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A 1D Fokker–Planck simulation of DNA translocation through an electropore under finite pulses is presented.
This study is motivated by applications relevant to DNA electrotransfer into biological cells via electroporation.
The results review important insights. The translocationmay occur on two disparate time scales, the electropho-
retic time (~ms), and the diffusive time (~s), depending on the pulse length. Furthermore, a power-law correla-
tion is observed, F-PST~(Vmtp)a/Nb, where F-PST is the final probability of successful translocation, Vm is the
transmembrane potential, tp is the pulse length, and N is the DNA length in segments. The values for a and b
are close to 1 and 1.5, respectively. The simulated results are comparedwith previous data to interpret the trends.
In particular, the diffusive time scale is used to explain the frequency dependence observed in electroporation
experiments with uni- and bi-polar pulse trains. The predictions from the current model can be harnessed to
help design experiments for the further understanding and quantification of DNA electrotransfer.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Thephenomenon termed “electroporation”or “electropermeabilization”
has wide applications in many fields [1–10]. The membrane becomes
significantly permeabilized when the transmembrane potential (TMP)
exceeds a critical threshold [11–18]. (A list of abbreviations is given in
Table 1.) The generation of conducting electropores on the membrane
[19] has been a widely-accepted theory to explain this phenomenon.
The characteristics of these pores have been investigated by both
theoretical models [20–26] and experimental measurements [27–30].
The delivery of small molecules is likely mediated by electrophoresis
and diffusion through these transient openings. Based on this under-
standing, model studies [31–34] have been carried out to quantify the
transfer of small ions into the cell, which generated predictions in
good agreement with experimental data [29,35,36]. On the other
hand, the transfer of large molecules such as DNA is presumably more
complex. Although many studies have been carried out to optimize
the transfection efficiency (TE) [37–45], the approach is primarily
empirical, and a comprehensive understandinghas yet to be established
[46].

One of the key differences between the delivery of DNA and small
molecules is that the former staysmuch longer at themembrane, forming
the so-calledDNA–membrane complex [47–51]. The detailed structure of
these complexes is still under debate. One theory hypothesizes that the
internalization of DNA is facilitated by endocytosis, which we term the
“endocytosis theory” [52–55]. In particular, a recent work by Wu et al.
+1 732 445 3124.
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found that the TE is significantly decreased if certain endocytic mecha-
nisms were inhibited, providing support for this hypothesis [53]. The
results are, however, not yet conclusive. For example, a recent experi-
ment by Pavlin et al. [56] indicates no significant correlation between
the field strength and intracellular vesiculation, which is presumably
required for endocytosis.

Meanwhile, othermechanisms for DNA electrotransfer have not been
sufficiently explored. In this work, we focus on the so-called “transloca-
tion theory”. In this theory, macromolecules also go through the mem-
brane like the small ones. However, the process is more complex due
to their polymeric nature, and the translocation time can be long, which
potentially explains the long coherence time of the DNA–membrane
complex [47,50]. We are motivated by experimental observations from
the literature. In Sukharev et al., the authors observed that the existence
of DNA in the buffer solution greatly enhanced cell uptake for smaller
molecules such as Dextrans [57]. This observation can be explained by
prolonged and enlarged pore openings due to DNA molecules “stuck”
within the pore. Another typical finding in electroporation research is
that the combination of a strong short pulse (HV) with one or several
weak long pulses (LV) can enhance the TE greatly when compared with
using HV or LV alone [58–60]. In addition, the longer the second pulse,
the greater the TE [57]. This trend can be naturally explained from the
translocation perspective: the HV is mainly responsible for creating the
pores, whereas the LV assists DNA translocation electrophoretically. The
above arguments suggest that the translocation theory warrants further
examination. In particular, the development of a predictive model is
much needed, such as to generate quantitative data to directly correlate
with experimental observations.

In what follows, we present a stochastic model to study DNA trans-
location across an electropore driven by finite-time electric pulses. The
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Table 1
Abbreviations.

