IMMERSIONS AND EMBEDDINGS OF DOLD MANIFOLDS

J. J. Uccił
(Received 2 Jily 1965)

INTRODUCTION

The main result of this paper is a non-immersion and non-embedding theorem for Dold manifolds $P(m, n)$ (see $\$ 1$) in Euclidean space. $P(m, 0)$ and $P(0, n)$ are real and complex projective spaces of real dimensions m and $2 n$, respectively, so that the set $\{P(m, n)\}$ contains the usual test spaces for immersion and embedding.

Let $\varphi(n)=$ the number of integers s with $0<s \leqq n$ and $s \equiv 0,1,2$ or $4 \bmod 8$;
$\bar{\sigma}(m, n)=$ the largest integer s for which $2^{s-1}\left({ }^{(m+n+s} s\right)$ is not divisible by $2^{\varphi(n)}$;

$$
\sigma^{*}(m, n)=\left\{\begin{array}{l}
\max \left(\bar{\sigma}(m, n), 2\left[\frac{n}{2}\right]\right) \quad \text { if } m>0 \\
2\left[\frac{n}{2}\right] \quad \text { if } m=0
\end{array}\right.
$$

where $\left[\frac{n}{2}\right]$ denotes the integral part of $\frac{n}{2}$. Then our result can be stated
Theorem 2.12. (i) $P(m, n)$ cannot be immersed in $R^{m-2 n+\sigma^{*}(m . n)-1}$, (ii) $P(m, n)$ cannot be embedded in $R^{m+2 n+\sigma *(m, n)}$.

Note that $\sigma^{*}(m, O)=\bar{\sigma}(m, O)=\sigma(m)$, where σ is defined in [2], and so (2.12) can be viewed as an extension of Atiyah's Theorem (5.1) of [2]. Indeed, we prove (2.12) using the methods of [2], i.e. K-theory.

The arrangement of the paper is as follows. In $\S 1$ we recall the basic properties of $P(m, n)$ and determine its stable tangent bundle in terms of two canonical bundles. In $\S 2$ the rings $K U(P(m, n))$ and $K O(P(m, n))$ are partially determined. The Grothendieck operators γ^{i} are computed and applied to give (2.12). In conclusion $\$ 3$ collects together some remarks about the implications of characteristic classes for immersing and embedding $P(m, n)$ in Euclidean space.

Our notation is basically derived from [2], [4] and [10]. Minor changes are explicitly given as needed.

[^0]I wish to thank my thesis advisor, Professor E. H. Spanier for his encouragement and advice during the preparation of this work.

s1. DOLD MANIFOLDS

Cohomology

Let $S^{m} \subset R^{m+1}$ be the usual m-sphere and $C P_{n}$ the usual complex projective n-space. Then $P(m, n)$ is the Dold manifold of dimension $m+2 n$ obtained from $S^{m} \times C P_{n}$ by identifying (x, z) with $(-x, z)$, where $(x, z) \in S^{m} \times C P_{n} . P(m, 0)$ and $P(0, n)$ are readily seen to be $R P_{m}$ and $C P_{n}$, respectively.

The canonical map $\Phi: S^{m} \times C P_{n} \rightarrow P(m, n)$ defines a two-fold covering. The map $p: P(m, n) \rightarrow R P_{m}$ induced by the projection $S^{m} \times C P_{n} \rightarrow S^{m}$ defines an analytic fibration with fibre $C P_{n}$ and structure group Z_{2} (conjugation is the non-trivial element of Z_{2}). If $m^{\prime} \leqq m$ and $n^{\prime} \leqq n$, then there is an obvious inclusion $i^{\prime}: P\left(m^{\prime}, n^{\prime}\right) \rightarrow P(m, n)$, which, for the cases $\left(m^{\prime}, n^{\prime}\right)=(m, 0)$ and $\left(m^{\prime}, n^{\prime}\right)=(0, n)$, we denote by i and j, respectively.

In [4] $P(m, n)$ is given a cell decomposition with a k-cell $\left(C_{i}, D_{j}\right)$ for every pair (i, j), $i, j \geqq 0$, for which $i+2 j=k \leqq m+2 n$. Moreover, Φ, p and i^{\prime} are cellular maps when $S^{m} \times C P_{n}$ is given an appropriate cell decomposition [4]. The boundary operator satisfies

$$
\begin{align*}
& i\left(C_{i}, D_{j}\right)=\left(1+(-1)^{i+j}\right)\left(C_{i-1}, D_{j}\right), i>0, \tag{1.1}\\
& i\left(C_{0}, D_{j}\right)=0 .
\end{align*}
$$

Let $c^{i} d^{j}$ denote the cochain which assigns 1 to $\left(C_{i}, D_{j}\right)$ and 0 to all other $(i+2 j)$-cells. Then $c^{i} d^{j}$ defines an $(i+2 j)$-dimensional mod 2 cohomology class which is natural with respect to the inclusion i^{\prime}. In particular, c and d define 1 -dimensional and 2-dimensional classes, respectively.

Dold's determination of the ring structure of $H^{*}\left(P(m, n) ; Z_{2}\right)$ [4] can be described:

$$
\begin{equation*}
H^{*}\left(P(m, n) ; Z_{2}\right) \cong\left(\frac{Z_{2}[c]}{c^{m+1}}\right) \otimes\left(\frac{Z_{2}[d]}{d^{n+1}}\right) \tag{1.2}
\end{equation*}
$$

Moreover, (1.1) determines the additive structure of $H^{*}(P(m, n) ; Z)$. We note only that $H^{2}(P(m, n) ; Z) \cong Z_{2}$ if $m \geqq 2$, with the generator reducing $\bmod 2$ to c^{2}.

