L

View metadata, citation and similar papers at core.ac.uk brought to you by t CORE

provided by Elsevier - Publisher Connector

Topoiogy Vol. 4, pp. 283-293. Pergamon Press, 1965, Printed in Great Britain

IMMERSIONS AND EMBEDDINGS OF DOLD MANIFOLDS

J. J. Uccrt

(Received 2 July 1965)

INTRODUCTION

THE MAIN RESULT of this paper is a non-immersion and non-embedding theorem for Dold
manifolds P(m, n) (see §1) in Euclidean space. P(m, 0) and P(0, n) are real and complex
projective spaces of real dimensions m and 2n, respectively, so that the set {P(m, n)} con-
tains the usual test spaces for immersion and embedding.

Let @(n) = the number of integers s with 0 < s <nands=0,1,2 or 4 mod §;

&(m, n) = the largest integer s for which 2°71("**%) is not divisible by 27,

max(&(m, n), 2[;1) it m>0,

2[21 if m=0,
2.

n . n
where [;} denotes the integral part of;, Then our result can be stated

" (m, n) =

n+ar*{mn)—1

THEOREM 2.12. (i) P(m, n) cannot be immersed in R™? , (1) P(m, n) cannot

be embedded in R™*3ntortmm

Note that a*(m, O) = 6(m, O) = 6(m), where o is defined in [2], and so (2.12) can be
viewed as an extension of Ativah’s Theorem (5.1) of [2]. Indeed, we prove (2.12) using the
methods of [2], i.e. K-theory.

The arrangement of the paper is as follows. In §1 we recall the basic properties of
P(m, n) and determine its stable tangent bundle in terms of two canonical bundles. In §2
the rings KU(P(m, n)) and KO(P(m, n)) are partially determined. The Grothendieck opera-
tors v’ are computed and applied to give (2.12). In conclusion §3 collects together some
remarks about the implications of characteristic classes for immersing and embedding
P(m, n) in Euclidean space.

Our notation is basically derived from [2], [4] and [10]. Minor changes are explicitly

given as needed.

T The material of this paper represents a portion of a thesis submitted to the University of California,
Berkeley, in partial fuifillment of the requirements for the degree of Doctor of Philosophy.
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§1. DOLD MANIFOLDS
Cohomology

Let S" < R"*! be the usual m-sphere and CP, the usual complex projective n-space.
Then P(m, n) is the Dold manifold of dimenston m + 21 obtained from S™ x CP, by
identifying (x, z) with (—~x, Z), where (x,z)e 8™ x CP,. P(m,0) and P(0, n) are readily
seen to be RP,, and CP,, respectively.

The canonical map @ : 8" x CP,— P(m, n) defines a two-fold covering. The map
p: P(m, n)—» RP,, induced by the projection $™ x CP,— S™ defines an analytic fibration
with fibre CP, and structure group Z, (conjugation is the non-trivial element of Z,). If
m'" £ m and n’ £ n, then there is an obvious inclusion " : P(m', n’) > P(m, n), which, for
the cases (in’, n’) = (m, 0) and (nt’, n’) = (0, n), we denote by i and j, respectively.

In {4] P(m, n) is given a cell decomposition with a k-cell (C;, D;) for every pair (i, /),
i,j2 0, for which i +2j =k £m + 2n. Moreover, ®, p and i’ are cellular maps when

S™ x CP, is given an appropriate cell decomposition [4]. The boundary operator satisfies
(1.1) ACi, D) =1+ (=1)")C,-y, D), i >0,
(Co. D)) =0.

Let ¢'d’ denote the cochain which assigns | to (C;, D) and 0 to all other (i + 2j)-cells.
Then c'd’ defines an (i + 2j)-dimensional mod 2 cohomology class which is natural with
respect to the inctusion /. In particular, ¢ and o define I-dimensional and 2-dimensional
classes, respectively.

