wg) VPBW WW 
= U(s) BU(s)-l = B, . 
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Since J% is standard, it follows by the ergodicity of G on S that B, is constant on 
a conull set. Choosing a given unitary operator A such that AB,A-’ = B for 
almost all s, replacing U(s) by AU(s), then changing on a Bore1 null set, we can 
assume U(s)-iBU(s) = B for all s. 

Now let U: L2(S x S) -+La(S x S) be defined by U = f” U(s) dp, where 
we have identifiedL2(S x S) withL2(S;L2(S) = s” L2(S) dp. Then Upreserves 
the Boolean algebra B(S x S) = so B dp(s). Thus, there is a Bore1 map Y 
on S x S such that (i) Y preserves the measure class of p x CL, and (ii) Y*: 
B(S x S) -+ B(S x S), Y* = 0 where D is the automorphism of B(S x S) 
induced by U (i.e., o(P) = UPU-l) [8, Theorem 2.11. 

Let p,: S x S -+ S be projection onto the first factor. Then pi*: B(S) --f 
B(S x S) and we have up,* = pi*; that is ?P*p,* = pl*, and hence p, 0 Y = p, 
almost everywhere [S, Theorem 2.11. Now ((s, t) j p,Y(s, t) = s> is conull Borel, 
so changing Y(s, t) on a Bore1 null set we can assume Y is Borel, measure-class 
preserving, and p, 0 Y = p, for all (s, t) E S X S. 

For each s, define 4(s): S - S by $(s)(t) = p,Y(s, t). 

LEMMA 3.1. For s in a cot&l Bore1 set, 4(s) preserves the measure class of p. 

Proof. We first note that s + $(s)*p is a Bore1 function from S into M(S), 
the space of finite measures on S. (See [3], e.g., for a discussion of this space.) 
To see this, let E C S be Borel. Then r-~($(s)-~(E)) = p(Y-i(S x E) n p;‘(s)). 
This is a Bore1 function of s by virtue of Fubini’s theorem and the fact that Y 
is Borel. Now p x p = lo p dp(s), so Y&J x cl) = f@ (b(s)++ dp(s). Since 
Y*(p x p) N TV. x p, we must have, for almost all s, +(s)*p N CL. Furthermore, 
it follows from [9; Lemma 1.11 and the fact that s -P (b(s)*p is Borel, that 
{s 1 $(s)*p N ~1 is a conull Bore1 set. 

We also note that this implies that for s in a conull Bore1 set 

+(s)* = o(s): B(S) --+ B(S). 

Ultimately, we use the maps +(s) to define a Hopf-von Neumann algebra. In 
order to do this, the maps must satisfy several conditions. This and the following 
two sections are devoted to demonstrating that we can modify 4(s) in such a way 
that the required conditions hold. We begin this task with the following. 

LEMMA 3.2. Let X(g): S -+ S be h(g)(s) = sg. Then for each g and almost 
all s, X(g) 4(s) = $(sg) almost everywhere. 

Proof. For eachg, U(s) T(g) = U(sg) f or almost all s, so O(s) P(g) = O(sg) 
on B(S), i.e., $(s)*h(g)* = +(sg)*, from which the result follows. 

Since Y* is a Boolean isomorphism, Y is injective on a conull Bore1 set 
[S, Theorem 2.11. Hence, for almost all s, $(s) is a Bore1 isomorphism from a 
corm11 Bore1 set onto its image, which is also conull Borel. Hence d(s)-1 can be 
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defined almost everywhere for almost all s, and we can extend it to the remainder 
of S by letting it equal some fixed non-atom to E S. 

Although d(s) (and+(s)-l) will not necessarily preserve the G-invariant measure 
m, we now show that we can modify 4 so that it will. The map s --+ m, = 
$(s),rm is Borel, as can be seen as in the proof of Lemma 3.1. By Lemma 3.2, 
for each g and almost all s, 

m gg = $(sg);‘m = +(s)-,‘X(g);‘m = m, . 

Since the space of u-finite measures is countably separated, ergodicity of G on S 
implies m, is constant on a conull set, say m, = ZJ. Choose an arbitrary so with 
+(s&‘m = u. Let&s) = d(s) C(s,)-r. Then &s);‘m = #(s,,)*m, = m for almost 
all s. Thus, replacing $ by 4 and U by U(s,,)-rU(s), we can acutally assume that 
+(s)*m = m for almost all s. 