The Tangent Bundle

The tilde notation " \sim " will be used throughout for objects (bundles, classes) defined for $R P_{m}$ or $C P_{n}$. Define a line bundle ζ over $P(m, n)$ whose total space $E(\xi)$ is $S^{m} \times C P_{n} \times R$ mod the identification $(x, z, t) \sim(-x, \bar{z},-t)$. For $n=0, \xi$ is just the canonical line bundle $\tilde{\xi}$ over $P(m, O)=R P_{m}[10]$ and so we obtain a bundle map $\left(i, i_{E}\right)$

implying that $i^{*} \zeta=\xi$. Since $w_{1}(\tilde{\xi})=c$ [10], we have by $(1.2), w_{1}(\zeta)=c$.
Let c and r denote the usual operations of complexification and decomplexification. Represent $C P_{n}$ as the unit sphere $S^{2 n+1} \subset C^{n+1}$ mod the identification $u \sim i u, u \in S^{2 n+1}$, $\lambda \in C$ with $|\lambda|=1$. Define a real 2 -plane bundle η over $P(m, n)$ whose total space $E(\eta)$ is $S^{m} \times S^{2 n+1} \times C \bmod$ the identifications $(x, u, w) \sim(x, \lambda u, \lambda w) \sim(-x, \bar{\lambda} u, \bar{\lambda} w) \sim(-x, \bar{u}, \bar{w})$, i as above. For $m=0, \eta$ is just the canonical complex line bundle $\tilde{\eta}$ over $P(0, n)=C P_{n}$ considered as a real bundle (denoted $r(\tilde{\eta})$); thus we obtain a bundle map $\left(j, j_{E}\right)$

implying $j^{*} \eta=r(\tilde{\eta})$. From [10], $w_{2}(r(\tilde{y}))=\tilde{d}=j^{*} w_{2}(\eta)$. The map $S^{m} \times S^{2 n+1} \times R^{2} \rightarrow S^{m}$ $\times S^{2 n+1} \times C$ given by $\left(x, u ; t_{1}, t_{2}\right) \rightarrow\left(x, u ; t_{1}+i t_{2}\right)$ induces a bundle map $\left(i, i_{E}^{\prime}\right)$

whence $i^{*} \eta=1 \oplus \tilde{\xi}$. So $w_{1}(\eta)=c$ by (1.2). The equivalences $i^{*} \eta=1 \oplus \tilde{\xi}$ and $j^{*} \eta=r(\tilde{\eta})$ together with (1.2) imply that $w_{2}(\eta)=d$ and so $w(\eta)=1+c+d$.

For any line bundle $\beta, \beta \otimes \beta=1$; in particular, $\zeta \otimes \xi=1$. Moreover, the map $S^{m} \times$ $S^{2 n+1} \times(R \otimes C) \rightarrow S^{m} \times S^{2 n+1} \times C$ given by $(x, u ; t \otimes w) \rightarrow(x, u ; i t w)$ induces a bundle equivalence $\left(i^{\prime}, g_{E}\right)$

and so $\xi \otimes \eta=\eta$.
The above remarks are summarized in the following:
Proposition (1.4). There exist a 1-plane bundle ξ and a 2-plane bundle η over $P(m, n)$ such that
(i) $w(\xi)=1+c, u(\eta)=1+c+d$;
(ii) $i^{*} \dot{\xi}=\tilde{\xi}, i^{*} \eta=r(\tilde{\eta}), i^{*} \eta=1 \oplus \tilde{\xi}$;
(iii) $\breve{\zeta} \otimes \bar{\zeta}=1, \zeta \otimes \eta=\eta$.

Our main objective in this section is the following generalization of Theorems 2 and 27 of [10]. Let τ denote the tangent bundle of $P(m, n)$.

Tiforem (1.5). $\tau \oplus \xi \oplus 2=(m+1) \xi \oplus(n+1) \eta$.

Proof. Write $\zeta=(m+1) \zeta \oplus(n+1) \eta$ and $X=S^{m} \times S^{2 n+1} \times R^{m+1} \times C^{n+1}$. Then $E(\zeta)$ is the set of all $(x, u, y, c) \in X \bmod$ the identifications $(x, u, y, v) \sim(x, j u, y, \lambda) \sim$ $(-x, \bar{\lambda} u,-y, \bar{\lambda}) \sim(-x, \bar{u},-y, \bar{v})$, where $\lambda \in C$ with $|\lambda|=1$. Let \rangle and () denote the real and complex inner products of R^{m+1} and C^{n+1}, respectively. Then $E(\tau)$ is the subset of $E(\zeta)$ of all (x, u, y, v) satisfying $\langle x, y\rangle=0$ and $(u, v)=0$. Since $E(\tau) \subset E(\zeta)$, we have $\tau \oplus v^{3}=\zeta$, where v^{3} (the orthogonal complement of τ in ζ) has total space $E\left(v^{3}\right)$ given by $\{(x, u, x x, \beta u) \in X: x \in R, \beta \in C\} \bmod$ the identifications above. Now $E(2 \oplus \xi)$ is given by $S^{m} \times C P_{n} \times R^{3} \bmod$ the identifications $\left(x, u: t_{1}, t_{2}, t_{3}\right) \sim\left(x, i u ; t_{1}, t_{2}, t_{3}\right) \sim$ $\left(-x, \bar{\lambda} u ; t_{1}, t_{2},-t_{3}\right) \sim\left(-x, \bar{u} ; t_{1}, t_{2},-t_{3}\right)$ and so the map $S^{n} \times S^{2 n+1} \times R^{3} \rightarrow E\left(v^{3}\right)$ given by $\left(x, u ; t_{1}, t_{2}, t_{3}\right) \rightarrow\left(x, u ; t_{1} x,\left(t_{2}+i t_{3}\right) u\right)$ induces a bundle equivalence $\left(i^{\prime}, h_{E}\right)$

Thus $v^{3}=2 \oplus \zeta$.