Dold’s determination of the ring structure of H*(P(im, n); Z,) [4] can be described:

(1.2) H*(P(m, n); Z,) = (%ZL:]) (Zjn[:ﬂ])-

Moreover, (1.1) determines the additive structure of H*(P(m, n); Z). We note only that
HY(P(m, n); Z) = Z, if m = 2, with the generator reducing mod 2 to c.

The Tangent Bundie

The tilde notation “ ~ 7 will be used throughout for objects (bundles, classes) defined
for RP,, or CP,. Define a line bundle ¢ over P(m, n) whose total space E()is S™ x CP, x R
mod the identification (x, z, t) ~ (—x, Z, —t). For n =0, ¢ is just the canonical line bundle
& over P(m, O) = RP,, [10] and so we obtain a bundle map (J, ig)

E@E) —— E@©)

P(m, O) ——— P(m, n)
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implying that i*¢ = . Since w (&) = ¢ [10], we have by (1.2), w,($) = c.

Let ¢ and r denote the usual operations of complexification and decomplexification.
Represent CP, as the unit sphere S*"*! < C"*! mod the identification u ~ Ju, ue S¥*1,
;€ C with |4 = 1. Define a real 2-plane bundle n over P(im, n) whose total space E(n) is
S x §2*1 % C mod the identifications (x, u, w) ~ (x, i, iw) ~ (—x, A, iw) ~ (=X, i, W),
/ as above. For m =0, 5 is just the canonical complex line bundle 7 over P(0, n) = CP,
considered as a real bundle (denoted r(7)); thus we obtain a bundle map (J, i)

ie

E(r(i)) —— E(n)

o

H
P(O, n) ——— P(m, n)

implying j*y = r(7)). From [10], wy(r(5)) = d = j*w,(r). The map S™ x $2"*! x R* - 5™
x ST % C given by (x, u; ¢, t5) = (X, u; t, + it,) induces a bundle map (/, if)

ig’

E(1® 9 E(m)

|

P(m, 0) —— P(m, n)

whence i*n = 1@®¢&. So w,(n) = ¢ by (1.2). The equivalences i*n = 1 ® ¢ and j*n = r(fj)
together with (1.2) imply that w,(y) =d and so w{(n) = 1 + ¢+ d.

For any line bundle f§, f® f§ = 1; in particular, { ® { = 1. Moreover, the map S™ x
SPH X (R®C)—> 8" x §¥""' x C given by (v, u; t ® w) > (x, u; itw) induces a bundle

equivalence (i’ gg)
g

EC®n) —— E(n)

i

P(m,n)y = P(m,n)
and so E®n =1n.
The above remarks are summarized in the following:

ProprosiTionN (1.4). There exist a |-plane bundle & and a 2-plane bundle v over P(m, n)
such that

Q) w=l+ewip=1+c+d;
(i) i*¢=&j* =r(if),i'm=1®¢
(i) {®E=1,¢®n=1.

Our main objective in this section is the following generalization of Theorems 2 and
27 of [10]. Let t denote the tangent bundle of P(m, n).

THEOREM (1.5). 1@ E@2=(m+ DED (n+ Dn.
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Proof. Write {=(m+ 1){@(n+ Dnand X'= 85" x $*"*' x R™!' x C"*!. Then E({)
is the set of all (x,u,y,t)e X mod the identifications (x,u, y, v) ~ (x, Au, y, iv) ~
(—x, /_'/, -, /_L) ~(—=x, i, —y, ), where Ae C with [4] = 1. Let { > and ( ) denote the
real and complex inner products of R™"! and C""', respectively. Then E(t) is the subset
of E({) of all (x, u, y, v) satistying {(x, y> =0 and (4, ©) = 0. Since E(1) = £({), we have
1@ v = {, where v’ (the orthogonal complement of t in {) has total space E(+*) given
by {(x, v, %x, fuye X:2e R, § € C} mod the identifications above. Now EQ & &) is
given by S™x CP, x R® mod the identifications (x, u:t,, ts, t;) ~ (X, Att; £y, £y, 1) ~
(—x, At by, — 1) ~ (=, i t, ty, —t3)and so the map S™ x S"*! x R® — E(+3) given
by (x, u; £y, ty, t3Y = (x, u; t,x, (t, + ity)u) induces a bundle equivalence (i, /ig)