Let IV(s) = d(s)*: L2(S, m) -+ L2(S, m), i.e., (W(s)f)(t) = f(+(s)t). Since 4(s) 
is a measure preserving isomorphism, W(s) is unitary. U(s) is not necessarily 
equal to E’(s), but they induce the same automorphism of B(S). Further, from 
Lemma 3.2, we have IV(s) T(g) w(sg)-r = I for each g and almost all s. The 
result of these remarks is that we can replace U by W, and hence assume that 
(almost everywhere) U(s) is actually the unitary induced by the measure preser- 
ving point transformation 4(s). 

We now consider relations between the various maps U(s). 

LEMMA 3.3. There is a Borelfield of unitary operators A(t), t E S, such that 
for almost all (s, t), 

u+Nt) = 4) UP) U(s) (3.3) 

Proof, Let W,(s) = U(+(s)t) U(s)-lU(t)-1. Then for each g and almost all 
(s, t), 

= U(+(sg)t) T&)-l U(s)-l U(t)-l 

= U( [+(sg)t J g-1) U(s)-1 U(t)-’ 

= U(h(g)-‘I#(sg)t)U(s)-w(t)-1 

= U(#(s)t) U(s)-‘U(t)-’ = W,(g), 

by Lemma 3.2. Since W,: S -+ U(L2(S)) is Borel, and U(L2(S)) is a standard 
Bore1 space, for almost all t, W, is constant on a conull set. Letting A(t) be this 
constant, the result follows. 

We will need a result similar to Lemma 3.3 that gives an expression for 
U(+(s)-It). To do this, let G act on S x S by (s, t)g = (sg, tg) and let E be the 
space of ergodic components of the action for some (essentially unique) ergodic 
decomposition [7, p. 1921. Let 6: S x S -+ E take each point to its ergodic 
component, and let n = a,(~ x p). 
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LEMMA 3.4. There is a Borelfield of unitary operators B: E -+ U(L2(S)) such 
that for almost all (s, t), 

U@(s)+) = B(6(s, t)) U(t) U(s)-I. (3.4) 

Proof. Let W(s, t) = U(+(s)-9) U(s) U(t)-1. Then for each g and almost all 

(s, t), 
wg, 89 = ww-‘tg) wg> WY 

= WWWgYtg) u(s) T(g) T(gW’W 

= U@(s)-9) U(s) U(t)-1. 

Thus, W: S x S --f U(L2(S)) is Bore1 and G- invariant, and since U(L2(S)) is 

standard, there is a Bore1 function B: E ---f U(L2(S)) such that B(S(s, t)) = W(s, t) 
for almost all (s, t). The result now follows. 

We often need points that behave well with respect to various almost every- 
where conditions. Thus let S,, C S be a conull Bore1 set such that s E S,, implies 
the following: 

(i) #J(S) and 4(s)-l preserve the measure m, and (b(s)* = U(s) (cl) 

(ii) {t E S ( (3.3), and 3.4 hold} is conull (4 

(iii) (3.2) holds. (c3) 

We make further restrictions on S, throughout the paper. A technical condition 
we shall need presently is the following. 

Let d(s, t) = A(q5(s)-1t) B(S(s, t)), where s E SO . Then d is essentially G- 
invariant, and hence d(s, t) = B,(S(s, t)) 1 a most everywhere, where B, is defined 
on E. A further condition on S, we require is 

(iv) s E S, implies B&s, t)) = d(s, t) for almost all t. (c4) 

Another condition we will require stems from the following. 

LEMMA 3.5. Let E be an ergodic decomposition of S x S. For each s E S, let 
6, = 6 / {(s, t) I t E S}, so 6,: S + E. Then for almost all s, (a,),~ - n. 

Proof. Define a map F: S x S --+ S x S by F(s, t) = (s, 4(s)-lt). Then for 
almost all (s, t), F(sg, tg) = F(s, t) og, where (og) is the operation (y, z) og = 
(yg, a). Thus, F sets up an isomorphism of the Boolean G-spaces (B(S x S), .) 
and (B(S x S), 0) which preserves by projection on the first factor. Since the 
conclusion of the theorem holds for (B(S x S), 0) it is not hard to see that it 
holds for (B(S x S), *) as well. 