\$2. $K U(P(m, n))$ AND $K O(P(m, n))$

Additive and Multiplicative Structures
$K U(P(m, n))$ and $K O(P(m, n))$ are completely determined in [14]. Here we compute only the summands containing the tangent bundle of $P(m, n)$; they will be invariant under the operators γ^{i}.

We make use of the following known results for $K U(X)$ and $K O(X)$, where $X=R P_{m}$, $C P_{n}$. Recall that $\tilde{\xi}$ denotes the canonical real line bundle over $R P_{m}$ and $\tilde{\eta}$ the canonical complex line bundle over $C P_{n}$. Let $c(\alpha)$ be denoted α_{C} for any real bundle α. Write $\tilde{x}=\tilde{\xi}-1, \tilde{x}_{1}=c(\tilde{x}), \tilde{y}_{1}=\tilde{\eta}-I_{c}$ and $\tilde{y}=r\left(\tilde{y}_{1}\right)$. Set $g=\left[\frac{m}{2}\right], h=\left[\frac{n}{2}\right]$ and $f=\varphi(m)$, (see the introduction for the definition of φ). Let Z_{k} denote the cyclic group of order k and Z^{k} the free abelian group of rank k.

Theorem (2.1). $\widetilde{K} O\left(R P_{m}\right)=Z_{2 s}$, generated by \tilde{x} with the multiplicative relation $\tilde{x}_{1}^{2}=-2 \tilde{x}$.

Theorem (2.2). $\widetilde{K} U\left(R P_{m}\right)=Z_{2 \text { a }}$, generated by \tilde{x}_{1} with the multiplicative relation $\tilde{x}^{2}=-2 \tilde{x}_{1}$.

Theorem (2.3). $K O\left(C P_{n}\right)$ is the truncated polynomial ring (over Z) with one generator \bar{y} satisfying the relations
(i) if $n=2 t$, then $\tilde{y}^{t+1}=0$,
(ii) if $n=4 t+1$, then $2 \tilde{y}^{2 t+1}=0$ and $\tilde{y}^{2 t+2}=0$,
(iii) if $n=4 t+3$, then $\tilde{y}^{2 t+2}=0$.

Theorem (2.4). $K U\left(C P_{n}\right)=\frac{Z\left[\tilde{y}_{1}\right]}{\tilde{y}_{1}^{n+1}}$.
(2.1), (2.2) and (2.4) are proven in [1]: (2.3) is proven in [11], with the use of the following lemma.

Lemma (2.5) c($\left.\tilde{y}^{s}\right)=\left(\tilde{y}_{1}^{2}-\tilde{y}_{1}^{3}+\ldots+(-1)^{n} \tilde{y}_{1}^{n}\right)^{s}$.
As a consequence of (2.5) we have
Lemma (2.6). 1, $\tilde{y}_{1}, \tilde{y}_{1}^{3}, \ldots, \tilde{y}_{1}^{2 k-1}, \tilde{w}_{1}, \tilde{w}_{1}^{2}, \ldots, \tilde{w}_{1}^{4}$ forms an additice basis for $K U\left(C P_{n}\right)$, where $\tilde{w}_{1}=\tilde{y}_{1}+\tilde{y}_{1}^{*}$, ${ }^{*}$ denotes conjugation and $k=n-h$.

Proof. By (2.4) $1, \tilde{y}_{1}, \tilde{y}_{1}^{2}, \ldots, \tilde{y}_{1}^{n}$ forms an additive basis for $K U\left(C P_{n}\right)$ and so we need only check that the (additive) homomorphism f defined by $f\left(\tilde{y}_{1}^{2 i+1}\right)=\tilde{y}_{i}^{2 i+1}$ and $f\left(\tilde{y}_{1}^{2 i}\right)=\tilde{w}_{1}^{i}$ is a (group) automorphism of $K U\left(C P_{n}\right)$. This fact, however, is an immediate consequence of (2.5) which shows that the matrix defined by f (with respect to the basis $1, \tilde{y}_{1}, \tilde{y}_{1}^{2}, \ldots, \tilde{y}_{1}^{n}$) is triangular with every diagonal entry equal to 1.

$$
\text { Write } x=\xi-1, x_{1}=c(x), z=\eta-2, y=z-x, z_{1}=c(z) \text { and } y_{1}=c(y)
$$

Theorem (2.7). $\widetilde{K} U(P(m, n))$ contains a summand isomorphic to $G_{U}=Z_{2 g}+Z^{h}$ generated by $x_{1}, y_{1}, y_{1}^{2}, \ldots, y_{1}^{h}$ with the relation $2^{3} x_{1}=0$. The multiplicative structure of G_{U} is given by $x_{1}^{2}=-2 x_{1}$ and $x_{1} y_{1}=0$.