Abbreviation Definition

TMP Transmembrane potential
TE Transfection efficiency
PST Probability of successful translocation
F-PST Final probability of successful translocation
PDF Probability density function
PUT Probability of unsuccessful translocation

Table 2
List of model parameters.

Symbol Definition Value/Source

F Faraday constant 96,485 C/mol
kB Boltzmann constant 1.38×10−23 J/K
T Room temperature 298.15 K
lK The Kuhn-length of ds-DNA 100 nm [64]
lbp DNA base-pair length 0.34 nm
γ Constant for a self-avoiding chain 0.69 [62]
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model is based on previous developments [61–63] which were primarily
used to study DNA sequencing with synthesized or protein nanopores.
Themodel is capable of predicting the probability of successful transloca-
tion (PST) as a function of field strength, pulse length, and DNA size.
Furthermore,many important insights are reviewed, including the effects
of the electrophoretic and the diffusive time scales, and a power-law
correlation between the final probability of successful translocation
(F-PST) and the governing parameters. The simulated results are
compared with previous data to interpret the trends. In particular, the
diffusive time scale is used to explain the frequency dependence ob-
served in electroporation experiments with uni- and bi-polar pulse
trains. Most importantly, this work generates quantitative data which
can be tested and validated with well-defined experiments, to fur-
ther our understanding of the physical processes governing DNA
electrotransfer.
2. Model formulation

A schematic describing the physical problem is shown in Fig. 1.
The membrane is modeled as an infinitesimally thin plane separating
two regions, namely, I and II. A pore is embedded on the membrane.
The electric potentials of regions I and II are Φ1(t) and Φ2(t), respec-
tively. Note that Φ1(t) and Φ2(t) are spatial constants, leading to a
discontinuity known as the TMP, Vm=Φ1−Φ2. The DNA molecule
is modeled as a charged polymer chain consisting of N segments,
each with the Kuhn-length, lK (100 nm for double-strand DNA, see
Table 2) [64]. The polymer chain translocates through the pore as a
single strand, i.e., we do not consider hairpin structures [65]. The
number of segments in region II (the intracellular space) is denoted
by m. Correspondingly, the number of segments in region I is N−m.
In each region, the chain is assumed to be a random walk of m
(or N−m) segments pinned at the pore on one end. At each instant,
the chains are at thermodynamic equilibria.

Ourmodel follows that of Sung et al. [61], whichwas initially used to
simulate the translocation of a polymer through a membrane pore
under a constant potential difference. Thismodel has been subsequently
developed by Muthukumar and other authors [62,63]. The above
problem can be described by a one-dimensional Fokker–Planck
Fig. 1. A schematic of the problem. The membrane is an infinitesimally thin plain
separating region I (the extracellular space) and region II (the intracellular space).
The electric potential in each region is denoted by Φ.
equation governing the evolution of the probability density function
(PDF), P.

∂P m; tð Þ
∂t ¼ ∂

∂m
k0
kBT

P m; tð Þ ∂f m; tð Þ
∂m þ k0

∂
∂mP m; tð Þ

� �
: ð1Þ

Here P(m,t) is the probability density of havingm segments in region
II at time t. The probability of having N segments in region II is the prob-
ability of successful translocation. kB and T are the Boltzmann constant
and temperature, respectively. k0 is the effective rate of change coeffi-
cient, and is given by the formula:

k0 ¼ D0

L2
; L ¼ 0:918lK

N0:4 ; ð2Þ

where D0 is the effective chain diffusivity during translocation, and L is
a characteristic length derived from the radius of gyration, Rg. f is the
Helmholtz free energy, and consists of contributions from three parts:

f m; tð Þ
kBT

¼ 1−γð Þln mþ 1ð Þ þ 1−γð Þln N−mþ 1ð Þ þm
Δμ
kBT

: ð3Þ

On the right-hand side of the above formula, the first two terms are
the entropic energies of m and N−m segments, respectively [66],
where γ is a constant (Table 2). The third term represents the total
electrostatic energy summed for all segments, where