We now state the condition on s we will need: 

(v) s E S, implies (3.5) is true. (4 
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We now modify 4(s) and U( ) s so as to make the equality in Lemma 3.3 more 
manageable. Choose a point s, E S; and let B(s) = b(s) 0 +(s,,)-1 and 

D(s) = U(s,)-W(s) 

LEMMA 3.6. There is a BorelJield J(t) such that ifs E SO , then for almost all t, 

r7(c$(s)t) = 2((t) D(t) O(s). 

Proof. Let s E SO . Then for almost all t, 

ww> = wowws) dW1t> 

= Uw14hlYt) W(Wt) U(s) 
= u(s,)-14$(s,)-1t) W(s, 3 t)) U(t) WoYU(4 
= X(t) D(t) Q(s), 

where 
m(t) = u(%)-14(%>-1t) qqso t 9) Wo). 

The point of Lemma 3.6 is the following. 

CoRoLLARY 3.7. J(t) = Ifor almost all t. 

Proof. Let s = s,, in Lemma 3.6. Since &sJt = t for almost all t and 
D(Q) = I, we obtain for almost all t, u(t) = d(t) u(t). 

We now wish to establish a similar result for the corresponding modification 
of B(S(s, t)). 

LEMMA 3.8. For all s E SO, 

iY((B(s)-lt) = U(t) Q(s)-~ for almost all t. 

Proof. For s E SO, we have for almost all t, 

WWt) = wcl)-1 w%) d(V) 
= U(q))-lA(#(s)-9) U@(s)-9) U(Q) 

= U(s,)-lA(#(s)-9) B(S(s, t>> u(t) u(s)-1u(s,) 

= c(s, t) D(t) O(s)-1, 

where c(s, t) = U(sO)-lA($(s)-lt) B(6(s, t)) U(s,J. By Corollary 3.7, and the 
expression for g(t) in the proof of Lemma 3.6, c(sO , t) = I for almost all t. 
This implies d(s,, , t) = I for almost all t (see condition (iv) on S,, for the defini- 
tion of d), and by condition (iv) that B,(S(s, , t)) = I for almost all t. Now 
condition (v) on S,, implies that B,(e) = I for almost all e E E. But for s E SO , 

c(s, t) = U(sO)-lBO(G(s, t)) U(s,) for almost all t. 

Condition (v) on S,, then implies c(s, t) = I for almost all t. The result follows. 
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For notational ease, we hereafter call D and d; by U and 4, respectively. We 
summarize some of our results in the following theorem. 

THEOREM 3.9. We can choose the operators U(s) and the maps d(s) in such a 
way that for s E SO , a conull Bore1 set in S, (i) U(+(s)t) = U(t) U(s)for almost all 

all t; (ii) U(&s)-lt) = U(t) U(s)-’ f or almost all t. Furthermore, there is an 
element sO E S such that +(s,Jt = t a.e., and U(s,) = I. 

It will be necessary for us to modify U and + again later on. It is easy to check 
that if t, E SO, and we make the modification u(s) = U(t,,-IU(s), B(s) =I 
d(s) $(to)-l, that Th eorem 3.9 remains true, with the role of sO now played by t, , 
and SO unchanged. 

4. THE INVOLUTION 

We now construct a measure class preserving map on S which will enable us 
to define an involution on L”(S). I n order to do this, it will be necessary to exam- 
ine more closely the ergodic decomposition of S x S under the product action. 
Let F: S x S ---f S x S be F(s, t) = (s, b(s)-It). Then, for almost all (s, t), 
F(sg, tg) = F(s, t) o g, where, as above (0 g) is the operation (y, z) 0 g = (yg, z). 
ThenF* is an isomorphism of the Boolean G-spaces B(S x S, ,) and B(S x S, 0). 
Hence, there are invariant conull Bore1 sets Tr , T, C S x S, and a bijective 
G-map A: TI -+ T, such that A = F a.e. Let p: S x S -+ S be projection on the 
second factor and let q = p 0 A. Then q: TI -+ S preserves measure class and 
it is clear that decomposing p x p with respect to p over the (G-invariant) 
fibers of q defines an ergodic decomposition of p x ,u. We will call (q-l(s) n 
(S x S - Z’J} the ergodic pieces of S x S. 