fre

EQ2® & —— E()

|

1
PG, n)y = P(m,n)

Thus v* =2@

Eat

§2. KU(P(m, n)) AND KO(P(m, n))
Additive and Multiplicative Structures

KU(P(m, n)) and KO(P(m, n)) are completely determined in [14]. Here we compute
only the summands containing the tangent bundle of P(i, n); they will be invariant under
the operators 7'.

We make use of the following known results for KU(X) and KO(X), where X = RP,,,
CP,. Recall that & denotes the canonical real line bundle over RP, and 7 the canonical
complex line bundle over CP,. Let ¢(x) be denoted z. for any real bundle x. Write

M

=1, % =c(X), fy=4—lcand J=r(J,). Setg= {g], = [g] and f= ¢@(m), (see
the introduction for the definition of ¢). Let Z, denote the cyclic group of order & and Z*

the free abelian group of rank 4.

THeorem (2.1). KO(RP,) = Z,;, generated by X with the multiplicative relation
f=-2%

THEOREM (2.2). KU(RP,) =Z,., generated by %, with the mudtiplicative relation
¥ = =28,

THEOREM (2.3). KO(CP,) is the truncated polynomial ring (over Z) with one generator
7 satisfying the relations

(1) ifn=2t then 7' =0,

(i) ifn=4r+1, then 2§**' =0 and p**** = 0,

(ii) ifn =4+ 3, then j*'** = 0.

]

705
THEOREM (2.4). KU(CP,) = 7 .

~ntl
1
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(2.1), (2.2) and (2.4) are proven in [1]: (2.3) is proven in [11], with the use of the follow-
ing lemma.

LeMMA (2.5) ¢(5%) = (2 — 3 + ... + (= 1Y)~

As a consequence of (2.5) we have

LemMma (2.6). 1,5, 73, ... 7t~ w, wi, ..., W} forms an additive basis for KU(CP,),
where W, = J, + 1, * denotes conjugation and k = n - h.

Proof. By (2.4) 1, ,, 71, ..., 7] forms an additive basis for KU(CP,) and so we need
only check that the (additive) homomorphism f defined by f(73*!) = 71**! and f(F{') = #}
is a (group) automorphism of KU(CP,). This fact, however, is an immediate consequence
of (2.5) which shows that the matrix defined by f (with respect to the basis 1, , 71, ..., 1)
is triangular with every diagonal entry equal to 1.

Writtx=¢—1,x, =c(x),z=n—-2,y =z~ x, z; =c(z) and y; = c(y).

Tueorem (2.7). RU(P(m, n)) contains a summand isomorphic to G, = Z,, + Z* gener-
ated by x,,y,, ¥i, ..., ¥ with the relation 27x, = 0. The multiplicative structure of Gy is
given by x3 = —2x, and x,y, = 0.

Proof. Since the composition p - i: P(m,0) —» P(m, n) » RP,, is the identity. (2.2)
implies that p'%, = x, is a generator of order 2. From (1.4) we have j'y, = cr(J,) = j, +
5% =W, and so j'y\ = w\. Since W,, ..., W, is a subset of a basis for KU(CP,) by (2,6), then

we see that y,, ..., »" generate a summand isomorphic to Z*. We use (1.4) to deter-
mine the ring structure: x2 = (e — 1) = Ec ®@ & — 26 + 1o = —2(¢c — o) = —2x, and
xiyp = — e — 20) — xt=Ec®nc—nc—20Ec— o) +2x; = —=2x; + 2x, = 0.