Δμ ¼ ~zseVm; if 0btbtp:
0; if t > tp:

�
ð4Þ

~zs is the effective charge number per segment, e is the electron charge,
Vm is the TMP introduced above, and tp is the pulse length. Note that our
formulation deviates slightly from the previous work in two aspects.
First, the effective rate of change coefficient, k0, is derived from the
chain diffusivity D0 from a scaling analysis. Second, the effective charge
number per segment, ~zs is specified according to previous experimental
measurements. The details of the derivations and arguments are found
in Appendix A.

Eqs. (1)–(4) are solved numerically using a second-order finite-
volume method. The convective term in Eq. (1) is discretized using
an upwind scheme. A Crank–Nicolson algorithm is used to integrate
the diffusive term in time. At the ends of the computational domain,
m=0 and N, we employ absorbing boundary conditions [61,67].
Namely,

P m ¼ 0;N; tð Þ ¼ 0: ð5Þ

In adopting Eq. (5), we assume that once the chain leaves the pore
from either side, it will never return. This assumption is consistent
with the fact that the entropic energy drops abruptlywhen the chain de-
parts from themembrane. The flux atm=0 is collected, whichwe term
the probability of unsuccessful translocation (PUT). The flux atm=N is
collected and termed the probability of successful translocation (PST).

For initial condition, we assume a narrow-band Gaussian distribution
approximating a delta function and satisfying the normalization condi-
tion∫

0

N
P(m,t=0)dm=1. Formost of the cases studied below, the center

of the initial profile is located at m0=0.2. The standard deviation of the



Fig. 2. Evolution of the PDF, P(m, t), for a DNA chain of N=24. The initial location is
m0=0.2, the TMP is Vm=0.2 V and the pulse length is tp=5ms. In Fig. 2d, the PUT
and the PST are indicated at the artificial nodes of m=−1 and 25, respectively.

Fig. 4. Evolution of the PST for the cases studied in Figs. 2 and 3. The end of the pulse is
marked by dash-dotted lines. The final probability of successful translocation (F-PST) is
defined as the value of the PST when it reaches the final steady state and is indicated.
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Gaussian distribution is chosen to be 0.05. In choosing this initial condi-
tion, we assume that a small fractional segment of the polymer chain is
already inserted into the pore. Other initial locations (m0=0.1, 0.5, 1,
and 1.5) are also studied to examine the effects of initial condition in
Section 3. All model parameters are listed in Table 2.

3. Results

In what follows, we first present results using a DNA polymer
chain of N=24, which approximately corresponds to a linear length
of 7.2 kbp. We assume the initial location is m0=0.2. The effects of
DNA length and initial location are studied later.

Fig. 2 demonstrates the typical evolution of the PDF, P(m, t), subject
to a TMP of Vm=0.2 V and a pulse length of tp=5ms. The pulsing
parameters are chosen according to the experiments from Sukharev et
al. [57] and a comparison with the data is presented later. During the
pulse (Fig. 2a–c), the peak spreads by diffusion, and is pushed toward
the right under the influence of the electrophoretic force. After the
pulse ceases, the profile experiences diffusion only and spreads further
toward the ends of the domain (Fig. 2d). At each instant, the PUT and
the PST are collected and their values are presented at the artificial
nodes of m=−1 and 25, respectively. However, they are only large
enough to be visible in Fig. 2d. At a sufficiently long time, the PDF will
become uniformly zero (not shown) due to the absorbing boundary
conditions, and the sum of the PUT and the PST will reach one.
Fig. 3. Evolution of the PDF, P(m,t), for a pulse length of tp=20ms. All other parameters
are identical to those used in Fig. 2.
In Fig. 3, the results for a longer pulse of tp=20ms are shown. All
other parameters are identical to those used in Fig. 2. In contrast to
Fig. 2, the electrophoretic force drives the PDF peak toward the right
(Fig. 3a–c) until it reaches the end of the domain (Fig. 3d). At t=15ms,
the PST is already reaching one. For this case, the longer pulse ensures
the definitive success of translocation.