Let r(s, t) = (t, s). Th en T is a G-map, and hence, modulo null sets, permutes 
the ergodic pieces of S x S. More precisely, q 0 r is G-invariant, and hence 
there is a Bore1 map a: S -+ S and an invariant corm11 Bore1 set T3 C TX such 
that q(r(x)) = a(q(z)) for all z E 7’s . Replacing T3 by Ts n r(T,), we can assume 
Ta = r(T3). The above remarks imply that if H C T3 is a union of ergodic 
pieces, then r(H) is also a union of ergodic pieces. (Ergodic pieces in Ta are 
ergodic pieces of S x S intersected with T3 .) 

Let S, be the conull Bore1 set of elements t E S that satisfy the following 
conditions: 

(i) b(t)-’ is measure preserving 

(ii) F(s, t) = A(s, t) and F(t, s) = A(t, s) for almost all s. 
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(iii) {s / (s, t) 6 Ts) is corm11 

(iv) {s 1 (t, s) E J&T,)) is conull. 

The main result of this section is the following: 

PROPOSITION 4.1. Let j,(s) = d(s)-lt. Then ;f t E S, , j, is measure class 
preserving. 

Proof. Let E C S, and suppose ~(23) > 0. Then s E j;‘(E) if and only 
if (s, t) E F-l(S x E). Then for fixed t E S, , the following sets have the same 
measure: 

ls I (s, t) ~F-l(s x E)l, 

(s ) (s, t) E A-ys x E)) by (ii>, 

{s ) (t, s) E r(A-‘(S x E) n T3)} by (iii), 

0 I (t, W-l4 E 4r(@(S x El n TaNI by (ii). 

Now (y / (t, y) E A(rA-l(S x E) n TJ) has positive measure since 
r(A-l(S x 23)) n T3 is a union of ergodic pieces and has positive measure, 
and by condition (iv). Since+(t)-l is measure preserving, we obtain p( j;‘(E)) > 0. 
A similar argument shows p(E) = 0 * p( j;‘(E)) = 0. 

We conclude this section with some further technical results we will need, 
which are consequences of Proposition 4.1. 

We require that elements s E S,, now satisfy additional conditions. 

(vi) s E S, implies {y j U($(y)-ls) = U(s) U(y)-‘> is conull. (4 
(vii) SE&, so that j, is measure class preserving. (c7) 

The only difficulty with these conditions is that there is no guarantee that s,, 
satisfies them. We thus modify U and + as above. Choose t, so that conditions 
(cl-c7) are satisfied. Let 

” m = 9(s) o vw-l> 
i??(s) = U(t,)-W(s). 

LEMMA 4.2. For any s E S,, (i.e., satisfying cl-c7), u($(y)-ls) = u(s) u(y)-l 
for almost ally. 

Proof. Q(& y)-%) = U( tO)-1 U($(t,) fj%( y)-ls). Since js preserves measure 
class, for almost ally, this becomes 

wow%vo) #(YYS) = wo)-1w(Y)-‘4 WJ 
= U( to)-’ U(s) U( y)-1 U(t,) 

= O(s) D(y)-1. 
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Thus, relabeling o,$, t, by U, $, s, , respectively, we can assume, without 
losing our previous results, that conditions c6 and c7 hold for SO . 

COROLLARY 4.3. +(4(y)-%,,) = 4(y)-’ almost everywhere, for almost all y. 

Proof. By condition c6, 

U(+(yp,) = U(s,) U(y)-l = U(y)-l a.e. 

5. ESSENTIAL INJECTIVITY OF U 

We show in this section that it suffices to consider the case in which U: 
S -j U(Lz(S)) is injective on a conull set. A variation of our notation will be 
helpful. Let q: S + U&2(S)) be q(s) = U(s) and Q(s): U(L2(S)) + U(L‘J(S)) 
be defined by Q(s)x = q(s). 

LEMMA 5.1. IfseS,,, then 

(i) (q 0 $(s))t = (Q(s) 0 q)(t) for almost all t. 

(ii) Q(s) and Q(s)-” preserve the measure class of u = q*(p). 

