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Abstract

We investigate the self-energy of one electron coupled to a quantized radiation field by
extending the ideas developed in Hainzl (Ann. H. Poincarg, in press). We fix an arbitrary cut-
off parameter A and recover the «’-term of the self-energy, where o is the coupling parameter
representing the fine structure constant. Thereby we develop a method which allows to expand
the self-energy up to any power of «. This implies that perturbation theory in o is correct if A is
fix. As an immediate consequence we obtain enhanced binding for electrons.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction and main results

In recent times the self-energy of an electron coupled to a photon field was studied
in several articles. In [10], Lieb and Loss showed that in the limit of large cut-off
parameter A, perturbation theory is conceptually wrong.

A different method of investigating the self-energy was developed in Hainzl [5].
Therein the cut-off parameter A was fixed and the self-energy in the case of small
coupling parameter o was studied. It turned out that one photon is enough to recover
the first order in o.
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By similar methods Hainzl and Seiringer evaluated in [6] the mass renormalization
via the dispersion relation and proved that after renormalizing the mass the binding
energy of an electron in the field of a nucleus, to leading order in o, has a finite limit
as A goes to infinity.

As our main result in the present paper we recover the next to leading order, the
o’-term, of the self-energy of an electron.

As a byproduct of the proof we develop a method which allows to expand the self-
energy, step by step, up to anmy power of o, and implies at the same time
that perturbation theory, in o, is correct if A is kept fix, in a case where there is no
spectral gap.

As an immediate consequence of our main result we obtain enhanced binding for
electrons. This means that a dressed electron in the field of an external potential V'
can have a bound state even if the corresponding Schrodinger operator p? + V has
only essential spectrum. Enhanced binding for charged particles without spin was
previously proven in [7].

1.1. Self-energy

The self-energy of an electron is defined as the bottom of the spectrum of the so-
called Pauli-Fierz operator

T = (p+ vaA(x))* +ao - B(x) + Hy, (1.1)
acting on the Hilbert space
H =L (RCHRZ,

where 7 = @ ;% #3(R¥;C*") is the Fock space for the photon field and #;(R™) is
the space of symmetric functions in %?(R*) representing n-photons states. For
n =0, this space is simply C|0>, where [0>(¢C?) is the vacuum vector. This
operator is essentially self-adjoint on Z(4)NZ(Hy) (see [8]), where & denotes the
operator domain. Its spectrum is of the form [X,, + oo [, where the self-energy X, is a
complicated function of o (and of a cutoff parameter A to be introduced below).
Without radiation field, the Hamiltonian is, of course, simply the Laplace
operator —4 with respective spectrum [0, 4 co|.

We fix units such that the Planck constant # =1, the speed of light ¢ =1,
and the electron mass m = % The electron charge is then given by e = /o with
o~ 1/137, the fine structure constant. In the present paper, « plays the role of a small
dimensionless number, which measures the coupling to the radiation field. Our
results hold for sufficiently small values of o. o is the vector of Pauli matrices
(01,02,03). Recall that the ¢;’s are hermitian 2 x 2 complex matrices and fulfill the
anti-commutation relations o,0; + gj0; = 2120;;. The operator p = —iV is the
electron momentum while A is the magnetic vector potential. The magnetic field is
B =curl 4.
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The vector potential is

A(x) = Z /R3 2):5(Lk||1)/2 67'(k)[ai(k)eik<x + az(k)efik'x] dk,

=12

and the corresponding magnetic field reads

x) = x([k|) X ieh e — g () ek
B( ) B = /R3 27‘C|k|1/2 (k (k))[ A(k) A(k) ]dk7

where the annihilation and creation operators a, and aj, respectively, satisfy the
usual commutation relations

lay(k), a;(q)] = 6(k — q)d,,
and
[a.(k),a,(q)] =0, [a;(k),a;(q)] = 0.

The vectors ¢*(k) e R® are orthonormal polarization vectors perpendicular to k, and
they are chosen in a such a way that

— e (k). (1.2)

The function y(|k|) describes the ultraviolet cutoff for the interaction at large wave
numbers k. We choose for y the Heaviside function &(A — |k|). (More general cut-
off functions would work but let us nevertheless emphasize the fact that we shall
sometimes use the radial symmetry of y in the proofs.) Throughout the paper we
assume / to be an arbitrary but fixed positive number.

The photon field energy H is given by

He= Y [ IKla ()a(0) ak (1.3)

i=12

and the field momentum reads
Pr=Y" / ka;(k)a; (k) dk. (1.4)
Im12 /R

In the following, we use the notation
A(X) = D(x) + D'(x),  B(x) = E(x) + E'(x) (1.5)

for the vector potential, respectively, the magnetic field.
The operators D* and E* create a photon wave function G(k)e™** and H (k)e
respectively, where G(k) = (G'(k), G*(k)) and H (k) = (H'(k), H*(k)) are vectors of

—ik-x
)
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one-photon states, given by

v r(k)
O = s e
and
1 —iy(|k|) 2 - i

It turns out to be convenient to denote a general vector ¥ € # as a direct sum

Y= @ ), (1.8

where ¥, = ¥, (x, ki1, ..., k,) is a n-photons state. For simplicity, we do not include
the variables corresponding to the polarization of the photons and the spin of the
electron.

From [5] we know that the first-order term in o of the self-energy

2, =inf spec T (1.9)
is given by
an 'A% — 0 O|Eo/ ' E*|0) = 20m~ ' [A — In(1 4 A)], (1.10)

where .7 = P% + Hy and |[0) is the vacuum in the Fock space % . Recall that the
vacuum polarization, «{0|4%|0) = an~'A%, enters somehow ab initio the game,
whereas the second term on the r.h.s. of (1.10) stems from the magnetic field B. But
now, for the next to leading order o2 all terms contribute.

Theorem 1 (Expansion of the self-energy up to second-order). Let A be fixed. Then,
for o small enough,

3, =afn 'A% — (O0|E«/"E*|0)] — «*[{0|DD.«/ "' D*D*|0)

+ (0|E4/'Ec/"E* A 'E*|0) + 4{0|E/ "' P; - DoA™ Py - D*o/ T EF|O)

—2{0|Es/ " E/7'D*D*0) — <O|E/"E*|0Y || E*|0Y| ]

+ 0(«? In(1/a)). (1.11)
Remark 1. Throughout the paper the notation O( f(«)) means that there is a positive
constant C such that |O(f(a))| < Cf ().

Remark 2. In Remark 3 in the following section, we explain how (1.11) can be
guessed from formal perturbation theory.
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1.2. Enhanced binding

As an immediate consequence of Theorem 1 we are able to prove enhanced
binding for electrons, which was already shown in [7] for charged bosons. Namely, if
we take a negative radial potential V' = V(|x|) with compact support such that
p* + V has purely continuous spectrum, thus no bound state, but a so-called zero-
resonance which satisfies the equation

Wﬂﬁ/%%%&@ (1.12)

then after turning on the radiation field, even for infinitely small coupling o, the
Hamiltonian

H,=T+V (1.13)

has a ground state. To this end, we use a result of Griesemer et al. [4] stating that the
inequality

inf spec H, <X, (1.14)

guarantees the existence of a ground state. Earlier the existence of a ground state, for
small coupling, has been proven in [1].

Theorem 2 (Enhanced binding). Let V be a negative continuous function, which is
radially symmetric and with compact support. Assume that the corresponding
Schrodinger operator p> +V has no eigenvalue, but that there exists a non-trivial
radial solution of (1.12). Then at least for small values of o the operator H, has a
ground state.

In the dipole approximation enhanced binding in the limit of large coupling o was
shown in [9].
2. Proof of Theorem 1

We will follow the methods developed in [5] and extend the ideas therein. For sake
of a simplified notation, we introduce the unitary transform

U= e (2.1)

acting on . Notice that
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and

U(D"(x)y(x)) = G(k)ip (x).

More generally, for a n-photons component, we have

i 1 n+1 .
U(E*(x),(x, ki, ... k) = 7T > H(kiW, (. ki, oo ki )
i=1
and
1 n+1 B
U(D* (X)W, (x, ki, ... ky)) = — Gk, (x, k1, o kiy oo Kengt),
1

where the notation ¥ means that the corresponding variable has been omitted. Since

UpU* =p — Py, (2.2)
we obtain
UTU* = (p — P + \aA)* + /oo - B+ Hy, (2.3)
where 4 = A(0) and B = B(0).
Obviously,
inf spec[UTU"] = inf spec T (2.4)

Therefore in the following, we will rather work with UTU* which we still denote
by T.
We also introduce the notation

L= (p— P;) + H, (2.5)
P =p— Py, (2.6)
Ff=2P;-D"+¢-E (2.7)
and
F*=22.D"+¢-E" (2.8)
Let us also recall that
A> = A" 42D D+ D" -D* + DD, (2.9)

since D - D* — D* - D = A*n~". (In the following, we shall often denote DD instead of
D - D, and similarly for E, E* or D*, for simplicity.)

