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A Regularized Solution to Edge Detection 

T. POGGIO, H. VOORHEES, AND A. YUILLE 

Arti$cial Intelligence Laboratory, Massachusetts Institute of Technology, 
545 Technology Square, Cambridge, Massachusetts 02139 

We assume that edge detection is the task of measuring and localizing changes 
of light intensity in the image. As discussed by V. Terre and T. Poggio (1984), “On 
Edge Detection,” AI Memo 768, MIT AI Lab), edge detection, when defined in 
this way, is a problem of numerical differentiation, which is ill posed. This paper 
shows that simple regularization methods lead to filtering the image prior to an 
appropriate differentiation operation. In particular, we prove (1) that the varia- 
tional formulation of Tikhonov regularization leads to a convolution filter, (2) that 
the form of this filter is similar to the Gaussian filter, and (3) that the regularizing 
parameter A in the variational principle effectively controls the scale of the til- 
ter. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Edge detection does not have a precisely defined goal. The word 
“edge” itself, which refers to physical properties of objects, is somewhat 
of a misnomer. Several years of experience have shown that the ideal goal 
of detecting and locating physical edges in the surfaces being imaged is 
very difficult and still out of reach (for a review see Brady, 1982; Hildreth, 
1985). Edge detection has come to be defined as the first step in this goal 
of detecting physical changes such as object boundaries-the operation of 
detecting and locating changes in intensity in the image. Other processes 
which operate on these measurements of intensity changes will then 
group boundaries and attempt to label and characterize them in terms of 
the properties of the 3-D surfaces. A solution to the problem of detecting 
and correctly characterizing physical edges requires, in general, high level 
knowledge and interaction with several early vision modules; it cannot be 
fully obtained just in terms of operations on image intensities. 

In this narrow sense, we assume that edge detection-this first step in 
processing the image- is a process that measures, detects, and localizes 

106 
0885-064x/88 $3 .oo 
Copyright 6 1988 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82435663?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


EDGEDETECTION 107 

changes of intensity. We assume, in particular, that derivatives must be 
estimated correctly to label the critical points in the image intensity array, 
characterize their local properties (are they minima or maxima or saddle 
points?), and begin to relate intensity changes to the underlying physical 
process (are they shadow edges or depth discontinuities?). As a conse- 
quence, several different types of derivatives of the image-and not only 
the Laplacian (Torre and Poggio, 1984)-possibly at different scales, may 
have to be estimated.’ From this point of view edge detection is a problem 
of numerical differentiation of images (Torre and Poggio, 1984). The prob- 
lem is not straightforward, and attempts over many years have proven its 
difficulties. Considered as a problem of numerical differentiation, edge 
detection turns out to be an ill-posed problem. As discussed by Poggio 
and Torre (1984), mathematically ill-posed problems are problems where 
the solution either does not exist or is not unique or does not depend 
continuously on the data. 

Numerical differentiation is a (mildly) ill-posed problem because its 
solution does not depend continuously on the data. It is therefore natural 
to try to solve this problem by using regularization techniques developed 
in recent years for dealing with mathematically ill-posed problems. The 
problem can be regularized by the use of a wide class of filters (Torre and 
Poggio, 1984, Sect. 2.4; see also Duda and Hart, 1973). In the following 
section we consider two specific regularizing operators which are in a 
sense very natural and very simple. 

2. REGULARIZING EDGE DETECTION 

To regularize an ill-posed problem and make it well posed, one has to 
introduce generic constraints on the problem. In this way, one attempts to 
force the solution to lie in a subspace of the solution space, where it is 
well defined. The basic idea of regularization techniques is to restrict the 
space of acceptable solutions by choosing the function that minimizes an 
appropriate functional. We consider here standard regularization theory 
to find a well-behaved intensity z (so that it can be later differentiated) 
from discrete and noisy data y. The problem is thus to regularize the 
problem of finding z from the data y such that AZ = y. In the case of edge 
detection considered as numerical differentiation, we want an approxima- 
tion z to the intensity data yi at sample points xi that is well behaved under 
differentiation. Thus we consider an operator A which samples the func- 
tion z on the lattice such that AZ/,, = zlX, for i = 1, . . . , N. Standard 
regularization as formulated by Tikhonov transforms the problem into the 
following variational principle: 

’ A very similar problem arises in the characterization of surface properties-in particular 
their differential properties-from depth data. 
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Find z that minimizes 

I& - y12 + A(Pz12, (1) 

where h is a regularization parameter and P is a stabilizing operator. 
Thus, the regularization parameter X controls the compromise between 
the degree of regularization of the solution and its closeness to the data. 