The evolution of the PST is more clearly shown in Fig. 4, where it
is plotted as a function of time for the two cases studied above. For
tp=5ms, the PST is very small at the end of the pulse. Indeed, as indicat-
ed in Fig. 2c, at this time the PDF is centered at aroundm=11.75.Most of
the PST increment occurs by the slow diffusive process post-pulsation.
This time scale is much longer (s) when comparedwith the pulse length.
On the other hand, for tp=20ms, we observe that the PST increases
sharply to one when the pulse is still present. Fig. 4 demonstrates that
two time scales may manifest during the translocation process. If the
pulse is not able to completely translocate the chain during its presence,
then translocation occurs on the slow diffusive time scale (s). On the
contrary, if the pulse is sufficiently long, then translocation occurs on
the much shorter electrophoretic time scale (ms).

For both of the cases in Fig. 4, the PST reaches a steady-state value
given sufficient time.We term this value the “final probability of success-
ful translocation” (F-PST), and examine its dependence on the pulse
length in Fig. 5. In addition to Vm=0.2 V, we also study two other
cases, namely, Vm=0.4 and 0.6 V. For each value of the TMP, the F-PST
increases until it saturates at a value very close to 1. Furthermore, the
F-PST increases along with an increasing TMP. This trend is examined
in detail in Fig. 6, where the contours of the F-PST are shown in the
phase space of Vm and tp. The contour lines are linear and parallel,
with slopes close to −1, suggesting that to reach the same value of
the F-PST, Vm and tp obey a reciprocal correlation. In other words, the
product of Vm and tp is constant along the contours. For the contour
of F-PST=0.99, Vm×tp≈2.23 V·ms. The latter value can be used to
define a threshold of pulsing parameters for successful DNA delivery.
Fig. 5. The F-PST as a function of the pulse length, tp, for Vm=0.2, 0.4, and 0.6 V. Other
parameters are identical as those used in Fig. 2.
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Fig. 6. Contour plot of the F-PST in the phase space of the TMP (Vm) and the pulse
length (tp). The slopes for the contour lines are approximately −1, indicating that
Vm× tp≈Constant.
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We remark that the reciprocal relation between Vm and tp reflects
that electrophoresis is the main driving mechanism for translocation.
In fact, the F-PST depends strongly on the peak position of the PDF
at the end of the pulse. The distance that the peak travels is simply
proportional to the product of the electrophoretic velocity and time.
Because the drifting velocity has a linear dependence on the TMP
(see Eqs. (1)–(4)), we observe the behavior above.

The effect of DNA size on the F-PST is next examined in Fig. 7. In
Fig. 7a, the F-PST is plotted as a function of the DNA segment number,
N, for tp=5,10, and 20 ms. The F-PST in general decreases as N
increases and tp decreases. The correlation between the F-PST and N
is close to a power law, F-PST~N−1.5. In Fig. 7b, the F-PST is shown
as contours in the phase space of N and tp. The contour space lines
Fig. 7. The effect of DNA size on translocation probability. (a) The F-PST as a function of
the DNA segment number, N, for tp=5, 10, and 20 ms. The descending part of the
curves follows approximately the correlation, F-PST∼N−1.5. (b) Contour plot of the F-PST
in the phase space of N and tp. The contours are straight and parallel lines following the
approximate correlation N∼tp

0.75.
are again linear and parallel, with slopes close to 0.75, suggesting a
power-law correlation between N and tp.