Before turning to the proof of the theorem per se, we give an heuristic argument
based on formal perturbation theory with respect to « to derive (1.11).
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Remark 3. Let us consider again the unitary transform of 7" given by (2.1) and (2.3).
In (2.3), p (eR?) appears as a parameter, and for fixed p, the operator UTU* acts
on .

Denote

E(p) = inf spec UTU",

where p is kept fixed. Let us assume that E(p) = E(0), which is known to be true in
the case without B-field [3] but still open for the full hamiltonian. Under this
assumption,

E(0) = inf spec T = inf spec T,
where
Ty = o + Va(Fr + Ff) +oH' +on™ 'A%,

with F; being defined by (2.7) above and H' = D- D + D* - D* +2D* - D.

Because .«Z|0) = 0, the vacuum vector |0) is an eigenvector of Tj. Since we are
interested in the small o case, we can apply “formal” perturbation theory as found in
classical textbooks (see, for example, [12]). Up to second order, we then get an
approximate “ground” state

Yy =10> — Vot T (Fr + FY)I0) + o/ T (Fr + Ff ) ™ (Fr + F7)|0)
—ad TH'0Y — o/ o - EFJOY]P10)
=10> — Vot 'e- E*|0) + o/ 'F ot o - EF|0)
— o/ 'D* - D*|0), (2.10)
since Pr|0Y = F;[0> =0, Do/ 'o - E*|0) = 0 (see the proof of (2.24)) and
Ao Et 6 E0Y = ||/ o EF|OY|F|0).
Following [12], this leads to an approximate energy

RS
o,y

which yields exactly the right-hand side in (1.11). Note that the expression (2.10) will
be used in Section 2.1 to build a trial function for the upper bound of X,. Let us
emphasize that this perturbation argument is only formal since 0 is not an isolated
eigenvalue of .7 and Kato’s perturbation method can therefore not be applied
directly.

E(0)

Let us now turn to the proof of Theorem 1.
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For any general ¥ e, we have

(P, TP) = Aax ||| + [|pyoll* + 22 > (., D' DY)

n=1

+é"o[lﬁo7lﬂ1]+z g[‘/’naww—l’wn-ﬂ]v (211)
n=0
where, as in [5],
Eolbo, 1] = (W1, Lpy) + 2V Re(F o, ) (2.12)

and
@@[wnv l//;1+1 ) wn+2} = (lpn+21 Llpn+2)

+ 2Re(VaF Y., + oD DY Yy s). (2.13)

For simplicity, in this section, we shall actually work in the momentum
representation of the electron space. A n-photons function ,, will then be looked
at as y,(/, k) with k = (ky, ..., k,), where / stands for the momentum variable of the
electron and is obtained from the position variable x by Fourier transform. In that
case Z is simply a multiplication operator, and for short we use

Py, (Lky, ... k) = (1 -3 k,~> v, = P, (2.14)
i=1
and similarly

He, (L ky, ..o k) = lkil, =: H{,. (2.15)
i=1

2.1. Upper bound for X,

As usual, the trick is to exhibit a cleverly chosen trial function. In [5], the leading

order term in « is obtained by a trial function ¥ with only one photon. The idea to

get the second order term is to add a two-photon component whose £ norm is of
the order of a. The choice of our trial function draws its inspiration from the formal
perturbation method which is explained in Remark 3 above. More precisely, using
(2.10), we define the sequence of trial wave functions

lII(”) :fnT ® q’a
=" 4 of, 1 @4/ Vo E* +2P; - D)/ o - EF|0

—af, 1 @/7'D*DF|0) (2.16)



76 L Catto, C. Hainzl | Journal of Functional Analysis 207 (2004) 68—110

with 1 denoting the spin-up vector (1,0) in C?, f,e H'(R*R), ||f]|=1 and
[lpf1]] =0 when n goes to infinity, and where

P £1®(0> —vaf,l @ o E|0>. (2.17)

Let us already observe that the choice for the trial function will also appear more

natural after the proof of the lower bound (see below the expected decomposition

(2.32) and (2.34) — with n = 0—of a two-photon state close to the ground state).
We are going to check that

(lp(n)7 qu(ﬂ))

. J 2 3
nETao 7”?/(”)”2 0(1064-6‘72(% +(9(O€ ), (218)

where
& =n'A* — (O|[E«/'E*|0) (2.19)
and
&y = —0|DD.o#/"'D*D*|0> — (O|E/ 'Ec/'E*/'E*|0)
—4¢0|Es/7\P; - Do/ Py - D*o/ T ET|0)
—2¢0|E/"E/7'D*D*|0) + (O|E/ T E*|0) ||/ E* 0|, (2.20)

respectively, denote the coefficient of o and o in (1.11).
We first point out that, for any N-photon wave function ¢,, we have

L, op) —fi®py—0 in H (R R)® LR, C?)V-weak,  (2.21)

as n goes to infinity in virtue of the fact that lim,, ,||pf,|| =0, and since, by
definition of L and .«Z,

L@ o) =@y — 20 @Prct oy + P/ @A . (2.22)
Then, with the help of (2.11) and the fact that || f,|| = 1, easy calculations yield
(q/(n), Tg/(n))
= an™ AP + ||/l + 22 DY + 20| DY |
+ W L) + 2V Re(F A,y
+ @3, LyS) + 2V Re(F YY) + 20 Re(D* D' £y 1,95")

= on A2 P — 0 O|E/ T EF0) + 0,(1) + O(c) (2.23a)
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+202||D# 61 - EX|0)||* — 2 {0|DD.o/~' D*D*|0) (2.23b)
—o?{0l¢1 - E/ "\ Fr.od ' F} /761 - EF|O) (2.23¢c)
+20? Re(L™'F*o/"'a1 - E*f,, D*D*f,, 1), (2.23d)

where 0,(1) refers to a quantity that goes to 0 as n goes to infinity and is some error
term coming from the fact that lim,_, ;o ||pfy|| = 0, while O(ce) comes from the

cx||sz§">||2 term. The proof of the fact that
(2.232) = —a<O|E/"E*|0) 4 0,(1)
is detailed in [5]. We first check that Dt//<1") =0, or, equivalently,
Do/ 61 - E*0) = 0. (2.24)
This simply follows from the relation

o — s, ik
i€ = 9ij

=L (2.25)
& k|

and the obvious observation that, for every ie{l,2,3},

Di&/‘laT~E*0>— UT / k,
| 12 R [kl +|k|

A=1.2

with the three vectors ¢;1, j=1,2,3, being linearly independent. Then, if &!"
denotes the totally antisymmetric epsilon-tensor, we obtain, for every i,je{1,2,3},

k ]lll A kn
/ s Z [ DGR k]
Rk +|k| =12 iam1 IR |k| +|k|
3 1|k ])[8:s — el v,
i/ Ikt d
- JR?

k=0. (2.26)
el + [fel?

I.n=

Concerning (2.23d), we use the anti-commutation relations of the ¢;’s and the fact
that the functions H*(k) belong to (iR)® while G*(k) belong to R* to check that

Re(L™'2 - D'/ o 1 - E'f,, D'D*f, 1) = 04(1),
and to deduce that

(2.23d) = 2%|| /| *<O|E# " E/ ' D* D0 + 0,(1).
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We now turn to (2.23c) and check that
(2.23¢c) = — o> 0|E/ 'E/'E* /T E*|O)

—40*>0|Eo/ "' Py - Dot/ Py - D* .o/ TVEF|O) (2.27)
since the cross term Re{0|E.«/"'P;- D.o/ 'E*.o/"'E*|0) vanishes thanks again to
the fact that G is real valued while H is purely imaginary.

The last second-order term which appears in (1.11) is easily recovered, once we
have observed from (2.16) and (2.17) that
1PO1° =1+ all/ T E0) | + 0().
Hence (2.18), by dividing the Lh.s. of (2.23) by ||¥")]|*.

2.2. Lower bound for X,

The proof will be divided into two steps. First, in Section 2.2.1, we deduce a priori
estimates for any state which is “close enough” to the ground state energy. Next in
Section 2.2.2 we use these estimates to recover the a>-term of the self-energy.