Proof. Since the composition $p \circ i: P(m, 0) \rightarrow P(m, n) \rightarrow R P_{m}$ is the identity. implies that $p^{\prime} \tilde{x}_{1}=x_{1}$ is a generator of order 2^{g}. From (1.4) we have $j^{\prime} y_{1}=\operatorname{cr}\left(\tilde{y}_{1}\right)=\tilde{y}_{1}+$ $\tilde{y}_{1}^{*}=\tilde{w}_{1}$ and so $j^{\prime} y_{1}^{i}=\tilde{w}_{1}^{i}$. Since $\tilde{w}_{1}, \ldots, \tilde{w}_{1}^{h}$ is a subset of a basis for $\tilde{K} U\left(C P_{n}\right)$ by $(2,6)$, then we see that y_{1}, \ldots, y_{1}^{h} generate a summand isomorphic to Z^{h}. We use (1.4) to determine the ring structure: $x_{1}^{2}=\left(\zeta_{c}-1_{C}\right)^{2}=\xi_{c} \otimes \zeta_{c}-2 \xi_{c}+1_{C}=-2\left(\xi_{c}-1_{C}\right)=-2 x_{1}$ and $x_{1} y_{1}=\left(\xi_{c}-1_{c}\right)\left(\eta_{c}-2_{c}\right)-x_{1}^{2}=\xi_{c} \otimes \eta_{C}-\eta_{c}-2\left(\xi_{c}-1_{c}\right)+2 x_{1}=-2 x_{1}+2 x_{1}=0$.

Theorem (2.8). $\tilde{K} O(P(m, n))$ contains a summand isomorphic to $G_{o}=Z_{2 s}+Z^{h}$ generated by $x, y, y^{2}, \ldots, y^{h}$ with the relation $2^{f} x=0$. The multiplicatice structure of G_{o} is given by $x^{2}=-2 x$ and $x y=0$.

Proof. (2.1) implies that $p^{\prime} \tilde{x}=x$ is a generator of order 2^{\int}. Moreover, since $c(y)=y_{1}$, we have that y, y^{2}, \ldots, y^{h} generate a summand isomorphic to Z^{h}. The multiplicative structure is determined as in (2.7), again using (1.4).

Using the Chern character it can be shown [14] that y^{h+1} (and y_{1}^{h+1} also) vanishes. However, as it is not needed for (2.12) we omit the proof.

γ_{t}-structure of G_{O}

Let M^{n} be a compact n-dimensional differentiable $\left(C^{\infty}\right)$ manifold. Set $v_{0}=-\tau_{0}\left(M^{n}\right)=$ $n-\tau\left(M^{n}\right)$ in $\widetilde{K} O\left(M^{n}\right)$, where $\tau\left(M^{n}\right)$ denotes the tangent bundle of M^{n}. Let λ^{i}, γ^{i} and g. dim (i.e. geometrical dimension) be as defined in [2]. Let \subseteq and \subset denote (C^{∞}) immersion and embedding, respectively, and \ddagger and \ddagger their negations. Then the main (general) results of [2] can be stated
(i) If $M^{n} \subseteq R^{n+k}$, then $\gamma^{i}\left(v_{0}\right)=0$ for $i>k$,
(ii) If $M^{n} \subset R^{n+k}$, then $\gamma^{i}\left(v_{0}\right)=0$ for $i \geqq k$.

Now let $M^{m+2 n}=P(m, n)$ and recall that for $P(m, n)$ we have $\tau \Theta \zeta \oplus 2=(m+1) \zeta \oplus$ $(n+1) \eta$ so that in $\tilde{K} O(P(m, n))$ we have

$$
v_{0}=-\tau_{0}=-m x-(n+1) z=-(m+n+1) x-(n+1) y
$$

where $\tau=\tau(P(m, n))$. Since γ, is a homomorphism, we have

$$
\gamma_{t}\left(v_{0}\right)=\gamma_{t}(x)^{-(m+n+1)} \gamma_{l}(y)^{-(n+1)} .
$$

Clearly the geometrical dimensions of x and y are 1 and 2 , respectively, so $\gamma_{1}(x)=1+x t$ and $\gamma_{t}(y)=1+y t+\gamma^{2}(y) t^{2}$. To compute $\gamma^{2}(y)$ we make use of the following two elementary lemmas.

Lemma (2.10). If ζ^{2} is any 2-plane bundle over X, then $i^{2}\left(\zeta^{2}\right)$ is the determinant bundle. In particular, $\lambda^{2}\left(\zeta^{1} \oplus 1\right)=\zeta^{1}$ for any line bundle ζ^{1}.

Proof. Let $A: R^{2} \rightarrow R^{2}$ be a linear transformation which, with respect to a given basis e_{1}, e_{2} is represented by the matrix

$$
\left(\begin{array}{ll}
x_{11} & \alpha_{12} \\
x_{21} & \alpha_{22}
\end{array}\right) .
$$

For the second exterior power of $A, \Lambda^{2} A: \Lambda^{2} R^{2} \rightarrow \Lambda^{2} R^{2}$, we have

$$
\Lambda^{2} A\left(e_{1} \wedge e_{2}\right)=A\left(e_{1}\right) \wedge A\left(e_{2}\right)=\left(\chi_{11} \alpha_{22}-\alpha_{12} \alpha_{21}\right) e_{1} \wedge e_{2}=(\operatorname{det} A) e_{1} \wedge e_{2}
$$

Hence $\lambda^{2} \zeta^{2}$ is the determinant bundle. The second statement is an immediate consequence of the first.

Let v^{k} denote the universal k-plane bundle over the classifying space $B_{O_{(k)}}$. There is an inclusion map $i: B_{O(1)} \rightarrow B_{O(2)}$ such that $i^{*} v^{2}=v^{\prime} \oplus 1$. Together with Theorem 8 of [10] this equivalence implies that $i^{*}: H^{1}\left(B_{O(2)} ; Z_{2}\right) \rightarrow H^{1}\left(B_{\left.O_{11}\right)} ; Z_{2}\right)$ is a monomorphism.