The discrete problem can be formulated rigorously as an ill-posed prob- 
lem. Bertero et al. (1986) discuss in detail this formulation and its connec- 
tion with other techniques. The problem is then to find a suitable norm 
and a suitable stabilizing functional IPf/. It is natural to choose for P the 
simplest form of Tikhonov’s stabilizing functionals (Tikhonov and Ar- 
senin, 1977) 

where c,(t) are non-negative weighting factors. In I-D, we may choose P 
= dk/dxk and the normal L* norm. For k = 2 this choice corresponds to a 
constraint of smoothness on the approximated intensity profile Z, with 1 Pfl 
= d*f/dx*. Its physical justification is that the noiseless image has to be 
smooth in the sense that its derivatives must be bounded because the 
image is band limited by the optics. Band-limited functions have bounded 
derivatives because f’ 5 LRM, where M = sup F(w), R is the cut-off 
frequency, and F(w) is the Fourier transform off(x). Notice that for this 
simple reason it is meaningless to speak of edges as discontinuities in the 
image intensities. Physically, the constraint of smoothness allows us to 
effectively eliminate the noise that creeps in after or during the sampling 
and transduction process and makes the operation of differentiation un- 
stable. We stress that this is not the only stabilizing functional possible for 
this problem, although it is probably the simplest one (Torre and Poggio, 
1984). The order of the stabilizer does not have a great influence 
(Tikhonov and Arsenin, 1977), but see Appendix 1. Our results (later 
reported by Terzopoulos, 1986) can be very easily generalized to all 
Tikhonov stabilizers. 

2.1 Standard Regularization Method, Approximating Splines, and the 
Edge Detection Filter 

Tikhonov’s regularization method leads to the following problem: Find 
the f that minimizes 

C CY~ - f(xi)>2 + A / (Y’(X))* dxt (2) 
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where A is the regularization parameter which can be found as described 
later. This problem was considered originally by Reinsch (1967) in the 
case of numerical differentiation and by Schoenberg (1964) for the prob- 
lem of graduation (in the original Reinsch article, however, A is a La- 
grange multiplier!). Both Schoenberg and Reinsch gave the solution in 
terms of approximating cubic splines. We prove that for most practical 
purposes, the approximating spline function can be obtained by convolv- 
ing the data point yi with the cubic spline convolution filter R shown in 
Fig. 2 (see also Appendixes 1 and 3; Poggio et al., 1985). We then have the 
following result: 

PROPOSITION. The solution to Eq. (2)-the regularized solution to the 
problem of numerical differentiation-in the case of inexact data, can be 
obtained by convolving the data with a convolution filter which is (a) a 
cubic spline, and (b) similar to a Gaussian (it is in particular a But- 
terworth-like jilter). 

The exact assumptions under which the proposition is valid are dis- 
cussed in Appendix 1 and in Poggio et al. (1985). First, the data must be 
given on a regular grid (as is the case for an image). Second, the image 
data must either go to zero at infinity or be periodic. Under these condi- 
tions, the filtering operation is space invariant and linear (the Euler- 
Lagrange equations corresponding to the quadratic variational problem 
are linear). Thus the approximating spline can be obtained by a convolu- 
tion operation. Note that the result that the regularizing operator corre- 
sponding to a quadratic variational principle is a convolution filter-for 
data on a regular grid and toroidal boundary conditions-is valid beyond 
the case of numerical differentiation, provided the boundary conditions 
are appropriate and the operator A of Eq. (1) is space invariant. 

3. REGULARIZATION PARAMETER AND COMPARISON WITH THE 
GAUSSIAN FILTER 

Figure 1 shows the filter R obtained by solving the variational principle 
Eq. (1) in Appendix 1. Its shape and size depends on the regularizing 
parameter A. Figure 2a shows the first derivative of the filter for different 

FIG. 1. Filter R derived by regularization principles. 
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(a) (b) 

FIG. 2. Filter R and first derivative for different values of regularizing parameter A. (a) A 
affects size of (the first derivative of) R but (b) does not affect shape of R. (Amplitudes are 
normalized in (a); both amplitudes and widths are scaled linearly and independently in (b) for 
comparison.) 