2.2.1. A priori estimates
Our first step will consist in improving a bit further the estimates in [5]. Indeed, we
may choose a state ¥ in #, close enough to the ground state, such that ||¥|| = 1 and

2,<(P, TY)<Z,+ Co’<an'A* — a(O|E/'E*|0) + Co?, (2.28)

where, here and below, C denotes a positive constant that is independent of o (but
that might possibly dependent on A). We thus have as in [5]

> W L) < Coy (2.29)
n=0
hence
> W, (DD + E'E)Y,) < Ca, (2.30)

n=0
in virtue of Griesemer et al. [4, Lemma A.4]. We now observe that
ol 1] = —al L F o |* + (i, L), (2.31)
where

Yy = —VaL 'F*yy + hy, (2.32)
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and that, for every n>=0,

EWns Vi1 Vnial = = allLVPF Y, + VoL ' 2D Dy, |
+ (hny2, Lhy o), (2.33)
where
Yo = —VaL ' F*Y, ) — oL D* D", + By (2.34)

Comparing with (2.11), we thus rewrite

(¥, TP) = al’n || P|] — o [L72F | (2.35a)
—a S LTVFE Y+ aL D Dy P (2.35b)
n=0
HIpwoll +22 > (W, D*DY,) + Y (hy, Lhy). (2.35¢)
n=1 n=1

Our first step will consist in observing that the estimates in [5] yield

> (n, Lhy) < Co? (2.36)

n=>1
and
llpwoll* < Co?, (2.37)

thereby improving the estimate on the zeroth-order term in (2.29). These bounds will
follow from the fact that only the terms in the first two lines of (2.35) contribute to
recover the first to leading order term up to (/(«?). Hence, all the (positive) terms in
(2.35¢) are at most of the order of o.

Indeed, on the one hand, we recall from [5] that

(0 - E"o, L™ 0 - E"Yrg) — al o> COEo/ ™ E7|0 )| < Carl [y |,
Re(c - Ey, L™ '2 - D" ) =0
and
(P - D"V, L' 2 - DY) < Co||pipo |-
Hence

L2 F |1 = el lho P CO[E#~ E¥|0 5| < Catl [ py | (2.38)
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Therefore, concerning the last term in (2.35a), we have
—al|L7PF | = —allolI* COLE/ T E7[0) + 0(o2), (2.39)

thanks to (2.29).
On the other hand, we now estimate the different terms in (2.35b), for every n=0.
More precisely,

(2.35b) = — o||L"V2F"y,,, + VaL 2D* Dy, |

= —o||L7PF* Y, |* — «*(¥,, DDL™' D" D"y, (2.40a)

—203% Re(F* .1, L' D*D*Y,). (2.40b)
It is shown in [5], that
LY P = (Wt [P COLEA T EF 0D | S CWrirs Libyr). (241)
This follows from the three bounds
(0 E Yy L710 EWyiy) = [ |1 COLE/ T E7[0) |

< C(lpn+l ) Ll//nJrl),

(g'D*lanrl?L_l*@'D*lpn+1)gc(l//n+17Llpn+]) (242)
and
|Re(‘@'D*‘//n+laL716'E*lp;1+l)|<c(lpn+laHfl//n+l)5

whose proofs are detailed in [5]. (See also the proof of Lemma B.1 in Appendix B,
which follows the same patterns.) Moreover, from Lemma 2 in the appendix of [5],

|02 (., DDL™'D*D*,)) — 02|y, ||* <O|DD.«/~' D*D*[0) |
< Caz(l/jn-H ) Llpn-o—l ) (243)

Actually, only the upper bounds of (2.42) and (2.43) are proven in [5] which indeed
suffices for the first-order term, but following the methods described in Appendix B
estimates (2.42) and (2.43) are easily derived.

For (2.40b), we get from the proof of Lemma C.2 in Appendix C

ZPI(F Yy, L' DD,

< C‘(Xz||lpn||2 + Coc(lpn+l ) L‘//n-‘rl) + COC(lpn, L%) (244)
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Summing up (2.41), (2.43) and (2.44) over n=>0 and using (2.39) and (2.29), we first
deduce from (2.35) that

an ' A2 — ol |P|PCO|E£ " EF|0) + O(c?)
>3,> (P, TP)+ 0(d?)
= an A7) — o |[P|PCO|E/ T EF[0) + O(o)
+[pwol|* + 22 Z(wm D*Dy,,) + Z‘T(hn, Lhy).
n> n>=
Whence (2.36) and (2.37).

We now make use of these bounds to derive the second-order terms in (1.11).

2.2.2. Recovering the o’-terms
As a first consequence of (2.37), we deduce from (2.38) that

—a||[L7VPF [P = —al | CO[E/ T E*|0) + 0(or). (2.45)

It turns out that, although it was not necessary hitherto, we now have to introduce
an infrared regularization as in [6] to deal with the terms in (2.35b) (or equivalently
in (2.40a) and (2.40b)). Therefore, in definition (2.13) of & we replace the operator
L by

LO(EL+0637

and the extra term o« Y, -, |I,,]|> contributes as an additional () in (2.11). The

definition of /., has, of course, to be modified accordingly by replacing L~! by L !
in (2.34). We shall nevertheless keep the same notation for 4,,;, and we also
emphasize the fact that bound (2.36) obviously remains true.

Keeping this minor modification in mind, we now go back to (2.35) and we shall
now use decompositions (2.32) and (2.34) of ¥, ;, n>1, in terms of ¥, ¥,_; and
hy+1 to exhibit the remaining second-order terms, as guessed from the upper bound.

More precisely, the following quantity is now to be estimated:

—af|L; P F Y, + oL, 2D DMy, |

— —a||L, PF by | P — 2I|L, P L | (2.46a)
—2||L, 2D D, | — o ||L, 2F L, D Dy, P (2.46b)

+20* Re(L,'F* L' F*y,, D' D*Y,,) (2.46¢)
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+2032 Re(L ' FF L F*,, Fihyyy) (2.46d)
—203 Re(L;'D* D", F*hyi1) (2.46¢)
—2052 Re(L,'F*L,'F*y,, F*L,'D*D*y,,_,) (2.46f)
—20°% Re(L;'F*L;'D*D*y,_,, D*D*Y,) (2.46g)
+20> Re(L,'F*L'D*D*Y,_y, F*hyy1), (2.46h)

with here and below the convention that the terms containing ¥,_; vanish for n = 0.
In order to lighten the presentation, the sequence of the proof has been organized
as follows. The contributing terms in (2.46a) and (2.46¢) are investigated in
Appendix B and the terms in (2.46d)—(2.46h) are shown to be of higher order
in Appendix C.
Admitting these lemmas for a while, we thus have from Lemmas B.2 and B.3 in
Appendix B and (2.29) and (2.36),

(246a) = — a(1 = [ ||") COLE/"E7[0)
+ 2 (O|E/ T E*|0) ||/ EF 0P — o> O|E/ ' E/ ™ E*/ T EF|0)
—40?O0|EA ™' Py - DA™ Py - D* oA T EF0Y + O(0? In(1/20)). (2.47)
From (2.43) and (2.29) again, we identify the second order term in (2.46b); namely,
(2.46b) = —a><0|DD./~'D*D*|0> + O(c?), (2.48)
since the second term in (2.46b) is easily checked to be (o). (Note that (2.43)
remains true when L is replaced by L,.)
The last contributing terms follows from Lemma B.4 and (2.29)
(2.46¢) = 20> (O|E4 ' E</~' D*D*|0> + O(«? In(1/)). (2.49)

Finally, using the a priori estimates (2.29) and (2.36), and with the help of Lemmas
C.1-C.5, we deduce that

(2.46d) + (2.46¢) + (2.46f) + (2.46g) + (2.46h) = O(«>* In(1/a)).  (2.50)
To deduce (1.11) we go back to (2.35). We simply bound from below the terms in

(2.35¢) by zero, and identify (2.35a) and (2.35b), by using (2.45) and by inserting
(2.47)—(2.50) in (2.46).
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Remark 4. It would be possible to improve the error estimates to (¢/(«*), but we do
not want to overburden the paper with too many estimates. We just mention as an
example that, from the proof of the upper bound, we know that we may choose a
state ¥ in #, close enough to the ground state, such that ||| = | and

2,<(P, TP)<SZ, + Cl <an 'A% 4 ab) + o2&, + O().
Then, arguing as in Section 2.2.1, we infer from (2.35) that actually

> (huts Lhnr) + Ipwo| P < Ca¥ In(1/2). (2.51)

n=0

This new and better bound now helps to improve all error estimates on quantities

which involve £,,; and ||p¢0||2 (like (2.38), for example), and so on by a kind of
bootstrap argument.

Remark 5. By means of the methods developed throughout the proof it is now
possible to expand the self-energy up to any power of o, but unfortunately the
number of estimates rapidly increase. We know from perturbation theory that to
gain the o’-term we just need to add the term

—Vod N(F + F* ), — 0/ "' D* D"y, (2.52)

and normalize the corresponding state. The one- and two-photon parts ¥, and ¥,
are defined in the upper bound (see (2.16)). Notice that (2.52) also includes the one-
photon term o’/%.o/ ' F (o ' F*o/ "' E* 4+ .o/ 7' D*D*)|0 ).