Proof. (i) is clear. Let F C q(S), and D = {t / U(+(s)t) = U(t) U(s)}. Then 
q-‘(Q(s)-lF) n D = 4(s)-l(q-lF) n D and since D is conull and (b(s) measure 
class preserving, F is null if and only if Q(s)-lF is null. Similarly, 

where 

pl(Q(V) n D' = +(WIF) n D', 

D’ = {t j U@(s)-‘t) = U(t) U(s)-‘}, 

and (ii) follows readily. 
Via the map q: S -+ X = q(S), we can identify La(X, u) as a subspace of 

L2(S, p). Lemma 5.1 implies that for s E S,, , U(s)(L2(X)) = E?(X). U(a) can be 
considered as defined on X, and we let W(x) = U(x) ( L2(X) for x E q(S,,), and 
an arbitrary unitary on L2(X) otherwise. Lemma 5.1 also implies that for s E S,, , 
Q(s)*: WJ - W7, we have Q(s)* = @(q(s)). Since U(s) leaves L2(X) 
invariant for almost all s, so will T(g). Thus, there is an induced factor action 
of G on X [l 1, Proposition 2.11. Let T,-,(g) be T(g) 1 La(X). The relation 
U(s) T(g) U(sg)-1 = I implies W(x) T,(g) W(xg)-l = I, and hence X is a 
normal G-space. We now show that W is essentially injective. 

LEMMA 5.2. If x,y E q(S,,), and W(x) = W(y), then U(x) = U(y). (SO 
in fact, x = y). 
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Proof. Let q(~,) = X, q(sa) = y, where si E SO . Then for almost all z E X, 

Q(s& = S(s&. 

Hence for almost all t, 

which, from Lemma 5.1, implies 

But this implies 

U(t) U(s,) = U(t) WA for almost all t, 

which shows U(x) = U(y). 
We now want to show that assuming the theorem true for the normal G-space 

X implies that it is also true for S. To do this, we will need a rather delicate 
statement of the theorem. What we will assume, and this will be shown in 
Section 6, is that we can modify the maps W(x), in a way to be spelled out below, 
to obtain maps w(x), so that there is (i) a locally compact group H, (ii) a homo- 
morphism of G into H with dense range, (iii) a conull G-invariant set X, C X, 
and (iv) a Bore1 measure class preserving G-isomorphism 8: X, + H with the 
following further property. Let @ = B*:L”(H) -+I,m(XI). Then for almost 
all x, 

@-W(x)@ = u(cqx)), (*) 

where D is the right regular representation of H. The restriction we need on w(z) 
is that 

W(x) = W(xn)-1 *** W(xl)-l W(x), (**> 

where the xi can be chosen (not arbitrarily) within a given conull set. The point 
of this last statement is that we want to ensure that xi E q(S,). Conditions (*) 
and (M) do not appear specifically in the statement of the theorem. However, 
condition (x) is Lemma 6.7 and (**) can be seen by examining the proof. 
Finally, we now proceed to show how this implies the theorem for S. 

Let D(s) = U(x,)-l **- U(xI)-lU(s), and B(s) = d(s) q%(s&l **a $(s,)-1 where 
si E SO and q(sJ = xi . Then Lemma 5.2 clearly holds for i7 and was well as U 
and W. 

LEMMA 5.3. For almost all x, y, z, F(x) W(y) = W(z) implies U(x) D(y) = 
q(z). 

Proof. Let y E q(S,,), soy = q(t,,), to E SO . Then for almost all s, O(&t,,)s) = 
o(s) u(t,,) since s, ,..., s, E SO . Thus, for almost all s, 

m(s)) W(Y) = wd~(t&)). 
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Hence, by Lemma 5.2 for almost all s, z, we have w(q(s)) p(r) = W(Z) implies 

m7@(4l)~)) = 44 F rom the above, this means u(s) u((i,) = D(Z). This 
completes the proof. 

THEOREM 5.4. Under the above assumptions, U is actually essentially injective. 
Thus S is essentially isomorphic to X, and so the conclusion of the theorem holds 
for s. 

Proof. Let 8: X1 -+ Has described above. Then for almost all h, 

W(@-‘h) = @u(h) a--l. 