THEOREM (2.8). RO(P(m, n)) contains a summand isomorphic to Go = Z,; + Z* gener-
ated by x, y, y*, ..., y" with the relation 2/x = 0. The multiplicative structure of G, is given
by x? = —2x and xy = 0.

Proof. (2.1) implies that p'% = x is a generator of order 2/. Moreover, since ¢(y) = y,,
we have that y, ¥, ..., y" generate a summand isomorphic to Z*. The multiplicative struc-
ture is determined as in (2.7), again using (1.4).

Using the Chern character it can be shown [14] that y**! (and y%™"' also) vanishes.
However, as it is not needed for (2.12) we omit the proof.

y,~structure of G,

Let M" be a compact n-dimensional differentiable (C*) manifold. Set vy = — 1,(M") =
n — t(M") in KO(M"), where 1(M") denotes the tangent bundle of M". Let A, ' and g. dim
(i.e. geometrical dimension) be as defined in [2]. Let < and < denote (C®) immersion and
embedding, respectively, and & and & their negations. Then the main (general) results of
[2] can be stated

(2.9) (i) If M" < R"™** then yi(vy) = O for i > k,
(i) If M" < R"** then y/(vy) =0 for i = k.
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Now let M'"’Z".= P(m, n) and recall that for P(m, n) we have 1@ @2 =(m+ )i ®
(n + 1)n so that in KO(P(m, n)) we have
vo=—lo=—mx—(n+l)z=—=m+n+)x—(n+ 1)y
where t = t{P(m, n)). Since y, is a homomorphism, we have
7dvo) = px) TR Dy ()T,

Clearly the geometrical dimensions of x and y are | and 2, respectively, so y{x) =1 + x¢
and y{y) = | + yt + y2(¥)t2. To compute y*(y) we make use of the following two clementary
lemmas.

Lemma (2.10). If 2 is any 2-plane bundle over X, then i*({?) is the determinant bundle.
In particular, J2({' @ V) = (' for any line bundle '.
Proof. Let A : R* - R? be a linear transformation which, with respect to a given basis
e, €, is represented by the matrix
= %12
( X2y %22 )

For the second exterior power of 4, A4 : A2R* = A2R?, we have
/\ZA(el Aey) = A(e)) n Aley) = (2,352 — % 2%3 )€, A €, = (det A)e; A e,.

Hence A*(* is the determinant bundle. The second statecment is an immediate consequence
of the first.

Let v* denote the universal k-plane bundie over the classifying space By,,. There is an
inclusion map i: By, = Bg2, such that i*v* = v' @ I. Together with Theorem 8 of [10]
this equivalence implies that i* : H'(By,: Z,) = H'(Boy1y; Z,) is a monomorphism.

Lemma (2.11). w,(A2(v?)) = w,(v?).

Proof. Since i* is a monomorphism, it suffices to show that i*w,(i2(v?)) = i*w, (v?).
By (2.10) and naturality we have i*iw,(v2) = w,(i*v?) = w,(v!) = w, (22! @ 1)) = w,(Z2(i*v?)
= i*w,(22(v?)).

Hence for any 2-plane bundle {? w,(4%(£?)) = w,({?); moreover, A%({?) is determined
by this formula since it is a line bundle. In particular, 2*(n) = ¢ since w,(n7) = ¢ = w(&).

To simplify our computation, we collect together the following elementary facts:

(D) =21+ 2%
(2) i(a+ b) = Z AT Ha)H(b).
/=0

7 @)y (b).

0

(4) y*(—=x) = x? = —2x.