values of A. The continuous version of the filter, derived in Appendix 2, is 
practically indistinguishable from the discrete filter, as shown by numeri- 
cal comparisons. The smoothing parameter A controls the effective size of 
the filter. It does not significantly affect the shape of the filter, but only its 
size, as shown in Fig. 2b. Appendix 3 makes this more precise. Changing 
A amounts to scaling the size of the filter up or down. If A is small, 
smoothness is unimportant, and the filter will tend to be an interpolating 
filter and therefore be similar to a 6 function. On the other hand, with a 
very large A, the main weight is on smoothness, and the filter will tend to 
be very large. The continuous form of the filter suggests that the role of A 
is similar to the role of (+ for the Gaussian (for 1-D A = c4, as shown in 
Poggio et al. (1985); also in Appendix 3). 

The regularization filters derived here appear to be quite similar to the 
Gaussian distribution from the point of view of a numerical implementa- 
tion on the computer. The same is true in the continuous case for a non- 
causal Butterworth filters (the order depends on the order of the stabi- 
lizer). Graphs of the filter R, and its first and second derivatives are shown 
with those of the Gaussian in Fig. 3. Mat-r and Hildreth (1980; Hildreth, 
1980) have argued that the Gaussian is an optimal smoothing filter for 
detection due to its localization properties in both the spatial and fre- 
quency domains. The fact that the Gaussian is quite similar to the optimal 
filter derived here using regularization principles provides further mathe- 
matical justification for the use of a Gaussian-like filter in edge detection. 
Notice that our derivation is more general and simpler than Canny’s (who 
also derived a variational principle), while leading to a filter that is indis- 
tinguishable for all practical purposes. Furthermore, the spline filter pro- 
vides directly the solution to the problem of designing a digital filter (a 
problem which has to be solved separately in the case of a strictly contin- 
uous derivation, such as for the Gaussian filter). 

If the boundary conditions are not periodic or natural, then the deriva- 
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(a) 

- R filter 
- - Gautian 

(b) 

- - Gaussan 

FIG. 3. Comparison of one-dimensional regularizing filter R with Gaussian: (a) zeroth, 
(b) first, and (c) second derivatives. 

tion of Reinsch (see Poggio et al., 1985, Appendix 1.1) provides the cor- 
rect Green function for those boundary conditions. 

4. DISCUSSION 

Several questions and extensions suggest themselves in a natural way. 
Here we list some of them. 

4.1. Finding the Optimal X 

Regularization theory can give the optimal value of A if the errors on the 
smoothing criteria and the error of the approximations are known in ad- 
vance. If the integral ofy2 is less than E, and the sum of (yi - f(Xi))2 is 
less than E, then h = F/E (see Bertero, 1982; Tikhonov, 1963; Tikhonov 
and Arsenin, 1977). Normally, however, errors on the data or on the 
smoothness conditions are not known in advance. Regularization theory 
provides several methods for finding the optimal smoothing parameter X 
under this circumstance, usually assuming Gaussian noise. We want to 
indicate here two main methods: (1) Tikhonov’s method, for convolution- 
type problems, as is the case here, and (2) the cross-validation method 
and the generalized cross-validation method (Wahba, 1980). Geiger and 
Poggio (1987) have implemented a method based on the first approach to 
estimate the optimal scale of the filter from image data. Their solution also 
offers a tentative explanation for two perceptual phenomena. 
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4.2 Relation with Other Edge Detectors 

Because of the close similarity of our spline filters to Gaussians, the 
edge detector that we derive in this paper is very similar to edge detectors 
proposed previously. Marr and Poggio (1977) proposed the difference of 
two Gaussians as an approximation to the second derivative of a Gaus- 
sian. Marr and Hildreth (1980; Hildreth, 1980) have shown that the second 
derivative of a Gaussian is, indeed, very close to the difference of Gaus- 
sians, as simple inspection of the diffusion equation shows. J. Canny’s 
filter (Canny, 1983) is very close to the derivative of a Gaussian, and 
Haralick’s cubic polynomial interpolant (Haralick, 1982) is again similar 
to Canny’s filter. Our derivation justifies the use of a Gaussian or a filter 
very close to a Gaussian as the best filter for edge detection. Regulariza- 
tion theory yields derivative-of-Gaussian-like filters as the optimal filter in 
a simpler, more general, and, we believe, more rigorous way, than pre- 
vious derivations. In particular, our result makes clear that the But- 
terworth filter regularizes the ill-posed problem of numerical differentia- 
tion. The regularizing constraint here is that the norm of the derivatives in 
the noise-free image is small. 