3. Proof of Theorem 2

To prove the theorem we will proceed similarly to [7] and check the binding
condition of Griesemer et al. [4] for H,. Namely, we will show that

inf spec H, <X, — 60 + O(¢*/* In(1/)), (3.1)

for some positive constant ¢. To this end, we define a one and a two-photon state
similar to the previous section to recover the self-energy, and we add an extra
appropriately chosen one-photon component which involves the gradient of an
electron function which is close to a zero-resonance state; that is, a radial solution of
the equation

L [VOyW»)
=—— [ ———==dy. 3.2
¥(x) 4n/ n—y Y (32)
Let ry denote the radius of the support of V, then, due to Newton’s theorem,

C

Rk

¥ (x) (3.3)
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for |x|>r¢ and an appropriate constant C. Notice that y satisfies
—Ay + V(x)y =0. (3.4)

Due to elliptic regularity properties (see e.g. [11]), we infer that e Cz(R3).

To make ¥ an Z’-function we are going to truncate it. It turns out to be
reasonable to do so at distance |x|~1/a from the origin. To this end, we take two
functions u(¢) and v(¢) in C*(R) with u?> +v>* =1, u=1 for t€[0,1] and u = 0 for
t=2, and we define

Ve(x) =y (x)u(ex|x]). (3-5)

Assume 1/(ea) =2rg, so
bilo) = gl (3.6)

for |x|=r¢. Therefore, we may find positive constants C; and C,, depending on ry,
such that

10 |1 < Cillpy, || <o (3.7)

(Notice that ||y, ||* = C(ac) ")

Throughout the previous section we have worked with the operator A(0). Here,
the Hamiltonian also depends on the electron variable x. In order to adapt the
method developed in the previous section, we introduce again the unitary transform

U=e¢Pr (3.8)

acting on the Hilbert space #. When applied to a n-photons function ¢, we obtain

Up, = PO k")‘xq)n(x, ki, .o k).
Since UpU* = p — Py we infer the corresponding transform for the Hamiltonian
H,

UH,U* = (p — P; + \aA)* + /ao - B+ Hy + V(x), (3.9)
which we denote again by H,. Notice that in the above equation 4 = 4(0) and

B = B(0).
We now define the trial function

Ve =y 1 —Vad (o 1)EY, —d\ast "' P DY, — 0/~ D" DY,
+ot o 1)E S (0 )E Y, + 20/ 2D A (0 1)EY,, (3.10)

Comparing with the minimizing sequence for X, in (2.16) and (2.17)
we have replaced in (3.10) the mere electron function f, by ¥, and have added
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an extra one-photon component —d+/a.«Z~'2 - D*y,, which will be responsible for
lowering the energy, whereas the other one- and two-photon parts will help to
recover 2.

For short, we denote the one- and two-photon terms in ¥, by y,; and y,,
respectively. Obviously, the terms (¥, Py - pyr,) and (Y5, Pr - p¥,) vanish, which can
be immediately seen by integrating over the field variables, having in mind (1.2) and
the fact that .o/ commutes with the reflection k —» — k.

By means of Schwarz’ inequality and (3.7) we infer

(2o - D* + Vao - E ot ' p - DY)

+ W, ) <P PO (). (3.11)

Taking into account the negativity of V" and the estimates in the proof of the upper
bound in Section 2 we arrive at

(Yo, Hy¥ )< (W, [p* + V) — da(y.p- Dt/ ™'p - DY)
+ OCdZ[(l//E,p ' D'Q‘{ilp ' D*W() + (We?p : Dﬂilpz&iilp . D*l/j()}

+[Z, + 0 In(1/a)] ||| (3.12)

Using the Fourier transform we are able to evaluate explicitly

2
e p-0) = Y [P
=12 “
21 LUP1)x
= . dxd
= llpw. P A{L1+m o
2 :
=<t in(1+ Al | (.13)

and analogously

2
=—In(1 + A)||p*.|I"

(lp€7p-D,,Q/_1p2,52/_1p~D*l//€) 3

Zln(1+ A)lp |- (3.14)

<C137z

Minimizing the corresponding terms in (3.12) with respect to d, leads to the

requirement d = (cl -
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Finally, it remains to choose an appropriate ¢ to guarantee that

e+ V)~ 7 gt HllpblP < = ol (.13

for some v(¢)>0. By IMS localization formula (see e.g. [2, Theorem 3.2])
(l//ca sz + V]W() = (lpv sz + V]lﬁ) - (lpl), U’z + VWU)
+ (0 [IVel + |VuPT). (3.16)

The first term on the r.h.s. vanishes by assumption, the second one is positive, and
the third one is bounded by

W, (Vo] + \Vu|2]lﬁ)<C(ea)2/ 1 dr<Ca,
2(ear)

e x = () |x|

the constant depending on max{|v'(7)| + [/ (¢)| | t€[1,2]}. Since
Iy |I* = |lpw||* = Cea, (3.17)

we obtain (3.15) for ¢ small enough. Consequently,

(P, HyP) (P, W< — 0(0)o” + 2y + 00 In(1 /), (3.18)

which implies our claim.
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Appendix A. Auxiliary operators

For convenience we introduce the operators

2(Ik1)
D= k) dk, Al
D) 22/2 AL (A1)

1/2
> [ g A2
A=12
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x(|k])
A—12/2 |k|l/2 |k|+o€3]l/2a (k)dk (A3)

It is easily proved, using the commutation relations between the annihilation and
creation operators, that

|X] X" = | XX+ 21" (A + 303 In(1/0) — o In(A + o). (A4)

Moreover, analogously to Griesemer et al. [4, Lemma A.4] we obtain the following.

Lemma A.1. For (A.1)~(A.3) we have

IDI'|D|<2 AH, (A5)
T
B E| < AH, (A6)
[ X" X< C[|In(1 /)] + [In(1 + A)|]H. (A7)

Remark 6. These newly defined operators now act on real functions. Nevertheless, to
simplify the notation, we shall often write | X |\ instead of |X| [iy| for the C*-valued
functions we are considering.
Proof. We only prove inequality (A.7). The proof for the other terms work similarly
and is given in [4, Lemma A .4].

Take an arbitrary Ye# and fix the photons number n. Then by means of
Schwarz’ inequality

(s [XT1 X I,) < 2( / p¢n<k)|k|”2de>
< C[|In(1/2)| + [In(1 + A)]] / py, (k)|k| dk, (A.8)
since with the usual definition
py, (k) = n/ W, (1, k ks, ... ky)|* dI dks ... dk, (A.9)
for the one-photon density, we have

/Rs py, (K)k| dk = (¥, Hrip,) (A.10)



88 L Catto, C. Hainzl | Journal of Functional Analysis 207 (2004) 68—110

while

|kn+l
dky1~In(1/a A.ll
/|kn+l| |k,,+1|—|—063) ! ( / ) ( )

for o small enough. O

From now on, in order to lighten the notation, d"k stands for dk; ...dk,.

Appendix B. Evaluation of the contributing terms in (2.46)
Recall our notation
P=p—P, F=22-D+o-E. (B.1)

In the momentum representation of the electron space, £ is simply a multiplication
operator and for short we use

Py, (Lky, ... k) = (1 -3 k,-) W, = P, (B.2)
i=1
and similarly
Hep, (Lky, .o k) = [kily, =: H{,. (B.3)
i=1

We shall also denote
= |2 + H} + .
For the sake of simplicity, we will use in the following the convention:

Y= P IGP =Y 16

=12 =12

and additionally for all ae R}

la- G =" la- G'.

J=12

These conventions are suggested by our definition of H and G.
Before evaluating in Lemma B.2 the first term in (2.46a), we need the following
preliminary lemma.
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Lemma B.1. For every n=0,
_ 2 2 — 2
1L Pl = e Pll  E7(0

<C[\/&|I!//n||2 +a” |29, |1P + In(1/2) (b, He,) |- (B.4)

Proof. The l.h.s. of (B.4) is the sum of three terms:

- * 2 — * 2 — * 2
1L Fll” =1L o - E*y,||” + 4L 2 - Dy, |

+ 4Re(L,'c- E",,L;'? - D*Y,). (B.5)

Each term is separately investigated in the three steps below.

Step 1: The first term ||L'o - E*y,||* is the one which contributes, and we show
that

— * 2 2 —1 = 2
L, o EWll” = W™ 1/~ EF 0]

SCWall,|I” + o P2y, |1P + (b, He,)].