Hence, 
W(&lh)W(O-‘h) = W(8-l(hh)) 

for almost all h, k. Let W,(h) = V(O-lh). It follows from Lemma 5.3 that 
W,(hh) = W,(h) Wa(k). Thus, we get an induced action of H on S which has 
as a factor action the action on X. Since X is essentially isomorphic to H as an 
H-space, S ---f X must be essentially injective if S is ergodic [14, Lemma 8.231. 
Hence, it remains only to show this latter condition. But a set invariant under 
almost all h for the Boolean action defined by W,(h) will be invariant under the 
action defined by u(s) for almost all s. Since u(s) T(g) = u(sg) a.e., this implies 
that there would be an element invariant under T(g) for all g, which contradicts 
the ergodicity of G on S. This completes the proof. 

We may thus assume from this point onward, that U is injective on a conull set. 
Making a modification similar to those above, it is easy to see that we can 
suppose so is in this set, and we require the further condition on S,: 

(viii) U is injective on S, . ((3) 

We draw some important corollaries. 

COROLLARY 5.5. Let j = jSO (see Proposition 4.1). Then jz = id almost 
everywhere. 

Proof. j(s) = (b(s)-‘so , so j2(s) = (~($(s)-%,)-~s~ . Now s -+ $(~)-%a is measure 
class preserving, so by condition C6 (see also Lemma 4.2) for almost all s, 

XW) = U&J W#WW1 

= U(s,) U(s) U(s,)-1 = U(s). 

The result follows since U is essentially injective. 

COROLLARY 5.6. t --f +(t)s is measure class preserving for almost all s. 

Proof. For almost all (s, t). 

ww = ww(Yd-l~)~ 
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and by essential injectivity, 

almost everywhere. The results follows from Proposition 4.1. 

6. PROOF OF THE MAIN THEOREM 

We now describe the Hopf-von Neumann algebra structure on L”(S). The 
various measure theoretic results of the preceding sections will make verification 
of the Hopf-von Neumann algebra axioms fairly straightforward. The reader 
is referred to [lo] for definitions and results pertaining to Hopf-von Neumann 
algebras. 

DEFINITION 6.1. Let 6: L”(S) +Lm(S) @L”(S) = L”(S x S) be given by 

a( f )(s, t) = f(W), where f E L”(S). 

PROPOSITION 6.2. i3 is an isomorphic of L*(S) into Lm(S x S). 

Proof, 6 is the map induced by the function 5’ x S ---f S, (s, t) -+ $(t)s. 
Since $(s, t) = (s, $(s)t) is measure class preserving, so is (s, t) + $(s)t. 

We now show that 6 is a comultiplication. 

PROPOSITION 6.3. (6 @ i) 0 6 = (i @ 8) 0 6 (these aye mupsLm(S) -+ L”(S) @ 
L”(S) @L”(S) = L”(S x s x S)). 

Proof. Consider ((6 @ i)g)(s, t, U) where g EL*(S x S). For almost all US 
we have g, E Lm(S) and then 

Now if g = Sf, then 

@f>dY) = Sf (Y? 4 = fkwY)- 

so 
(8 0 Wf )(s, t, 4 = @f )&XtN 

= f (?w d(t)4 

On the other hand, consider ((i @ S)g)(s, t, U) where g E Lm(S x S). Then for 
each s, we have g, ELM, and ((i @ 6)g)(s, t, U) = 6(g,)(t, u) = gs(+(u)t). 
If g = Sf for f ELm(S), then 

‘G(Y) = (Sf )(s, Y) = f (4(Y)+ 
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Hence (8f)Y(&zc)t) = f($($(u)t)s). But for almost all (s, t, u), $(u) $(t)s = 
+(+(u)t)s, and therefore (i @ 6)6 = (6 @ i)6. 

Proposition 6.3 shows that (L”(S), 8) is a Hopf-von Neumann algebra, which 
is clearly commutative. we now defined an involution of this algebra. 

Let j: S -+ S be j = jsO (see Section 4). Then j preserves measure class and 
hence induces a map J:Lm(S) -LL”(S), (Jf)s = f(j(s)). Since (Jsf)(s) = 
J(f oi)(S) = fW4 = f( 1 f s or a most all s, by Corollary 5.5, J is an involution. 1 
Let CT: L”(S) @ La(S) -+ Loo(S) @Leo(S) be defined by ~(f @ g) = g of. 
Under the isomorphism ofLm(S x S) withLa(S) @ L”(S), this map is identified 
with the map ofLm(S x S) defined by (uf)(x, y) = f(y, x). We claim: 

PROPOSITION 6.4. a 0 6 0 J = (J @ J) o 6. These are mupsLw(S) -+ La(S) @ 
L”(S) = L=‘(S x S)). 