(8) A3(=2)=3.
(1) follows from inspection of the coefficients of 1% in the defining equation
v, = Z}.it‘ = Z Y- = J1 =1y -

(3) y(a + b) =

i
i
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(2) is property (C) in [2: §2], and (3), as noted in [2] is a consequence of (2) and the defini-
tion of y,. Finally, (4) and (3) may be verified directly from

{=x)=(l+x)7 " =l=xt+xM = =1—xt—2xt7— -

W=D =1+ =1=2t437— .
Returning to the computation of y%(y) we have

V() =3 = x) =332 = xz + 7= x) = y¥2) + 2x — 2x

I

MO+ A =2+ =2 =2+ (=) + =
={~-2+3+=x—2r4z=x—z=—).
The full application of (2.9) for the non-immersion and non-embedding of P(m, n)
in R™*2"** requires the identification of the highest power of ¢ having non-zero coefficient

+'(vo) in the expansion of y,(vo). We make use of the relations xy = 0 and x? = — 2x.
Substituting we have

./r(v()) = (1 + .‘C[)_(m+"+“(| + ¥yt — ytz)-‘(n-Pl)

and so the coefficient of ¢! is

Yiv) = (m +n l)x" D i21-_1(”1 +on+ l)x FS
! y L riF1 \ ! J it
=[] =[]
where the «;; are non-zero integers (the relation xy = 0 Kills all mixed product terms).
Writing | + yt — pt? = 1 + yt(1 — t), we see that x,,y" appears in the coefficient of ¢2*.
Although p**!' =0 is shown in [14], j'y = § and Theorem (2.3) easily imply that y* is
independent of y***, r > 0. Hence the coefficient of 1*" is non-zero since x5, , # 0.
Using the function ¢*(m, n) defined in the introduction, we obtain

THEOREM (2.12).
(i) P(m, n)¢ Rm+2n+esmm=1
(i) P(m, n)g Rm¥Intetimm

§3. REMARKS

(1) Many known results relating immersions and embeddings to Stiefel~-Whitney
classes may be applied to P(m, n). In particular, we shall consider

(3.1y () If M"< R"** then w; =0 fori> k.

(i) I M" < R"* thenw, =0fori=k.

(iti) 5] If 0<k<2(n—4), then M"< R* %! if and only if W,_,_, =0.
(W, denotes the—possibly twisted—i"® dual Stiefel-Whitney class of M".)

(iv) [7] Let M" be orientable, n > 4. If n is even, then M" < R*"~2 if and only if
W, . w,_, = 0;if #is odd, then M" < R¥"~2,
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(v) [8] Let A" be orientable. Ifn =1 mod 4, then M" < R* ’ifand onlyifw, . w,_, €
Image (Sg'); if n = 0 mod 4 and w, = 0, then M" = R*™* implies w, . w,_, = 0.

The application of (3.1) to P(m, n) requires some mod 2 arithmetic.

Lemma (3.2). ({13)) (z) = | mod 2 if and only if the non-zero terms in the dyadic expan-
sion of a are a subset of those of b.

Lemma (3.3).

A
Q@ (" , l)‘:‘1»10(12 for 1£1£2°-1.

" 2m — | .
(i1) If( m— 1 ) =1mod2, then m=2°s=0.

/ -2
(i) 1/(2,':_2'

) =1mod2, then m=2s=>1.
2 .
(iv) ("’:l) =0mod2 for m>0.
4ty i _ e , s
v ) =0mod2 for t=1,..,nifandonlyif n=2"-1,s5s=1.
(3.2) implies (3.3) via the inspection of certain dyadic expansions.

Throughout the remainder of this section w(t(P(in, n))) will be abbreviated w(m, n) or
w whenever the meaning is clear. Similarly, for w,, etc.

CoROLLARY (3.4). w(im,ny=1ifand only if (im,n) = (2' - 25,2~ 1), t =252 0.

Prooj: For (,n, 'n) = (2‘ — 23, 2S - 1), ! g 5 ; 0, )1'(m, Il) = (1 + C)Zz—zs(l +c +d)2, =
(140 =1+c*=1 Conversely, if wim, n) =1, then (1l + )" =( +c+d)""*" and
hence, the coefficient (n-;t ) of d" in the expansion of the right member is 0 mod 2 for all
t'=1,...,n whence n=2"—1 by (3.3)(v). But this gives (1 +)"=(1+c+d) ¥ =
(1 +¢)" % and (1 + )""*" =1, from which it follows that m + 2 =2 r 2 s.