This term is decomposed into a sum of two terms I, and II,,, depending whether the
same photon is created on both sides or not. Thanks to permutational symmetry and
the anti-commutation relations of the Pauli matrices, they are, respectively, given by

_/|H n+1 ‘ |lpn(l kla"'vkn)|2
n |=@n+l| +H”+1+(X3)2

dl dk; ...dky (B.6)

and

IIn —n Z / O-jlpn l k17 ~--u]§n)7ailpn(l7k27 -2-~7kn+1))
|<7n+1‘ +HFH1 +OC3)

X I{j(knJrl) i(kl) d/ dkl ...dkn+1, (B7)

where the - in the second line above refers to the complex conjugate. We first
evaluate II,,, for which it is simply checked that

|H (ko) |H (Kn+1)|
|kn+l| |k1

< W, (Lky, .o k)| W, (L ks, . kpy)| d1d™ K

I, <

(k)
< C/ | | dk(lpmelpn)
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thanks to (A.9) and (A.10). We now examine I, — ||, ||*||.# ' E*|0)||* and observe
that

1w H(k)|?
ol = [, O

We first write LI = Q0,11 + |2, 1 + H +0® — 22, - kyy1, with Qpy1 = lknsr|* +
|kns1]- The followmg quantity is then to be evaluated:

Ly = || Pl E70> |

1 1
(LZ+1 )2 Qn-HZ

- / H () P 1 (LK oK)

] dld"™ k.

We now point out that

R -
(0+b)7 @ 0(0+b)° 0*Q+b)”

(B.8)

apply this expression with Q = Q,1 + |/7n|2 and b=H!'+o> —22, ky1, and
insert the corresponding expression into (B.6). I, then appears as a sum of three
contributions

H (ky )
An= /H—H)'zlllfn(l ki, ... ky))*dld™ 'k,
(|‘? | + Qn+l)

/|H n+1 ZJ k1 — F 053)

|¢n(l7 k17 '-'7kn)|2 d/ dn+lk
|<7n| + Qn+1)(L”H)

and

H(kns) P (HY + 0 =22, - ko
n_/| <) (HY + o +1)° W (1 ki, ol A7,
|<7n| + Qn+l) (LZH)

First, applying again (B.8) with Q = 0,1 and b = |9’,1|2, it is easily seen that

2(Kn i1 I)

|n+

Ay =Wl Plles B0 P <€ [ £ EE i 120,
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~ 2’
by using M7—‘
~“n

10 < 1. Concerning B,, we get on the one hand
n+-1

|H (K1) [P (HY + ) 2 4y et
/(W ?+ Qn+1)f(Li’+l)2 (LK, oo k) |7 A2 ™k

<C / UrtD) gy, Hr) + o2l P,
| n+1|

while, on the other hand, and with the help of Schwarz’ inequality,

W, (L ky, ... k) dld™ ke

|H n+l 711 kn+1)
(|2 +Qn+1)(L’;“)2

kn
<c /—(' D 4 Wl 12011
|kn+1|

For C,, using Young’s inequality to deal with the cross term, we easily get

Gl< € /Mdknﬂ[(lﬁnﬁﬂﬁ )+ 7]

| n+1|

(|ken
e / Al *‘ dhenir |20,

HI'+
since L"“ < 1.

Step 2: We now show the following bound on the second diagonal term:
( IJ} D*Wm *J}D*‘//n)<Cln(1/oc) (lrme‘//n) (Bg)

This quantity is again the sum of two terms I,, + II,,. We first consider the “diagonal”
term I,, for which the same photon is created in both sides. It is worth observing that,
thanks to our choice of gauge for the potential vector 4, G*(k) - k = 0. Then, the first
term is bounded from above by

2
n\ / |G i’l+1| |‘7‘ |lpn(l kl?"'7kn)| dldk]...dk,H_]

(12w + H”+1 +a3)?

|G n+l 2
dk, 2y
(/ o e o ) 190

< Cln(1/a) 2y, 117,

in virtue of (A.11).
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2P
(PPt )

m,<n / |G* (K1 ||«j’n+1|1 |G* (k)|
J=12 (E21 + H{* +a3)’
X |Wn(l7k17~~-a H)||wn(lbk25"'7 n+1)|dldn+1k

C (W l)(|*|)(|lpn)< Cln(l/:x) (¢n7Hf¢n)>

where the operator |X| has been defined by (A.3) in Appendix A. (B.9) follows.
Step 3. Finally, we deal with the cross term in (B.5) and show that

For the second term, we use <I(H;+ oc3)71 and proceed as follows:

|R€(L;IO' ' E*me;lgﬂ ' D*lpn)‘ <C (lpanflpn)'

Indeed, the term which corresponds to the case when one photon interacts with itself
vanishes thanks to the fact that G is real-valued while H has purely imaginary
components. Observe now that, thanks to

1/2

<o v, (B.10)

\%+m+ﬁ2

N =

|2 1
(121> + Hy + «3)* <2

[

1
(H +OC) 3/2<§Hf 3/2’

and (H;’“)S/2 > ka1 |5/4 |7eq |1/4. Then the remaining part gives

(kni1)[ [Pas1| |G (k)|
(L)
X an(la kla akn)‘ |lpn(lvk27 '~~akl’l+1)| dldnJrlk

Hl
Re(L,'s - E'Y,, L,'? - D'Y,) < n Z/ |
=12

(k1)
< C/ |k‘5/2 dk(lpnaHflpn)'

Lemma B.1 follows collecting all above estimates. [

Let us now turn to the following.

Lemma B.2 (Evaluating the first term in (2.46a)).

a3 |11 PF | = = (1 = ol ) COLE/E'[0)
n=0
+ o> <O0|EZ " E*|0) || E*|0) ||

+ 0(«? In(1/a)). (B.11)
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Proof. As a direct consequence of (2.41) and (2.36), we first get

—o Y || PF |

n=0

—a (Z ||h,,+1||2> O|E/'E*|0) + 0(2?). (B.12)

n=0

(Note that (2.41) remains true with L replaced with L,.) Next, we show that

Y M = 1=l = ol E* 0> |* + 0 In(1/2)).  (B.13)

n=0

To this extent, using definitions (2.32) and (2.34) of &, ;, we get

D Wl

n=0

2
= 1 — [l
> ey = Va L Fy, —a L' D* D", |

n=0

Z"hn+1||2 —I—O(ZHL;IF*IP,,Hz _2\/52 Re(thrlaLo?lF*lﬁn)

n=0 n=0 n=0

— 20 " Re(hyy1, L' D" DY, ) + O(?),

n=0

where ((a*/?) comes both from the term o? Y, ||L; ' D*D*y,_||*, and from the
term o’/2 Y, o Re(L;'F*y,, L;'D*D*,_,), which is of the order of «*/?, thanks to
Schwarz’ inequality and Lemma B.1 and the fact that

1L, D" Dy P < CUW P + In(1/e) (Y, He, ). (B.14)

Indeed, the diagonal part is obviously bounded by

W /'G D10 g, a,.
" (k]| + lenial)®

whereas the off-diagonal part is estimated by (y,,_, | X|"|X|y,_,)-
With the help of Lemma B.1 in Appendix B, we have

0y L F|P = all/ T ET0Y P + 0().

n=0

Next, we prove that

Va3 (e L, FHY,)| < C o2 In(1/2), (B.15)

n=0
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Let us indicate the main lines of the proof (B.15). Thanks to the permutational
symmetry of the photons variable, we have

(a1, Ly Frp)|

<vVn+1 Z /2|G |n+l Pl + [H (kni1)|]

=12 P [ + HI 403
X |hn+](1,k1, ...,kn+1)||lﬁn(l,k1, ceey n)|dldk1 ...dkn_H.

We begin with analyzing the term involving H which appears to be easier to deal
with than the term involving G. This is due to the two facts that

[H (eni )| _ 2 (Knia])

< ’ (B.16)
Ly K] '/2
whereas
|<@n+1 ) Gi(kn+1)| <C X(|k"+l|) (B17)
Ly it |72 ([henit]| + )72

in virtue of (B.10).
On the one hand, using the fact that |2,.|* + H'™ + &3 >|ky41], the H-term may
be bounded by

/hn+1 Lk, oo k)| |H (ki) |
; 12 Pt + H

X |, (L Ky, ... k)| Al A"k
<c¢n+1/|hn+1(1,k1,...,kn+1>|\kn+1|1/2
v(Ik,
Wy, o) | A1) g g
|kn+l|
< C (hyyr, Hohir)? I I, (B.18)

thanks to Schwarz’ inequality. On the other hand, for the G-term, we shall make use
of (B.10) to deduce the bound

NSRS /|hn+1 (Lki, . kn1) |G (kns1) - P
A= 12

J}VH—I‘Z +H?+1 + 03
X W/n(la kla ceey n)l dldn+lk
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<cﬁ/|hn+1 Lkt oK) R | (K]
(] + )" [

X |lpn(17 k17 7kn)| d/ di’l+1k

1/2
|kn+1
< C (hyy1, Hehy, / dk, Il
( +1 f +l ( |kn+1| |k,,+1|+o<) +1 lﬁ

<CIn(1/a)"*(hypr, Hehyar) 2 1,1, (B.19)

thanks to (A.11). Gathering together (B.18) and (B.19), we deduce that
|1, Ly F )| < Cln(1/)' 2 (i, Helnin)' |
<Cu Hlanz + Cln(l/oc)ofl (/7I1+1aHfhn+l);

hence, (B.15) thanks to (2.36).
Finally, we bound the last term in a similar way by

o Y |(huir, L' D* D™, )| < Co* In(1/a0). (B.20)

n=0
Indeed, we recall that

n+1

ki) - G*(k;
Vv ”+1 i Pl ':zzu;l (k) )

Xl//n—l(l7k17~- kv 9 ..,kn+1).