Lemma (2.11). $w_{1}\left(i^{2}\left(v^{2}\right)\right)=w_{1}\left(v^{2}\right)$.
Proof. Since i^{*} is a monomorphism, it suffices to show that $i^{*} w_{1}\left(\lambda^{2}\left(v^{2}\right)\right)=i^{*} w_{1}\left(v^{2}\right)$. By (2.10) and naturality we have $i^{*} w_{1}\left(v^{2}\right)=w_{1}\left(i^{*} v^{2}\right)=w_{1}\left(v^{1}\right)=w_{1}\left(i^{2}\left(v^{1} \oplus 1\right)\right)=w_{1}\left(i^{2}\left(i^{*} v^{2}\right)\right.$ $=i^{*} u_{1}\left(i^{2}\left(v^{2}\right)\right)$.

Hence for any 2-plane bundle $\zeta^{2} w_{1}\left(\lambda^{2}\left(\zeta^{2}\right)\right)=w_{1}\left(\zeta^{2}\right)$; moreover, $\lambda^{2}\left(\zeta^{2}\right)$ is determined by this formula since it is a line bundle. In particular, $\dot{\lambda}^{2}(\eta)=\bar{\zeta}$ since $w_{1}(\eta)=c=w_{1}(\zeta)$.

To simplify our computation, we collect together the following elementary facts:
(1) $\gamma^{2}=\lambda^{1}+i^{2}$.
(2) $i^{i}(a+b)=\sum_{j=0}^{i} \lambda^{i-j}(a) \lambda^{j}(b)$.
(3) $\gamma^{i}(a+b)=\sum_{j=0}^{i} \gamma^{i-j}(a) \gamma^{j}(b)$.
(4) $\gamma^{2}(-x)=x^{2}=-2 x$.
(5) $\lambda^{2}(-2)=3$.
(1) follows from inspection of the coefficients of t^{2} in the defining equation

$$
\gamma_{t}=\sum \dot{j}^{i} t^{i}=\sum \gamma^{i} t^{i}(1-t)^{-i}=\dot{i}_{\left(t^{\prime} ;(1)-t\right)} .
$$

(2) is property (C) in [2; $\$ 2$], and (3), as noted in [2] is a consequence of (2) and the definition of γ_{1}. Finally, (4) and (5) may be verified directly from

$$
\begin{aligned}
& \gamma_{t}(-x)=(1+x t)^{-2}=1-x t+x^{2} t^{2}-\cdots=1-x t-2 x t^{2}-\cdots \\
& \lambda_{r}(-2)=(1+t)^{-2}=1-2 t+3 t^{2}-\cdots
\end{aligned}
$$

Returning to the computation of $\gamma^{2}(y)$ we have

$$
\begin{aligned}
\gamma^{2}(y) & =\gamma^{2}(z-x)=\gamma^{2}(z)-x z+\gamma^{2}(-x)=\gamma^{2}(z)+2 x-2 x \\
& =\lambda^{2}(z)+\lambda^{\prime}(z)=\lambda^{2}(\eta-2)+z=\lambda^{2}(\eta)-2 \eta+\lambda^{2}(-2)+z \\
& =\xi-2 \eta+3+z=x-2 z+z=x-z=-y .
\end{aligned}
$$

The full application of (2.9) for the non-immersion and non-embedding of $P(m, n)$ in $R^{m+2 n+k}$ requires the identification of the highest power of t having non-zero coefficient $\gamma^{i}\left(v_{0}\right)$ in the expansion of $\gamma_{t}\left(y_{0}\right)$. We make use of the relations $x y=0$ and $x^{2}=-2 x$. Substituting we have

$$
\gamma_{t}\left(v_{0}\right)=(1+x t)^{-(m+n+1)}\left(1+y t-y t^{2}\right)^{-(n+1)}
$$

and so the coefficient of t^{i} is

$$
\gamma^{i}\left(v_{0}\right)=\binom{m+n+i}{i} x^{i}+\sum_{j=\left[\frac{i+1}{2}\right]}^{i} x_{i j} y^{i}= \pm 2^{i-1}\binom{m+n+i}{i} x+\sum_{j=\left[\frac{i+1}{2}\right]}^{i} \alpha_{i j} y^{i}
$$

where the $\alpha_{i j}$ are non-zero integers (the relation $x y=0$ kills all mixed product terms). Writing $1+y t-y t^{2}=1+y t(1-t)$, we see that $\alpha_{h 4} y^{h}$ appears in the coefficient of $t^{2 h}$. Although $y^{h+1}=0$ is shown in [14], $j^{\prime} y=\tilde{y}$ and Theorem (2.3) easily imply that y^{h} is independent of $y^{h+r}, r>0$. Hence the coefficient of $t^{2 h}$ is non-zero since $\alpha_{2 h, h} \neq 0$.
Using the function $\sigma^{*}(m, n)$ defined in the introduction, we obtain
Theorem (2.12).
(i) $P(m, n) \nsubseteq R^{m+2 n+\sigma *(m . n)-1}$
(ii) $P(m, n) \nsubseteq R^{m+2 n+\sigma^{*}(m . n)}$.