The results from Figs. 6 and 7 together suggest a similarity behavior
of the F-PST as a function of Vm, tp, and N. We have run 568 simulations
with Vm ranging from 0.1 to 1 V, tp from 0.01 to 100 ms, and N from 17
to 134 (corresponding to DNA sizes from 5 kbp to 40 kbp). The data is
shown in Fig. 8a and is well-fitted with the correlation,

F‐PST ¼ C �
Vmtp

� �a

Nb
; ð6Þ

where C=45.0, a=1.1, and b=1.46. These constants are obtained
by minimizing the fitting error. The coefficient of determination is
R2≈0.999, indicating that the formula (Eq. (6)) accurately captures
the data trend.

In generating the previous results, we have assumed m0=0.2. This
initial location corresponds to the electrophoretic insertion induced by
a prior pulse of Vm=1 V and tp=18.5 μs. This pulse is comparable to
the first 10-μs strong pulse (HV) used in Sukharev et al. [57]. In
Fig. 8b, the effect of a varying m0 is studied. We run the simulations
for m0=0.1, 0.5, 1, and 1.5 for the same range of Vm, tp, and N values
considered in Fig. 8a. For each value of m0, 106 cases are studied. We
find that the change in m0 does not cause appreciable deviation from
the power-law behavior. The collection of data is best-fitted with the
correlation, F-PST=60.0×(Vmtp)1.07/N1.51. The powers a and b only
slightly differ from those in Fig. 8a, and the coefficient of determination
is R2=0.946. We remark that asm0 becomes large, eventual departure
from Eq. (6) is expected (not shown). However, in the currentwork, we
focus on studying DNA translocationwith only a small segment initially
inserted.
Fig. 8. The similarity behavior of the F-PST as a function of Vm, tp, andN. (a)m0=0.2. The
squares represent simulated results for Vm ranging from 0.1 to 1 V, tp from 0.01 to 25 ms,
andN from17 to 134. The solid line is a least-squarefit, F-PST=45.0×(Vmtp)1.10/N1.46. The
coefficient of determination is R2=0.999. (b) The similarity behavior is also observed for
m0=0.1, 0.5, 1, and 1.5. The simulation is run for the same parametric range as in panel a,
and form0=0.1, 0.5, 1, and 1.5, the collection of data is best-fitted with the correlation
F-PST=60.0×(Vmtp)1.07/N1.51 (solid). The coefficient of determination is R2=0.946.
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Fig. 9. Simulated F-PST as a function of tp using parameters found in Sukharev et al.
[57]. The inset shows the original experimental data (stars) in terms of the TE measured
by fluorescent intensity.

Fig. 10. (a) Experimental results from Faurie et al. [50]. The fluorescence intensity
per viable cell is plotted as a function of the pulse repetition frequency. (b) Simulated
result using parameters from the experiment.
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4. Comparison with experiments

Direct, quantitative comparison with experimental data is difficult
due to the lack of sufficient details in the previous measurements. In
what follows, we compare and discuss the qualitative trends from our
simulation and two of the most relevant experimental studies in the
literature, namely, by Sukharev et al. [57] and Faurie et al. [50].

The study performed by Sukharev et al. used a two-pulse scheme to
electroporate simian Cos-1 cells. The first pulse is 6 kV/cm in strength
and 10 μs in duration. After a 100-μs delay, a second pulse of 0.2 kV/cm
was applied with the duration varying between 0 and 10 ms. The TE
was obtained as a function of the second pulse duration (see inset of
Fig. 9). In general, a near linear dependence is observed. The simulated
result using the current model is shown in Fig. 9. For this case we follow
the setup in Section 3. The initial PDF is centered atm0=0.2, and only the
second pulse from the experiment is considered. By using this configura-
tion, we assume that the first pulse is mainly responsible for pore
creation, and the initial insertion of the DNA into the pore. The average
DNA length is 7.2 kbp, orN=24. The TMP isVm=0.2 Vwhich is obtained
via the formula Vm=1.25ER [12], where E=0.2 kV/cm is the applied
field strength of the second pulse, and R=8 μm is the cell radius. The
simulated F-PST is plotted as a function of the pulse length, tp, in Fig. 9.
Although the F-PST and the TE are not the same, they are both measures
for the efficacy of DNA delivery, and we find comparable linear trends
in the simulation and the experimental data in Fig. 9. Previous theory
proposed that the increase in TE was induced by increased pore size
and population, or increased permeabilized area due to prolonged field
exposure [68]. Here we offer an alternative interpretation that longer
pulses enhance the probability of translocation, which manifests itself
as enhancement in TE.