D* ‘D*Wn—l(lakla kn+1)

W<

Thus, thanks to permutational symmetry and since |2, |* + HI'*' + o3 =2 (|k,| +
3 /2)"? (ki1 | + o3/2)"/2, we may bound this term as follows

‘(thrle;lD*D*Wn—l”
< S Vi G k)| G )
1/2 3 1/2
(el + 02 /2) 7 (Jknir | 4 27 /2)
|¢n—l(l7k17"'7 I/l—l)||hn+|(lakl7"'7 I1+1)|dldk1~-'dkﬂ+l

A= 12

SC (X[ V|, 1XT D)
C[ailln(l/(x) (hn+17Hfhn+l) + 06”1101171”2

+aln(l/a) (W, Hol, )],
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where the operator | X| has been defined by (A.3) in Appendix A and where the last
inequality follows from Schwarz’ inequality, (A.4) and (A.7). Hence (B.20) thanks
to (2.36).

Hence (B.13). Finally (B.11) follows by inserting (B.13) into (B.12). O

We now prove the following

Lemma B.3 (Evaluating the second term in (2.46a)). For every n=0,

|IL,PF L Fo, 17 — I, 1P CO|E</ Ec/ ™ E* o/ 7 E¥|0)
— 41y, I O0|E/ ™" Py - Dot ™' Py - D* o/ T EF|0) |

<C [\/&nlpnuz + o Uy, 12+ In(1/0) (b, L%)} . (B.21)

Proof. Thanks to the permutational symmetry, we have

1L V2L )P

-y 85 s

Ap=12 i=1 j=i+1 py,vy=1

(ﬁj (kn+2)6‘/ + 2yn+2 : G;L (kn+2))(ﬁ;l/ (kn+l)o-y’ + 29}1+l -Gt (kl1+1))
L)
(ﬁj’(knﬂ)ay +2P2 Gi(km—l))(ﬁﬂ (kni2)oy + 2§n+1 - GM(kyi2))
Ln+2 Ln+1 L"Jrl
(L kyy ... k), (HA (K)o, + Pt - GHK)) (HY (K)o + 2P - GM(K)))

+

SR/ (N TN TR ...,knﬂ)) dld"%k, (B.22)

where 2, =1— Y17, .| ki and = @iﬂ + 30 kil + 0. To avoid
confusion corresponding to our notation we restrict our attention to the first term in
(B.22). The proof of the second part works analogously. The first quantity in (B.22)
is decomposed in a sum of three terms I,, II, and III,, which correspond,
respectively, to the cases i=n+1 and j=n+2, i#n+1 and j=n+2 and
i, j¢{n+ 1,n+2}. The terms will be respectively examined in the three steps below.

Step 1: We first consider the diagonal term I,,. We use the fact that H is complex

valued while G is real valued to cancel all terms which involve an odd number
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of H’s terms. In virtue of the anti-commutation properties of the Pauli matrices,
we may write

|H n+2 | ‘H n+l)| |lp (Z kl, ---7kn)|2 dldn+2k (B23)
Ln+2 Ln+1)

+ 4/ ‘H n+1L‘ +|;7VZFZ+I)G( n+2)| ||,b (l kl; --'7kn)|2 dldnJer

2 2
+ 16/ |‘@’1+1 G(kn+1)| |‘@Vl+22 G(kn+2)| |l//n(l7k1, --~akn)|2 dldn+2k
Ly ()

/‘7n+1 n+1)| ‘H( n+2)| |lﬁn(l,k1,...,kn)|2dldn+2k
Ln+2 LnH)

/9n+1 (kni1) P2 - G*(kns2) H* (kns2) - H* (kni1)
ﬂu 12 Lrt2 (L)

< (L Ky, o k)P AT A"k (B.24)

The first two terms will be the contributing ones and we leave them temporarily
apart. The three others are bounded as follows:

/lG n+1 | |=7n+2| |G< n+2>| |gn|2 |lpn(l,k1,...,kn)|2dldn+2k
Ln+2 Ln+l)

2
x2(|k]) g 2
<c</ o dk) 129,

by using that 2,1 - G*(kpy1) = Py - G*(kuy1), similarly

|2l |G lenst)|” [H ()|
LZH(LTI )2

W, (1 Ky, ... k)| Al Ak

|kn+l|) 2
Jonsal) dly / dky 1 |20,
/ Al sz [ R (a4 o) S 10

<Cln(1/a)||2y,|I%,
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thanks to (A.11), and

| (k)| [H (k)| 120] |G (knsn)| 2| |G (Kaio)|
Li2(Ly)?

7;1—1 2

X W, (1 ki, ... k)| 2dl A" 2k

v(|kn v(kn
<c /Mdm /‘k('—ly')dk Wl 120,

‘kn+2| | n+1

<CWVa Wl + o2 (|24, ],
with the help of (B.10). We now turn to (B.23) and check that

H (kns2)|* |H (K, ,
’/' w2l [H () W, (Lky, ... k) |? A1 "™k
Ln+2 Ln+1)

H (k, H(k,
_ ||l//,1|| /| +2 | | +1)| dan dk,,+2
Qn+2 Qn+1)

SCWVa Wl + a2 129,17 + In(1/2) (b, Hrp,)], (B.25)

with Quis = lknsa + knst|* + [knsa| + lkns1] and Quir = kst | + |kng1|. Observe
that

(ko) |? | H (1)
Qn+2<Qn+1)

+/ |H (ko) [H (K1)
Qn+2 QnJrl (|kn+2|2 + |kn+2|)

We first apply (B.8) to (L2*1)* with Q = Q1 + |2,|* and b = —2k, | - 2, + H} +
. By simple arguments which are very similar to those used in the course of the
proof of Lemma B.1 above (that we skip to reduce the length of the calculations), we
check that

O|EA/'E/'E* o/ T E*|0) = /'H dk,1dk,ss

dky 1 dkpo.

’/|H ) LV, 1 . a0
Ln+2 Ln+l)

2 2
K21 K P a2k

Lg+2(Qn+1 + |gn|2)2

CIVa (|2 + o7 2122 + (b, Heh).
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Next, we apply
1 1 b

0+5-0 00T

to L2 with Q = Q12 and b = —2(ky12 + kny1) - P + | 20* + H} + o and obtain
that

(B.26)

| W, (1 ke, ... k)| dl A2k

|H(kn+2)|2 |H(kn+l) ’
LZ+2(Qn+1 + |50n|2)2

|H(kn+2)|2 |H(kn+1)|2
Qn+2(Qn+l + |9n|2)2

C[\/& ||lan2 + OC?I/Z H'Wlpn”z + (lpnaHflpn)}'

W, (1 ki, ... k) > Al d™k

Finally, applying again (B.8) with Q = Q,,1; and b = |9;1|2, we get

| 2 n+2
WLk, k)" dldT Tk
Qn+2(Qn+l + |@n|2)2 |lp ( l )l

’ | H (Kni2) 2 |H (K1)

/|H n+2 | |H l’l+1)| |l//n(l,k1, -~~;kn)|2 dldn+2k
Qn+2 Qn+1)

SCWa | +o 2129, + (b, Hep)]-

The proof of (B.25) is then over and we now regard the term in (B.24) and show that

H n n n
’/l +1 | |‘7 +2 7 G(k +2)| |lpn(1,k1,...,kn)|2dldn+2k
Ln+2 Ln+1)

| n+2 ‘|‘kn+1 ( n+2)|2|1—1(kn+1)|2
- n dkn dkn
||W || / Qn+2(Qn+l) . ”
CIVa Wl + o 2 1292 + (s Hith)], (B.27)

where

O|Eo/ ' Py - Dot ™' P; - Do/ E*|0)

/‘ kniz +kni1) - G(k, n+2)|2|H(kn+l)|2
Oni2(Qn1)?
/| (Kna + kni1) - Glknio) PIH (ki)
02 Onst (sl + K2

dkyi1 dkipsn

dky 1 dkypo.
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The proof is exactly the same as for (B.25), therefore we only sketch the main lines.
Applying (B.8) to (L"1)* with Q = |2,|* + Q1 and b = =22, - k1 + HI + o, we
first arrive at