It is interesting that we derive a filter very similar to Canny’s, based on 
simpler and more general principles that are not restricted to the optimal 
detection of step edges. It is also interesting to note that the Laplacian of 
the regularization filter, like the Laplacian of the Gaussian, can be ap- 
proximated by a difference of Gaussians (although not as well). While the 
Laplacian of the Gaussian is best approximated by a space constant ratio 
(the ratio of scales of the two Gaussians) y = 1.6 (Marr and Hildreth 1980; 
Hildreth 1980; see also Grimson and Hildreth, 1985), increasing the ratio 
to y = 4 results in a function which better fits the main (excitatory) lobe of 
the regularizing filter, as shown in Fig. 4. 

4.3. Extension to Two Dimensions 

Our approach can be extended to two dimensions by formulating the 
regularization principle in two dimensions. Instead of Eq. (2), one would 
then have the problem of minimizing 

z (Yij - f(xij>>* + A 11 (WI* dx dY. 

The main problem is the choice of the operator P. If we consider a 
Tikhonov stabilizer (see Poggio and Torre, 1984), then a choice for P that 
is smooth enough to allow the use of second derivatives of the regularized 
image is 

P = vv. 
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(a) (b) 

FIG. 4. Difference of two-dimensional Gaussians as approximations to (a) Laplacian of 
Gaussian, (b) Laplacian of two-dimensional regularizing filter Rz. The ratio between the 
scales (u) of the two Gaussians is y. 

This choice is used in Appendix 2 to derive the filter for the two- 
dimensional continuous case. The filter is shown in Fig. 5. The choice of 
the derivative to be used on the filter is a separate, important issue that 
we do not address in this paper. Torre and Poggio (1984) discuss the 
properties of several two-dimensional differential operators, including the 
second directional derivative along the gradient. 

If P is chosen to be the quadratic variation or the square Laplacian, the 
resulting approximations, known as thin plate splines (Wahba, 1980; Ter- 
zopoulos, 1984a), are not smooth enough for finding zeros of second 
derivatives of a function,* as implied by Terzopoulos (1984b). 

Clearly, formulations of this type are also relevant for the problem of 
surface interpolation and approximation in the sense of Grimson (1982) 
and Terzopoulos (1984a). In the case of sparse data, which they consid- 
ered, the variational principle does not lead to a convolution filter, al- 
though it does lead to a standard Green function. On a regular grid it leads 
to a convolution filter similar to the Gaussian. As a practical implication, 
evenly spaced surface data (for example, laser range data) may be inter- 
polated or approximated effectively by Gaussian convolution. Hence, 
tasks which involve differentiating surface data, such as computing lines 
of curvature (Brady et ul. 1985), could use the simpler convolution 
method to smooth the data. Since Reinsch’s method (see Poggio et al., 
1985, Appendix 1.1) can deal with boundary conditions different from 
periodic ones, the corresponding Green function may be used to prevent 
smoothing across depth discontinuities. 

The results of applying the Laplacian of the two-dimensional regular- 
ization filter and the Laplacian of a Gaussian to an image are shown in 
Fig. 6. As expected, due to the similarity of the two filters, both edge 
detection operators yield similar results. 

Z We are indebted to Demetri Terzopoulos for this remark. 
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(a) (b) 

FIG. 5. Cross section of (a) two-dimensional regularization filter R2 and (b) its Laplacian. 

5. CONCLUSION: EDGE DETECTION AS DETECTION . 
OF “INSUFFICIENT SMOOTHNESS" 

We have considered part of the problem of edge detection as a problem 
of numerical differentiation. The discrete intensity data have to be ap- 
proximated by a smooth function before differentiation. We found that 
this process is equivalent to convolving the data with the desired deriva- 
tive of a generalized spline filter. 

A complementary point of view is the following: The smooth function z 
that minimizes Eq. (1) will deviate locally from the ideal smoothness 
conditions by occasionally giving large absolute values of (Pz). Intui- 
tively, these should identify nearby “edges” in the intensity image (note 
again that mathematical discontinuities cannot occur in the image because 
of its band-limited character). Thus, in our 1-D example, large values of 
frr2 should point to a nearby edge. This corresponds to identifying edges 
by appropriate level crossings of the second derivative of a Gaussian 
filtered image (and successively localizing them by zero crossings). One 
can carry this argument even further. After identification of locations 
where the smoothness condition (Pz)~ is “violated” too much (a threshold 

FIG. 6. Comparison of Laplacian of two-dimensional regularization filter and Laplacian 
of Gaussian as Edge Detectors: (a) image I, (b) zero crossings of V2Rz * I, (c) zero crossings 
of V2GZ * I. 
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must be chosen), “edges” placed there serve as boundaries for a second 
regularization step (convolution cannot be used now, at least not near the 
boundaries; instead we must use either the Green function or direct mini- 
mization of Eq. (1)). 