§3. REMARKS

(1) Many known results relating immersions and embeddings to Stiefel-Whitney classes may be applied to $P(m, n)$. In particular, we shall consider
(i) If $M^{n} \subseteq R^{n+k}$, then $\bar{w}_{i}=0$ for $i>k$.
(ii) If $M^{n} \subset R^{n+k}$, then $\bar{w}_{i}=0$ for $i \geqq k$.
(iii) [5] If $0 \leqq k<2(n-4)$, then $M^{n} \subset R^{2 n-k-1}$ if and only if $\bar{W}_{n-k-1}=0$. (\bar{W}_{i} denotes the—possibly twisted- $i^{\text {th }}$ dual Stiefel-Whitney class of M^{n}.)
(iv) [7] Let M^{n} be orientable, $n>4$. If n is even, then $M^{n} \subseteq R^{2 n-2}$ if and only if $\bar{w}_{2} \cdot \bar{w}_{n-2}=0$; if n is odd, then $M^{n} \subseteq R^{2 n-2}$.
(v) [8] Let M^{n} be orientable. If $n \equiv 1 \bmod 4$, then $M^{n} \subseteq R^{2 n-3}$ if and only if $\bar{w}_{2} \cdot \bar{w}_{n-3} \in$ Image $\left(S q^{1}\right)$; if $n \equiv 0 \bmod 4$ and $\bar{w}_{2}=0$, then $M^{n} \equiv R^{2 n-1}$ implies $\bar{w}_{4} \cdot \bar{w}_{n-1}=0$.

The application of (3.1) to $P(m, n)$ requires some $\bmod 2$ arithmetic.
Lemma (3.2). ([13]) $\binom{b}{a} \equiv 1$ mod 2 if and only if the non-zero terms in the dyadic expansion of a are a subset of those of b.

Lemma (3.3).
(i) $\binom{2^{s}-1}{t} \equiv 1 \bmod 2$ for $1 \leqq t \leqq 2^{s}-1$.
(ii) If $\binom{2 m-1}{m-1} \equiv 1 \bmod 2$, then $m=2^{s}, s \geqq 0$.
(iii) If $\binom{2 m-2}{m-2} \equiv 1 \bmod 2$, then $m=2^{s}, s \geqq 1$.
(iv) $\binom{2 m}{m} \equiv 0 \bmod 2$ for $m>0$.
(v) $\binom{n+t}{t} \equiv 0 \bmod 2 \quad$ for $\quad t=1, \ldots, n$ if and only if $n=2^{s}-1, s \geqq 1$.
(3.2) implies (3.3) via the inspection of certain dyadic expansions.

Throughout the remainder of this section $n(\tau(P(m, n)))$ will be abbreviated $n(m, n)$ or w whenever the meaning is clear. Similarly, for w_{i}, etc.

Corollary (3.4). $\because(m, n)=1$ if and only if $(m, n)=\left(2^{t}-2^{s}, 2^{s}-1\right), t \geqq s \geqq 0$.
Proof. For $(m, n)=\left(2^{t}-2^{s}, 2^{s}-1\right), t \geqq s \geqq 0$, $n(m, n)=(1+c)^{2 t-2^{s}}(1+c+d)^{2 s}=$ $(1+c)^{2 t}=1+c^{2 t}=1$. Conversely, if $w(m, n)=1$, then $(1+c)^{m}=(1+c+d)^{-(n+1)}$ and hence, the coefficient $\binom{n+t^{\prime}}{t^{\prime}}$ of $d^{r^{\prime}}$ in the expansion of the right member is $0 \bmod 2$ for all $t^{\prime}=1, \ldots, n$, whence $n=2^{s}-1$ by (3.3)(v). But this gives $(1+c)^{m}=(1+c+d)^{-2^{s}}=$ $(1+c)^{-2 x}$ and $(1+c)^{m+2^{s}}=1$, from which it follows that $m+2^{s}=2^{t}, t \geqq s$.
(3.4) is useful for comparing dual Stiefel-Whitney classes to γ^{i} operators for nonimmersion, non-embedding results for $P(m, n)$; e.g. if $(m, n)=\left(2^{r}-2^{s}, 2^{s}-1\right), \sigma^{*}(m, n)=$ $\max \left(\sigma\left(2^{t}-1\right), 2^{s}-2\right) \geqq \max \left(2^{t-2}, 2^{s}-2\right), t \geqq 4$ since $\sigma\left(2^{t}-1\right) \geqq 2^{t-2}$ if $t \geqq 4$ [2].

Corollary (3.5) $\bar{w}_{m+2 n-1} \neq 0$ if and only if $(m, n)=\left(2^{s}, 0\right)$.
Proof. In one direction this is a well-known result about real projective spaces. Suppose $\bar{w}_{m+2 n-1} \neq 0$. Then $\bar{w}_{m+2 n-1}=c^{m-1} d^{n}$, the only non-zero class of dimension $m+2 n-1$. But $\bar{w}=(1+c)^{-m}(1+c+d)^{-(n+1)}$ and the coefficient $\binom{2 m-1}{m-1} \cdot\binom{2 n}{n}$ of $c^{m-1} d^{n}$ is 0 unless $m=2^{s}, s \geqq 0$ by (3.3)(ii) and $n=0$ by (3.3)(iv).

Define sets

$$
\begin{aligned}
& A_{1}=\left\{\left(2^{s}, 0\right): s \geqq 1 ;\right. \\
& A_{2}=\left\{\left(0,2^{s}\right): s \geqq 1\right\} \\
& A_{3}=\left\{\left(2^{s}, 2^{t}\right): 0 \leqq s \leqq l_{;}^{\prime}\right. \\
& A_{4}=\left\{\left(2^{s}-1,1\right): s \geqq 1\right\} \\
& A_{5}=\left\{\left(m, 2^{t}\right): 2^{t+1} \leqq m \quad \text { and }\binom{2 m+2^{t+1}-1}{m} \equiv 1 \bmod 2\right\} \\
& A=\bigcup_{i=1}^{5} A_{i}
\end{aligned}
$$

Corollary (3.6). $\bar{w}_{m+2 n-2} \neq 0$ if and only if $(m, n) \in A$. Moreoter, if $\bar{w}_{m+2 n-2} \neq 0$ with $n>0$, then $\bar{w}_{m+2 n-2}=c^{m} d^{n-1}$.