‘/|H n+1 | |<7n+2 G( n+2)| |l// (l kl’”.,kn)|2dldn+2k
Ln+2 Ln+l)

/|H n+1 | |‘7’1+2 G( n+2)| |l//n(l klv ---7kn)‘2 dldn+2k
L2(Qui1 + | 24°)

<SCWVa Wl + a2 1297 + (b, Het)]-

Next, again from (B.26), with O = 0, and b = |2,|*, we obtain

/|H n+1 | |<@n+2 G( n+2)| w/”(l k],...,kn)|2dldn+2k
Ln+2 Qn+1 + |<7n| )

/|H n+1 | |°g)ﬂ+2 G( n+2)| |l// (l klv ---7kn)‘2 dldn+2k
Ln+2 Qn-H)

<Cl12y, |,

and we use (B.26) with O = Q.2 and b = =22, - (ki1 + knsa) + | 2> + H} + o to
get

/|H n+1 | |gbn+2 G( 11+2)| |l// (l k17 -~~,kn)|2 dldn+2k
Lr2(0y)
H (ky 2, Gk,
/| +1 | | +2 ( +2>| |l// (lvkh-
01:2(0ni1)’
<Cv[\/&H[//n” + 0671/2 ||glpn||2 + (lrbmelpn)]'

k) |? dl d"2k

ey

Finally, since 2,12 = 2, — (kni1 + kni2) and G*(k,12) - k,2 = 0, we obtain

H n n n
/| +1 | |@ +2 - G( +2)| |lﬁn(1 kl,...7kn)|2dldn+2k
Qn+2 Qn+l)

H{(k, w1 + ki) - Glknio) [
e e s R
n+2\n+1
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H (k) (Kinst - G (n2)) (P - G (ki)
+2
Z/ Oni2(Qni1)’
X W, (1 Ky, ... k) |Pdl A" 2k

H n Py n
/| +1 | | G(k +2)| |lpn(1,k1,...,kn)|2dldn+2k.
Qn+2 Qn+l)

The second term in the r.h.s. vanishes when integrated first with respect to &, since
H and Q,., are radially symmetric functions, whereas the second term is easily

bounded by
N kn kn
o [Mhatd gy, , [ Dol oy,
o] ensa

This concludes the proof of (B.27).
Step 2: We now regard the term II,, which, thanks to permutational symmetry, can
be bounded by

< cn Y /(IH!t(k;1+z)| 4 2[Pura - G*(knia)])?
n Jp=12 LI1+2(Ln+])2

< ([ H Ky )| + 2Pt - G (ki) ) ([H (K )|+ 2|Ps - G (K ))

X, (Lky, o k)| W, (L ke, . kgt )| A A"k
We are going to show that
| < CIn(1/a) (¥, Hyyp,,)-

First observe that it is enough to study the case of
|H (ki) |* + 4|20s2 - G(knso)|*. Since

|H(kn+2) |2 X(|kn+2|)
2 1 2<C )2’
Ly (L) (L5t

whereas, using 2,1 - G*(ky12) = Pyt - G (kusa),

|Pria - G(k11+2)|2< C 2(1kni2])
L2ty kol L

in virtue of (B.10), it is easily seen that the |H |2 contribution is the most delicate to
handle since it involves a higher power of |k;| + |k,+1| at the denominator. We thus
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concentrate on this term. Moreover, comparing (B.16) and (B.17) it is easily seen
that the “worse” term may be bounded as follows:

/'jnJrl Gi n+l)||jﬂ+l Gi(kl)|
P 12 Ln-H)

X | (Lkr, o k)| W, (L ko o Ky ) A1 A"k

). 7
Cn Z / 172 |G ( n+1)1|/2|G (ic/lz)l 3\1/2
=12 g |77 ([enga | +03) ka7 (Jher | + o)
< [ (L ke, oo k)| W, (L ka, . Kepy)| d1d™ K

< Cln(l/a)(mean)’

thanks to Schwarz’ inequality and (A.11).
Step 3: We finally consider the full off-diagonal term that we first roughly bound
by

IL|< Cn(n—1) Y

Ap=12

[ ) 1P b)) U ) - sl
L2 (1)
X (H )|+ 1Pz - G )]) ()] + |2 - G*2))

x |lp”(l’ kl’ ’kn)| |Wn(lvk37 ...7kn+2)| dlle—zk.

The term only involving the H’s is bounded by

IIL,| < Cn(n — 1) /|H n2)| [H" (knt) | [H* (k) || H" (k2)|

v 12 H{ ko |

< (L ker, o k)| W, (L ks, . Kepn)| AT Pk

—1/2 2
< C |[|E|H; DI, || < CW,, Hip,),

and the corresponding term with the G’s reads

) n 2 u

A= 12 L;+2(LZ+1)

X |'@n+l| |<7n+1| |lpn(l7kla "'7kl1)| ‘lpn(la k3a "'7kn+2)| d/ dnJer
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< Cn(n—1)
YNTES 12

X |, (Lker, oo k)| W, (L ke, . Kepn)| AT A"

|G (kni2)| |G (K1) |G (K1 )| | G* (o)
L+l

< C |\DIH; DI, lIIP < CQy, Hith,).-

The mixed terms then are estimated by means of Schwarz’ inequality. [

Finally, we recover the last contributing term by proving the following.
Lemma B.4 (Evaluating the term in (2.46c)). For every n=0,
|Re(L;'F*L;'F*y,, D*D*,) — ||| <O|E<4 " E</~'D*D*|0 |

<Cl"PIn(1/2) (L) + Va1, (B.28)

Proof. Step 1: We first observe that, by Schwarz’ inequality,
(L, 'F*L;' 2 - D", D" D", )|
<CIL'? - DY, Il |FL, ' D* D"y,
<Co V2L 2 - D", I* + CVa |FL; ' D* D"y, II?
CloPIn(1/e) (b L) + V2 W, 1P + V(i Hi,)),

thanks to (B.9) and since the other £ norm is easily checked to be bounded due to
the fact that

F*F<C (H; + |?* Hy)

in virtue of Griesemer et al. [4, Lemma A.4].
Step 2: We now look at the term

Re(L,'?-D'L;'s- E*Y,, D*D",)

x Re P2 - Gi(k"”)HH( n+1) ZnH Z;H,ZH G’ )'G”(kj)
[|9)n+1| +H”+' +a3}[|j"+2| +HF+2 + 03]

s (@ (LK, oo ) (LK o Ky oo Ky o i) AT A2k
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The diagonal term, when i=n+1 and j=n+ 2, vanishes since H is purely
imaginary while G is real. We then have three off-diagonal terms to deal with, I,,, IT

and III,, which correspond respectively to the cases j=n+2, j=n+1 and
jé{n+ L,n+2}.

Firstly, using (B.10) and %\ |G*(kns1)),

A 2
Li<ny /WWMHG kns2)|* |H (k)| |G (K1 )|

S ) (Pl + HE 4 o) [P+ HE 4 o]

X Y (L kyy o k)| [, (L ks, o Kepyr)| A A" P2k

|G (kni2) |

< |1/2 dk""’z H|D| |¢n| Hzgc(l//nawan)a

| n+2

thanks to Lemma A.1 and (B.10). Secondly, thanks again to (B.10) and Lemma A.1,
we have

mi<n /IG’ v [ K )I1G (1) |G )
P Hn+2_|_[x3]1/2[Hn+l +oc3]

X |l//n(l7k17"'7 n)‘ |wn(17k27'“akn+l7 n+2)|dldn+2k
/|G wi )| [H (K1)
A= 12

|kn+1 |3/2

kst 1D [y, |12
(lpnaHflpn)'

Finally, the full off-diagonal term reads

? H* z u
noy Y [ 16 ) 1 )6 16
Hn+2—|—ot3}l/2[Hn+l —|—OC3]

A= 12

X W, (Lkyy oo k)| W, (L ks, oo k)| Al dky .. dky

< Cl(1X| H; |Dl, 1Dl |E] )
< Cln(1/2) 2 (b,,, Hr,).
Step 3: To conclude the proof of the lemma, we are thus lead to prove that
|Re(L;'c- E*L'c - E“Y,, D*D*Y,,) — ||, ||* <O|E/" E/~'D*D*[0) |

<SC VI + Coa P (Y, L)
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On the one hand, using the explicit formulations of the operators £, D and their
adjoints, we recall that

(O|Eo/'E</~'D*D*|0)

2y [ T TG o)
2= Tesw [kl + ka]llk + kol + [k | + [kl

On the other hand

Re(L,'c-E*L,'c - E*Y,, D*D*Y,)