(3.4) is useful for comparing dual Stiefel-Whitney classes to y* operators for non-
immersion, non-embedding results for P(m, n); e.g. if (m, n) = (2* — 2%, 2° — 1), 6*(m, n) =
max(o(2° — 1),2° = 2) 2 max(2"%,2°—2), r=4since (2' — 1) 2272 if r 2 4 [2].

COROLLARY (3.5) W, 42.~1 # O if and only if (m, n) = (2°, 0).

Proof. In one direction this is a well-known result about real projective spaces.
Suppose Wyiaq—; # 0. Then 1W,,,,_, =™ 'd", the only non-zero class of dimension

m+2n—1. But w={U+c)""1+c+d) """ and the coeflicient (2;1”_—11) . (2:) of

¢™ 'd" is 0 unless m = 2°, s = 0 by (3.3)(ii) and n = 0 by (3.3)(iv).



IMMERSIONS AND EMBEDDINGS OF DOLD MANIFOLDS 291

Define sets

A, ={0.2%:52 1}

Ay ={22):0ss21}

Ay ={2—-1,1D:s5= 1}
) k) e+l
As = {(m, 2:2 < m and (_m +’:1 l) = | mod 2}
5
A =U 4

COROLLARY (3.6). 1%, .20-2 # O if and only if (m,n)e A. Moreover, if Wpi2n-2 # 0
withn> 0, then W, 5, _» = c"d" ™"

Proof. In one direction the first statement can be verified directly, so we concern our-
selves only with the converse. SUppPOSe W, 42,2 # 0. 1f 7 =00r m=0, it is easily seen
that (m, n) € A, or (m, n) € 4,, respectively, so we may assume m, n > 0. Then W, 1253 =

)
e"d" ' because the coefficient of ¢™ ™ 2d" is 1("':1) which is 0 mod 2 by (3.3)(iv). Let

W<+ 1<2* Then w=(l+) """l +c+ HETEED With 2~ e+ 1) 2

n—1. Hence 2*' —2<2p <2 and n=2"—1 or n=2" If n=2"—1, then w =

(1+¢)" ™ andson=1. Ifalsom<2 thenm=n=1and (mn)ed, Ifm=z2and
2 Ip —

am + ])c'" = (_p 1)c'" where m = p — [, thus
m p—1

m=p—1=2"—1 by (3.3)(ii), ie. (mn)eA,. Finally if n=2" and m < 2t7! then

I — 1\ (2 — .

=+ "1 +c+d* Land Wyypnez = (-'”m ‘)(5, - })c”’d"” and so by (3.3)(ii)

m=2"and (m,n)e Ay. Ifn=2"and 2*1 < m, then W= (1 + ) " 2" (1 + ¢+ )

2m 420 — ])(2’ -1

n=1thenw=(l+¢c)" " P and v, = (

m 28— 1

We may now apply (3.1)(iii)~(v) to P(m, n).

THEOREM (3.7).

(1Y P(m,n) c RP"F20-4 Gt and only if (m,n) ¢ A,; moreover, if (m,n)e A—A,,
this result is best possible.

(iiy  An orientable P(m, n) = R*™* 22 if and only if (m, n) € 4,.