Proof. In one direction the first statement can be verified directly, so we concern ourselves only with the converse. Suppose $\bar{w}_{m+2 n-2} \neq 0$. If $n=0$ or $m=0$, it is easily seen that $(m, n) \in A_{1}$ or $(m, n) \in A_{2}$, respectively, so we may assume $m, n>0$. Then $\bar{w}_{m+2 n-2}=$ $c^{m}\left(d^{n-1}\right.$ because the coefficient of $c^{m-2} d^{n}$ is $x \cdot\binom{2 n}{n}$ which is $0 \bmod 2$ by (3.3)(iv). Let $2^{t} \leqq n+1<2^{t+1}$. Then $\bar{w}=(1+c)^{-\left(m+2^{t+1}\right.}(1+c+d)^{2^{t-1}-(n+1)}$ with $2^{t+1}-(n+1) \geqq$ $n-1$. Hence $2^{t+1}-2 \leqq 2 n \leqq 2^{t+1}$ and $n=2^{t}-1$ or $n=2^{t}$. If $n=2^{t}-1$, then $\bar{w}=$ $(1+c)^{-\left(m+2^{t}\right)}$ and so $n=1$. If also $m<2$, then $m=n=1$ and $(m, n) \in A_{4}$. If $m \geqq 2$ and $n=1$, then $\bar{n}=(1+c)^{-(m+2)}$ and $\bar{w}_{m}=\binom{2 m+1}{m} c^{m}=\binom{2 p-1}{p-1} c^{\prime \prime \prime}$ where $m=p-1$, thus $m=p-1=2^{s}-1$ by (3.3) (ii), i.e. $(m, n) \in A_{4}$. Finally if $n=2^{t}$ and $m<2^{t+1}$, then $\bar{w}=(1+c)^{-m}(1+c+d)^{2 t-1}$ and $\bar{w}_{m+2 n-2}=\binom{2 m-1}{m}\binom{2^{t}-1}{2^{t}-1} c^{m} d^{n-1}$ and so by $(3.3)($ ii $)$ $m=2^{s}$ and $(m, n) \in A_{3}$. If $n=2^{t}$, and $2^{t+1} \leqq m$, then $\bar{w}=(1+c)^{-\left(m+2^{t+1}\right)}(1+c+d)^{2 t-1}$ and $\bar{w}_{m+2 n-2}=\binom{2 m+2^{t+1}-1}{m}\binom{2^{t}-1}{2^{t}-1} c^{m} d^{n-1}$ and so $(m, n) \in A_{5}$.

We may now apply (3.1)(iii)-(v) to $P(m, n)$.
Theorem (3.7).
(i) $P(m, n) \subset R^{2(m+2 n)-1}$ if and only if $(m, n) \notin A_{1} ;$ moreover, if $(m, n) \in A-A_{1}$, this result is best possible.
(ii) An orientable $P(m, n) \subseteq R^{2(m+2 n)-2}$ if and only if $(m, n) \notin A_{2}$.
(iii) If $(m, n)=(4 s+1,2 t)$, then $P(m, n) \subseteq R^{2(m+2 n)-3}$.

Proof. (i) If $P(m, n) \subset R^{2(m+2 n)-1}$, then $\bar{w}_{m+2 n-1}=0$ by (3.1)(ii) and so (m, n) $\notin A_{1}$, for otherwise $\bar{w}_{m+2 n-1}=\bar{w}_{m-1}=c^{m-1} \neq 0$. Conversely, if $m>0,(m, n) \notin A_{1}$ implies that $\bar{w}_{m+2 n-2}=c^{m} d^{n-1}$ (the only non-zero element in dimension $m+2 n-2$) or 0 . But if T^{2} denotes the torsion subgroup of $H^{2}(P(m, n) ; Z)$ and ρ denotes reduction mod 2 , then $\rho T^{2}=Z_{2}$ with generator c^{2} if $m \geqq 2$, or $\rho T^{2}=0$ if $m<2$. Hence $\bar{w}_{m+2 n-2} x=0$ for any $x \in \rho T^{2}$ and so by Lemma 8 of [9] $\bar{W}_{m+2 n-1}=0$. Now (i) follows from (3.1)(iii).
(ii) If $(m, n) \in A_{2}$, then $\bar{w}_{2 n-2}=d^{n-1}$ by (3.3)(i). Since $\bar{w}_{2}=d$, then $\bar{w}_{2 n-2} \bar{w}_{2}=$ $d^{n} \neq 0$, hence $P(m, n) \neq R^{2(m+2 n)-2}$ by (3.1)(iv). Conversely, if m is odd and so $m+2 n$ is odd, then $P(m, n) \subseteq R^{2(m-2 n)-2}$ by (3.1)(iv); if m is even, then n is odd and $(m, n) \subseteq A$, thus $\bar{w}_{m+2 n-2}=0$ and the result again follows from (3.1)(iv).
(iii) If $(m, n)=(4 s+1,2 t)$-thus $P(m, n)$ is orientable-then $S q^{1}\left(c^{m-2} d^{n}\right)=c^{m-1} a^{n}$ thus implying that $S q^{1}: H^{m+2 n-2}\left(P(m, n) ; Z_{2}\right) \rightarrow H^{m+2 n-1}\left(P(m, n) ; Z_{2}\right) \cong Z_{2}$ is an epimorphism. Hence (iii) is a direct consequence of (3.I)(v).
(2) From (1.5) we may compute the characteristic classes of $P(m, n)$. It is easily verified that the total rational Pontrjagin class of $P(m, n)$ is given by $p=\left(1+d^{2}\right)^{n+1}$, $d^{2} \in H^{4}(P(m, n) ; Q)$. Hence, applying (6.1) of [2] for $M^{m+2 n}=P(m, n)$, we have that

$$
\begin{aligned}
& P(m, n) \nsubseteq R^{m+2 n+k} \quad \text { where } k=2\left[\frac{n}{2}\right]-1 \\
& P(m, n) \notin R^{m+2 n+k} \quad \text { where } k=2\left[\frac{n}{2}\right] .
\end{aligned}
$$