2 Y Re Y / H, ki) By (k) 35000 S0 G (k) - G (k)
= S l%+z| +H"+2+cx3][\7’n+1| + H 4 o]

,Y

X (e, (L ke, ooy kn)y oot (Lkys oKy oo kG o Kya)) dE A" 2,

This term may again be decomposed as a sum of three terms according to
the same convention as above. Nevertheless, it is easily checked that only the first
term, which corresponds to i =n+ 1 and j = n + 2, contributes, while the other
ones may be bounded from above by exactly the same method as before. Following
the scheme of proof of Lemmas B.1 and B.4, we introduce further simplifying
notation:

Ryn = LZ” — 20 = 2Py - (kn+l + kn+2) + L@”|2 + HFI + 0‘3
and
Rup1 = L — 9,0 = 2P, kit +|20” + HY + 0.
The following difference is then to be evaluated

==

Z 1 1 —
- H (K CH (k
Jou=12 / |:LZ+2 LZ+1 =2n+2 Qn+1 ( I’l+2) ( VH—])

X GHllnsr) - GMlnsa) Wy (Kt oo ko) P Al dkr . dleya. (B29)
It is straightforward to check that

1 1
L LT 2y 2

P, (k k Pk
_ 2 (1 ni2t ne1) |y o Kt (B.30a)
Lt 2,05 2,04 L+ 2010 204
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L n L)
Lt 2,00 200 L2 2,00 2,044

(B.30b)

Ruy1 Ry
. B3
T LT 902 0y (B.36c)

We now insert this expression into (B.29) and simply bound |G*(k11)| x |H” (ky11)]
by C y(lknt1]) and similarly for |G*(kyy2)| |[H* (kyi2)|. Tt is then very easy to bound
the two terms in (B.30a) by C Iy, Il 122, | and the terms in (B.30b) by C (,,, L,,) +

‘5?;1‘2 ‘krl+l ‘ ‘k;er] +k;1+2‘
Ly L7 2y D

bounded by H%p,,l\z while all the terms involving H} 4+ o® admit simple bounds by
C g, Iy, |l or C (,, Ly,) + Co*lyy,I%. To deal with the remaining terms

Coc3\\tpn|\2. Concerning (B.30c), the term involving is also easily

2|gn| |kn+1| |=J7n‘2 2|<@n‘ |9n|2 |kn+1 + k”+2‘ |<J7n‘4 (B 31)
D02 200 2y LV L2 2,00 20y 7 LIV L2 2,05 2,0 .
we observe that, from (B.26),
L =22 (ke o) + kg + kn+2| (B.32)
L2 L+ 2,40 L2 (L + 2012) .

Since L] = |2, + H} + o, inserting (B.32) in (B.31) and using the two bounds

P’ P 1
#Sl and | I’l/| < 1/2°
L+ 20 Lyt 22 2(HP + 03 + 2,00)"

it is a tedious but easy exercise to bound the contribution of all the terms in (B.31) by

IL%pnllz, except for one term which comes from the last term in (B.31) and which is
precisely bounded by

Pul [knst + ks
LZJrl LZ+2 (Lg + Qn+2) Dny2 «Qn+l.

To handle this term, we plug in (B.32) once more, and with the same two bounds as

above, we again bound the contribution by \I,@w”\\2.
We now turn to the bound on the non-contributing terms. Using first that

LY L2 > |k, 1|7, we check that

}
a3 fEEE NG el 2 1 )

Au=12 |k’1+1|
X |Wn(lvk27 "~7kn+lakn+2)‘ |lﬁn(1,k1, ...,kn)| dldk] ...dkn+2
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<oy [1t DU Gl g, 1oy, 1511y,

=12 |k71+1|

C(Wme‘/fn),

while, with L5 L2 > koo (15 L [Kil)'? (1, Ikal)' 72, we have

A (ke
L <n(n—1) Y |H”( n+2)|n|f21 ( "T/lz)
et ) k] (25 ki)

||lp ( s 3, ---7kn+2)

NG (R |G" (Ko

W, (L ki, ... k)| dl dky .. .dk,ys
(1, ki)'

~1/2

—1/2
< C(|D|H; "P|E| ¢, |DIH; ? Dy,

< C(lpmelpn)' u

Appendix C. Evaluation of the terms of higher order in (2.46)

First, we investigate the cross-terms in (2.46) which appear with a factor /2.

Lemma C.1 (Bound on (2.46d)).

|(L;1F* lF*lpn?F* n+l)‘ [ Hlan +‘x(wn7Hfl//n) + O‘H’@wnu

+ “71(hn+la HfhiH’l)}' (C'l)

Proof. For shortness we restrict ourselves to the case F = 22 - D, which is the most
delicate one. The other cases work similarly.

By permutational symmetry the first part of the L.h.s. of (C.1) is bounded from
above by

\/’_;r Z/ n+2 ~J/,,+2]2|G”(kn+1) /n+1|
Pl |9’n+z| +H"”+o<*][\9n+1| + HI o]

X [ (Lky, . k) | (L Ky o ke )| A A"
G*(ky
[l kel 20y, 1Dl
=12 |kn+2|

<CVHWlpn” (hn+17Hfhn+l)l/27 (CZ)
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since G (kys1) - Pui1 = G*(kys1) - 2, and where we used (B.10) and additionally

J/>2+H <L

The second, off-diagonal, part can be estimated by
(1D |DIH | Dl )| < COby Hy)' (i, Heloni)'?
Cla(y,, Hp,) + ail(thrl’Hfhn-H)]v (C.3)
again with Schwarz’ inequality and Lemma A.1. [0
Lemma C.2 (Bound on (2.46¢)).
(L' D DY F by | < Cladlp, I+ V/a,, Het,)
+ ail(hn-kl,Hfhn-H)]- (C4)

Proof. We restrict once again to F = 2% - D. The absolute value of the diagonal part
is bounded by

u
vn—+1 Z /|G '1+2|j ”+2||G( "+2)| ‘G (k)1+1)|

=12 wal” H{ + o7

< (L kr, o k) | (L ke . kg )| dE A"k

G (kps2)|
<3 [1CIE g, DI
=12 |kn+2|
<, (s, Hehor)'7, (C.5)

with the help of (B.10), whereas the off-diagonal term can again be bounded by

(1D, |DIH; 2| DVyit) | < C W Hetr)'* (i1, Hehoe) . O (C.6)

For the term appearing with o? in (2.46h) we derive
Lemma C.3 (Bound on (2.46h)).
|(L;1F*L;1D*D*lpn71 ) F*hn+1)| <C [OCHW,HIHZ + (lpnflvalpnfl)

+ ailln(l/a) (th—l ) Hfth—l) + (hn+l 5 Hfhn+l )]
(C.7)
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Proof. Consider again F = 2% - D. The main term reads

TS S LA B LT
itz 12wl + HE 4 0| 2aial” + HE? o+ o)

X |lpn—l(l7k17 '~'7kn71)||hn+1(17k1, ---,kn+1)|dld”+2k
< C(le*l//,F], |X|hn+l)
<Cln(1/a)"(hyer, Hihyir)'?

x [+ In(1 /) (-, He 1)),
whereas the totally off-diagonal term can be estimated by
—1/2 ~1/2
(1D, 1. |DIH [ DIH; P Dl
SC(l//n—thl//nfl)l/z (hn+l7Hfhn+l)l/2- |

In the following, we consider the cross terms in (2.46) which appear with a factor
/2, for which a rough estimate is enough. Therefore we merely indicate the proofs.

Lemma C.4 (Bound on (2.46f)).
(L, F* L, Fy,, F* L DD, )| < CIVa [P + v s, 1P

+ o2 (lpnaHf‘pn) + o2 (wnfl’Hflp”*I)}'
(C.8)

Proof. We restrict again to F' = 22 - D and regard only one diagonal term, namely
(n+1)"? / (G (kins2) * Puial |G (Kns1) * P
P P | I+ H 4 PP (| Pl + H2 + o]
X |G (ks DG (o) W (1 v s ) Wy (1Kt oy o)A A2

G*(kpt)|?
< G ) 620 ) 2 s sl (1,11
Ju=12 |kn+1 |
<C Iyl (b, Her) ' (C.9)

The remaining terms are estimated similarly. [
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By similar methods the following concluding lemma concerning the error term
(2.46g) is obtained.

Lemma C.5 (Bound on (2.46g)).
(L, 'F*L' D" D"y, _y, D" DY, [|< C [Va [, + Ve I, 2

+ 0671/2 (%7 wan) + 0671/2 (lnbn—thw”—l)]'
(C.10)

Notice that in the last two lemmas simple Schwarz’ estimates would suffice.

Note in proof. Another, non-perturbative proof of enhanced binding for particles
with spin was recently announced by Chen et al. (ArXiv: math-ph 0209062).
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