Git) If (m, n) = (4s + 1, 21), then P(m, n) < R*(m* 2073,

Proof. (i) If P(m, n) = R*™*29=1 then W, ,,,_, = 0 by (3.1)(ii) and so (m, n) ¢ A,
for otherwise W, .2,_; = W,_; = c™ ' #0. Conversely, if m >0, (m, n) ¢ A; implies that
Wyt 2m—2 = c™d" ! (the only non-zero element in dimension m + 2n —2) or 0. But if T2
denotes the torsion subgroup of HZ*(P(m, n);Z) and p denotes reduction mod 2, then
pT? = Z, with generator ¢ if m =2, or pT? =0 if m < 2. Hence ¥, 1,-,x = 0 for any
x e pT? and so by Lemma 8 of [9] W,,,,,_, = 0. Now (i) follows from (3.1)(iii).

and W, 2,2 = ( )c’"d"‘l and so (m, n) e 4s.
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(ity IF (m,n)eA,, then Ww,,_, =d"™' by (3.3)i). Since w, = d, then 1w,,_, w, =
d" # 0, hence P(m, n) £ R*™*2"~2 by (3.1)(iv). Conversely, if m is odd and so m + 2n is
odd, then P(m, n) = R*'™~2" =% by (3.1)(iv); if m is even, then n is odd and (m, n) £ 4, thus
Was20—2 = 0 and the result again follows from (3.1)(iv).

(iiy If (m,n) = (4s + 1, 2t)—thus P(m, n) is orientable—then Sy'(c™ *d") = ¢™ la”
thus implying that Sg': H™"*""XP(m, n); Z,)—» H™ ""YP(m, n); Z,) =~ Z, is an
epimorphism. Hence (iii) is a direct consequence of (3.1)(v).

(2) From (1.5) we may compute the characteristic classes of P(m, n). It is easily
verified that the total rational Pontrjagin class of P(m, n) is given by p = (1 + d*)"*!,
*e H*(P(m, n); Q). Hence, applying (6.1) of [2] for M™* 3" = P(m, n), we have that

P(m, n) & R™* "% where k= 2[,—;] —1

P(m, n) & R™*2"** where k= 2[,—;]
For m = 0O this result agrees with (2.12) thus verifying a remark of Atiyah [2]. Noting that
J*p = p, the total rational Pontrjagin class of CP,, it follows that the methods of [3] (based
on the A-genus) applied directly to P(m, i) are no better than those obtainable from [3]
using the composite embedding CP, — P(m, n) » R™*2"¥¥,

(3) Since the two-fold covering ® : 8™ x CP,, — P(m, n) is itself an immersion, it can
be used to translate non-immersion theorems for CP, into the same for P(m, n). More
precisely, if f: P(m, n) —» R™*2"** is an immersion, then so is f°> ® : 5™ x CP, » R™*2"*k,
By a theorem of M. Hirsch [6], this implies that CP, < R*"**. Hence the non-immersi-
bility of CP, with codimension k implies the same for P(m, n). When m is small with respect
to n, this idea together with (3.1)(iv) and some results of [12] should give better results than
(2.12)(1). However, as m increases we should expect the reverse.

For example, P(1, n) = R*" for n = 2" by (3.1)(iv), but P(l, n) € R*"~' (more generally,
P(m, n) &€ R**™~2) because CP, & R*"~? for this choice of n. Hence this is best possible.

(4) Our concluding remark, extending Theorem (4.1) of [11], solves the immersion
problem for P(m, 1), m < 8.

THEOREM (3.8). P(m, 1) = R where f=oe(m)yandm# 2,6, P2, 1)< R’ and P(6, 1)
< R

Proof. For P(m, n) we have by (1.5) that 1@ D2 =(m+ D@ (n+ )y and so in
RO(P(m, 1)), —Ty= —(T—(m+2n)) = —(m+ 2)x = (27 — (m + 2))x (here we use the
fact that 2y = 0; note for n > 1, this is not true). Hence g.dim(—T,) S (27 — (m + 2))-
g.dim(x) =27 — (m + 2). Thus by Theorem (2.1) of [I1] P(m, 1) = R¥. T, =0 for the
exceptional cases m =2, 6, and so the codimension is one. By explicit computation of
Ww(m, 1), this is shown to be best possible for m < 8,
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