Proof. Since ~,a, J are all induced by point maps (say u* ,6, ,j, respectively) 
it suffices to show that j 0 6, 0 u* = 6, 0 (j x j) almost everywhere. For 
(t, s) E S x S, the left side is (j 0 S,)(s, t) = j(+(t)s) = $($(t)s)-Iso . Now 

aww-‘%> = W(W1 a.e. (by condition c6 on S,) = U(t)-lU(s). But we 
also have U(+(s)(b(t)-Is,,) = U(t)-lU( ) s a.e. since j is measure class preserving. 
By the essential injectivity of U, we conclude (j 0 S*)(s, t) = qb(s) d(t)-%,, a.e. 

On the other hand, 

Since j preserves measure class, this = $(~)-r+(t)-~q, a.e. This proves the lemma. 
Finally, we verify that the invariant measure m is also an invariant measure 

in the sense of Hopf-von Neumann algebras. Since L”(S) is a von Neumann 
algebra, the automorphism 1: Lm(S) -+ Lm(S) induces a map J* on the predual 
space, i.e., J*: L1(S) + Lr(S). If h E Ll(S), this map is given by J,(h) = (A o j)d, 
where A = dj,mldm. 

LEMMA 6.5. If f, g, h EL”(S, m) n U(S, m). Then 

m 0 m((f 0 g) ah) = m 0 m((h 0 /*g) Sf ). 

Proof. Identifying La(S) @ Lm(S) with L”(S x S), the left side becomes 

II f (4 g(t) 4#W ds dt (*I 
sxs 

and the right side 

ss 4s) g(jt) f (QW A(t) ds dt. (“7 
SXS 
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Replacing t by j(t) in (*), we obtain 

Now replace s by $(t)s. Since +(t) preserves measure for almost all t, we obtain 
(*) = (**). 

We summarize our results. 

THEOREM 6.6. (L”(S),S, J) is an involutive Hopf-von Neumann algebra with 
invariant measure m. 

As a consequence of Takesaki’s duality theorem [IO, Theorem 21, there is an 
isomorphism @ of (Loo(S), 6, J, m) with (L”(H), S, , jH , pH) where H is a 
locally compact group. We note that this implies S,o CD = (@ @ 0) 0 6. Since 
CD: L”(S) -+ Lm(H) is an algebra isomorphism, @ is induced by a Bore1 map 
8: H -+ S which is injective and measure preserving [8, Theorem 2.11. Let u 
be the right regular representation of H. 

LEMMA 6.7. For almost all s, 

up-l(s)) = @U(s) Q-1. 

Proof. Let h eL2(H). We want (u(&%))h)h = (@U(s) @+)h for almost all 
(s, h) E S x H. For this it suffices to show 

(up-ls)h)(e-lt) = (mqs) PA)(e-9) (*I 

for almost all (s, t) E S x S. Now the left side of (*) is (SHh)(Ft, 6-Q) by the 
definition of BH . Since 8 induces 0, B-1 induces CD-~, and this = (CD @ Q-r) 
(S&)(t, s). Since CD is a Hopf algebra isomorphism, this 

= (S 0 Q-1) /yt, s) = sp-lh)(t, s) 

= CD-‘A(@(s)t) = U(s) @-9(t) 

= @U(s) CD-‘A(e-It), 

completing the proof. 

COROLLARY 6.8. For each g E G, @T(g) a-1 = a(h) for some h E H. 

Proof. T(g) = U(s)-lU(sg) for almost all s. We can choose s so that this 
equality holds and @U(s) Q-l = u(Fs), 

But then 

acqsg) ~-1 = u(e-ysg)). 

qg) = ~-lu(e-ls)-l~(e-l(sg))~. 
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We are finally ready to prove the main theorem. 

THEOREM 6.9. If S is a normal G-space with a a-jnite invariant measure, 
then there is a locally compact group H such that S is esesntially isomorphic to the 
G-space H, where the action of G on H is defined by a homomorphism of G into H 
with dense range. 