For $m=0$ this result agrees with (2.12) thus verifying a remark of Atiyah [2]. Noting that $j^{*} p=\tilde{p}$, the total rational Pontrjagin class of $C P_{n}$, it follows that the methods of [3] (based on the \hat{A}-genus) applied directly to $P(m, n)$ are no better than those obtainable from [3] using the composite embedding $C P_{n} \rightarrow P(m, n) \rightarrow R^{m+2 n+k}$.
(3) Since the two-fold covering $\Phi: S^{m} \times C P_{m} \rightarrow P(m, n)$ is itself an immersion, it can be used to translate non-immersion theorems for $C P_{n}$ into the same for $P(m, n)$. More precisely, if $f: P(m, n) \rightarrow R^{n+2 n+k}$ is an immersion, then so is $f \circ \Phi: S^{m} \times C P_{n} \rightarrow R^{m+2 n+k}$. By a theorem of M. Hirsch [6], this implies that $C P_{n} \subseteq R^{2 n+k}$. Hence the non-immersibility of $C P_{n}$ with codimension k implies the same for $P(m, n)$. When m is small with respect to n, this idea together with (3.1)(iv) and some results of [12] should give better results than (2.12)(i). However, as m increases we should expect the reverse.

For example, $P(1, n) \subseteq R^{4 n}$ for $n=2^{r}$ by (3.1)(iv), but $P(1, n) \subseteq R^{+n-1}$ (more generally, $P(m, n) \nsubseteq R^{4 n+m-2}$) because $C P_{n} \ddagger R^{4 n-2}$ for this choice of n. Hence this is best possible.
(4) Our concluding remark, extending Theorem (4.1) of [11], solves the immersion problem for $P(m, 1), m \leqq 8$.

Theorem (3.8). $P(m, 1) \subseteq R^{2 f}$ where $f=\varphi(m)$ and $m \neq 2,6, P(2,1) \subseteq R^{5}$ and $P(6,1)$ $\subseteq R^{9}$.

Proof. For $P(m, n)$ we have by (1.5) that $\tau \oplus \zeta \oplus 2=(m+1) \xi \oplus(n+1) \eta$ and so in $\tilde{K} O(P(m, 1)),-T_{0}=-(T-(m+2 n))=-(m+2) x=\left(2^{f}-(m+2)\right) x$ (here we use the fact that $2 y=0$; note for $n>1$, this is not true $)$. Hence g. $\operatorname{dim}\left(-T_{0}\right) \leqq\left(2^{f}-(m+2)\right)$. $g . \operatorname{dim}(x)=2^{f}-(m+2)$. Thus by Theorem (2.1) of [11] $P(m, 1) \subseteq R^{2 f}$. $T_{0}=0$ for the exceptional cases $m=2,6$, and so the codimension is one. By explicit computation of $\bar{w}(m, 1)$, this is shown to be best possible for $m \leqq 8$.

REFERENCES

1. J. F. Adams: Vector fields on spheres, Ann. Warh. 75 (1962), 603-632.
2. M. F. Atiyah: Immersions and embeddings of manifolds, Topology 1 (1962), 125-132.
3. M. F. Atiyah and F. Hirzebrlech: Quelăues thécremes de non-plongement pour les variétés différentiables, Bull. Soc. Math. Fr. 87 (1959), 383-396.
4. A. Dold: Erzeugende der Thomschen Algebra Ni, Math. Z. 65 (1956), 25-35.
5. A. Haefliger and M. Hirsch: On the existence and classification of differentiable embeddings, Topology 2 (1963), 129-135.
6. M. Hirsch: Immersions of manifolds, Trals. Am. Math. Soc. 93 (1959), 242-276.
7. M. Mahowald: On obstruction theory in orientable fiber bundles, Trans. Am. Math. Soc. 110 (1963), 420-429.
8. M. Mahowald and F. Peterson: Secondary cohomology operations on the Thom class, Topology 2 (1963), 367-377.
9. W. S. Massey and F. Peterson: On the dual Stiefel-Whitney classes of a manifold, Bol. Soc. Mat. Mex. 8 (1963), 1-13.
10. J. Mhnop: Lectures on characteristic classes (mimeographed notes) Princeton University, 1957.
11. B. J. Sanderson: Immersions and embeddings of projective spaces, Proc. London Math. Soc. 14 (1964), 137-153.
12. B. J. Sanderson and R. L. E. Schwarzenberger: Non-immersion theorems for differentiable manifolds, Proc. Camb. Phil. Soc. 59 (1963), 319-322.
13. N. Steenrod and J. H. C. Whitehead: Vector fields on the n-sphere, Proc. Nath. Acad. Sci. U.S.A. 37 (1951), 58-63.
$14 \mathrm{~J} . \mathrm{J} . \mathrm{UccI}$: The K-theory of Dold manifolds (to appear).
Massachusetts Institute of Technology

[^0]: \dagger The material of this paper represents a portion of a thesis submitted to the University of California, Berkeley, in partial fulfil!ment of the requirements for the degree of Doctor of Philosophy.