APPENDIX 1. A DERIVATION OF THE REGULARIZATION FILTER FOR 
DISCRETE DATA IN ONE DIMENSION 

In this derivation we show that the regularization method, described by 
Eq. (4) of the text, yields a convolution filter which is a cubic spline. 
Standard results from the calculus of variations guarantee that our solu- 
tion has continuous second derivatives. 

Again, the problem is to minimize 

A 1 (f”(x))* dx + T (f(xi) - y;12 (1) 

We find the minimum by sendingf(x) +f(x) + 6f(x) and setting the first 
variation of (1) to zero, 

’ /f”“(X) as(X) dx + C (f(Xi) - yi) 6f(X;) = 0. 
I 

(2) 

This yields the Euler-Lagrange equation 

Af”“(x) + f(X) C 6(X - Xi) = C yjS(X - Xi) 

So far, we have deliberately not specified boundary conditions. For 
infinite, or toroidal boundary conditions, the functionf(x) can be deter- 
mined in terms of the (y;) by a convolution filter if and only if the data 
points (xi) are regularly spaced. This is because the system is then transla- 
tion-invariant. We will show this explicitly and give a method for con- 
structing the convolution filter. 

The function in (1) is convex, and hence has a unique minimum, so 
there is a unique solution for f(x) in (3). Thus, we only need to see 
whether a convolution can solve (3). We try a solution 

f(x) = R(x) * ~(4 = j R(x - 5>~(5> 4, (4) 

where “*” denotes convolution, R(x) is a filter, and y(x) = ZiyiS(x - xi). 
We substitute (4) into (3) and obtain 

A C YiR”“(X - Xi> + C C yjR(xi - xj)S(x - xi) - C yiS(x - xi) = 0. 
I 1 j I 
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We compare coefficients of y; and obtain 

AR”“(X - Xi) + 2 R(Xj - Xi)8(X - Xj) - 6(X - Xi) = 0. (6) 

If the (xi> are not evenly spaced, then these equations are inconsistent, 
and no convolution filter exists. If the (xi) are evenly spaced, then the set 
of equations in (6) reduces to a single equation 

AR""(X) + 2 R(Xj)S(X - Xj) - 6(X) = 0. (7) 

The solutions to (7) correspond to cubic splines “stitched” together at 
the points {Xi}. Let Ri(x) denote the solution in the range Xi < x < xi+]. We 
write 

Ri(X) = (YiX3 + piX2 + YiX + 6j. (8) 

The splines are stitched together so that R(x), R’(x), and R”(x) are 
continuous at the points {xi}. From (7), we see that R”’ has a discontinuity 
of -( llh)R(xi) at xi. It is straightforward to find the relations between the 
Ri(x) and R;- r (x) in terms of the parameters ai, pi, y; , and 6i. 

This gives 

ffn+I = %I - & R(nh) 

nh 
P n+l = Pn - ,,RW 

W)* 
Yn+l = Yn - T RW4 

6 n+, = 6, + g R(nh), 

(9) 

where h is the spacing between the lattice points, h = xi+, - xi, and 

R(nh) = a,(nh)3 + &(nh)* + y&h) + 6,. (10) 

The continuous 1-D filter is derived in Poggio et al. (1985) as 

1 
R(x, A) = jp e (11) 

Its shape is very similar to the discrete filter. 
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The choice of the stabilizer. The simplest form of Tikhonov’s stabilizing 
functionals, (fl(~))~ leads to a filter with a discontinuous first derivative at 
the origin. This means that the filtered signal will not necessarily be 
smooth enough to have well-defined second derivatives. We have found 
empirically that the filtered signal is typically very bumpy. For signals of 
noisy step edges there are often many zero crossings, violating Canny’s 
criterion of single response to a feature. It is of course possible to have 
other Tikhonov stabilizers giving rise to filters of different degrees of 
smoothness. 