Proof. Define a homomorphism A: G -+ H by A(g) = a-‘(@T(g) @-I) 
(recall that a: H + U(L2(H)) is a Bore1 isomorphism onto its image). Consider 
the corresponding action of G on H. The induced unitary on L2(H), say W(g), 
is just @Z’(g) @-l. But since Cp: Lm(S) -+La(H) is an algebra isomorphism, 
@ is also a Boolean isomorphism of B(S) -+ B(H). Thus @ is an isomorphism 
of the pairs (Z’(g), B(S)), (W(g), B(H)). It follows that the actions of G on S 
and H are essentially isomorphic. Finally, A(G) must be dense in H, since the 
action is ergodic. 

COROLLARY 6.10. If S has a finite invariant measure, the group H is compact, 
and S has discrete spectrum. 

Proof. His compact if and onIy if the Haar measure is finite. 

Remark. This provides a different proof of Corollary 2.4. 

Remark. It seems likely that Theorem 6.9 remains true under the weaker 
assumption that S has a probability measure quasi-invariant and ergodic under G. 
With still further attention to measure theoretic detail, one may be able to show 
that a normal G-space with a quasi-invariant probability measure actually has a 
u-finite invariant measure, by a method similar to that of [14, Lemma 8.331. 

7. FINITE INVARIANT MEASURES 

In this section, we give a direct proof that G-spaces with finite invariant 
measure and discrete spectrum (where the spectrum satisfies a certain additional 
condition, which always holds if G is abelian) are normal, and then use Corollary 
6.10 to describe their structure. 

PROPOSITION 7.1. Suppose G acts ergodically on S, with a finite invariant 
measure, and that L2(S) has an orthonormal basis of eigenvectors of the action. 
Then S is a normal G-space. 

Proof. Let {fi} be an orthonormal basis of eigenvectors, so that T(g)f, = 

h(g)f, 9 X(g) E @, and let Hi = Cfd . We claim that for each i, the cocycle 
OI(S, g) = T(g) 1 Hi is equivalent to the identity. For this, it suffices to show that 
there is a G-invariant function in L2(S; Hi) for the induced representation lJa 
of G. But 0: S --f Hi, e(s) = fi(s)fi clearly satisfies the required conditions. 
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As a consequence, we obtain the von Neumann-Halmos theorem. 

COROLLARY 7.2. If T: S -+ S is e-rgodic with pure point spectrum, then T 
is equivalent to a rotation on a compact abelian group. 

Proof. Proposition 7.1 and Corollary 6.10. 
More generally, we obtain a special case of Mackey’s theorem [5] by these 

methods. 

PROPOSITION 7.3. Suppose S is an e-rgodic G-space with finite invariant 
measure. Let U(g) be the natural representation of G on L2(S) suppose U = 
x:,:, (dim n)n, wkere L is a collection of equivalence classes of finite-dimensiotzal 
irreducible representations. Then S is a normal G-space and hence the conclusion of 
Corollary 6.10. holds. 

Proof. Fix rr EL, and let n = dim rr. Choose orthonormal elements 
fi ,..., fn ELM such that H = span{fi} is invariant and irreducible under G, 
and U J H is equivalent to x. Let a&) be functions on G such that U(g)f, = 
C au(g)fi . Then the hypothesis of the theorem implies there is an orthonormal 
set of functions hik in LB(S), 1 < i, R < n, such that (i) hiI = fi and (ii) for each K, 

u(g) hjk = Z add ha * 
To show the action is normal, it suffices to show that the cocycle a(s, g) = 

U(g) 1 His equivalent to the identity, since r is arbitrary. To do this, it suffices 
to produce nonzero G-invariant functions 8,: S -+ H, k = 1 ,..., n, such that 
{0,(s)} are orthogonal for almost all s. 

Define &(s, t) = & &(s)h(t), w IC h’ h we can consider as a function S -+ H. 
Then 

e?c(sg, &> = C hik(sg)h(tg) 

Since aU(g) is unitary for eachg, 

Thus, 0, are invariant, and it suffices to show that for each fixed i, k, i # k, and 
almost all s, that 

A(s) = j- &(s, t) &(s, t) dt = 0. 
s 
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But this is just 

Now an argument similar to the one above, showing that ek is invariant, will 
show that A(s) is G-invariant. By ergodicity, A(s) is essentially constant. But 
J A(s) ds = Cj (hii / hi,) = 0. Thus, A(s) = 0 almost everywhere, completing 
the proof. 
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