APPENDIX 2: THE REGULARIZATION FILTERFORCONTINUOUS DATA 
IN Two DIMENSIONS 

We can extend the results of the previous section to two dimensions. 
Our generalization of the smoothing function J (f’(.~))~ dx is 

II VTf(x)V2Vf(x) dx. (1) 

Courant and Hilbert (19.53) show that the Euler-Lagrange equation is 

VVV’f = 0. (2) 

We write the regularization of the two-dimensional smoothing problem 
in the form 

/I (f(x) - Y(x))2 a!x + A ]I (v*vf(x)v*vf(x)) ak. 

The Euler-Lagrange equations of the combined system are 

AV2V2V*f(X) + f(x) = y(x). (4) 

This equation is translation-invariant and so, for boundary conditions at 
infinity or periodic, the solution can be written as a convolution 

f(x) = R2W * Y(X), (5) 

where 

hV*VT&(X) + R2(X) = 6(x), (6) 

where 8(x) is the Dirac delta function. Again, observe that for small h the 
filter R*(X) tends to the delta function. 
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To solve (6) we take its Fourier transform, and find 

F&(w) = &. 

Equation (7) gives the Fourier transform of the continuous filter: it is of 
the form of a non-causal Butterworth filter. Equation (7) can be easily 
generalized to the general form of a Tikhonov stabilizer (instead of Eq. 
(1)). 

From Eq. (6) one obtains 

We express x and w in polar coordinates 

x = (r, $1, 0 = (w, 0). 

so 

Now 

where JO is the zero order Bessel function. This gives 

(8) 

(9) 

(10) 

(12) 

that is, R2 is the Hankel transform of ll(hw6 + 1). This integral can be 
solved numerically, as shown in Poggio et al. (19854, Appendix 3. 

APPENDIX 3: THE REGULARIZATION FILTER AS AN APPROXIMATION 
TOTHE GAUSSIAN 

In this appendix we show that the regularization filter approximates the 
Gaussian, both in one and two dimensions. 

Comparison of one-dimensional jilters. We show that the one-dimen- 
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sional regularization filter is an approximate solution to the diffusion 
equation and therefore approximates a Gaussian, 

The one-dimensional regularization filter is given by 

R(x, p) = $ e-v’* cos PX x 
(/I 41 - - . 

We expand this in a Taylor series in pxI2 to get 

R(x, /4 = & [I - (si’ + ow] 

(1) 

(2) 

This expression is valid when ~LX is small, i.e., when x is small com- 
pared to A’14. In this case the first two terms which we denote by k(x, p) 
are a good approximation to the function. We calculate 

and 

al? 1 
z-2%5 

- - + o(/.Lx)2, 

which satisfy, to order (~x)~, the equation 

Thus this function obeys the diffusion equation, 

a2R al? -=- 
ax2 at 

(3) 

(4) 

(5) 

(6) 

with parameter t = ipm2 = &A1’2, in the region where px is small. As p 
decreases, this region gets larger and the region in which the function 
approximates a Gaussian increases. 

This theoretical analysis supports the numerical results (for discrete 
data) which show that R can be approximated by a Gaussian. Further- 
more, recalling that the standard deviation (T of the Gaussian is given by cr 
= fi, the analysis shows that the standard deviation of the correspond- 
ing Gaussian is Ar’4. 

A comparison of R with the Gaussian G = (e-X”2u’) can also be done 
directly in the Fourier domain. 
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Comparison of two-dimensional jilters. We now consider the two-di- 
mensional case. The regularized filter can be written in terms of a Fourier 
integral 

(7) 

We perform the transformation o -+ h1’6w to obtain, with E = l/h16, 

We expand the exponential in a power series 

Thus we have 

(8) 

R2&, ~1 = E / & (I + i (iw * p)2 + O(E~X~)] dw. (IO) 

Note that the linear term drops out due to asymmetry of the integrand. 
Keeping the first two terms on the right-hand side of (lo), and denoting 
this approximation by R2(x, E), we calculate 

and 

ali 1 
I 

1 
G=;i;; 1+w6 do. 

(11) 

(12) 

Thus as before, the approximation &2(x, A) satisfies the diffusion equa- 
tion with t proportional to A112. The exact function of proportionality can 
be calculated from (12). 

Again, a direct comparison of the Gaussian with our regularizing filter 
R2 is done easily in the Fourier plane. Both filters are circularly symmetric 
and therefore depend only on the radial frequency IQ. 
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