Next, the experimental data by Faurie et al. [50] is examined. In these
experiments, a train of six uni-directional (uni-polar) or alternating
(bi-polar) pulses were applied to transfect CHO cells with plasmids of
4.7 kbp in average length. Each pulse was 1 ms in duration, with the
delay of 0.013, 0.1, 1, and 10 s, corresponding to repetition frequencies
of 77, 10, 1, and 0.1 Hz, respectively. The resulting fluorescence per cell
is shown in Fig. 10a.

The simulated results with m0=0.2, N=16, and the same pulsing
scheme as in Faurie et al. are presented in Fig. 10b. Although there are
noticeable differences between the data and the simulation, the latter
captures a few important features of the former. For the uni-polar
pulse, the simulation predicts a curve with the similar shape to that in
the experimental data. The F-PST begins to increase at approximately
1 Hz. For frequencies greater than 1 Hz, the F-PST reaches one asymptot-
ically, suggesting a high probability of successful delivery. For the bi-polar
pulse, the simulation captures the descending trend for frequencies
higher than 1 Hz.
The main difference between the data and the simulation is at the
lower frequencies. In the experiments, the bi-polar pulse results in a
TE higher than the uni-polar one, whereas in the simulation, these
two pulsing schemes lead to similar values of the F-PST. This effect is
possibly attributed to the fact that DNA molecules can enter the cell
from both sides under bi-polar pulses [39], enhancing the probability
of delivery. This mechanism is not included in the current model, and
is also likely responsible for the peak at 1 Hz shown in Fig. 10a.

The frequency dependence in the simulation is mediated by a diffu-
sive time scale, which we argue is responsible for the trends observed
in the experimental data. As we demonstrated in Section 3, if a single
pulse is not able to complete the translocation by electrophoresis, then
the translocation (either successful or unsuccessful) is governed by the
diffusive drifting of the polymer chain post-pulsation. For the plasmids
considered in Faurie et al., this time scale is Rg

2/D0=5.5 s, using
Rg=250 nm, and D0=1.13×10−14 m2/s (see Appendix A). At low
frequencies, the sufficient delay time between pulses ensures that the
translocation is completed, such that there's no compounding effect
between the individual pulses. For this case, the uni- and bi-polar pulses
do not behave differently according to the model, although in reality the
effect noted above may render the bi-polar pulse more advantageous. As
the frequency increases and the delay time decreases below the thresh-
old, additional uni-polar pulses help push-in the plasmids into the cell,
whereas bi-polar pulses tend to reverse the translocation, hence causing
the observed behavior.

However, we emphasize that in the experiments and between the
pulses, diffusive drifting of the chain may not be the only mechanism
at work. Endocytosis can be triggered at this stage, and the direct
interaction of the DNA molecule and the membrane may also play a
role. The complete intake of DNAmay thus be a complex process involv-
ing all these aspects. On the other hand, regardless of the specific nature,
the mechanism(s) needs to act on the characteristic time scale of a few
seconds to be able to explain the frequency dependence observed.

image of Fig.�9
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Fig. 11. Upon the completion of translocation, the center of mass translates by 2Rg,
where Rg is the radius of gyration.

2499M. Yu et al. / Biochimica et Biophysica Acta 1818 (2012) 2494–2501
Finally, we remark that although the above comparisons are only
qualitative, our theory can be verified with well-defined quantitative
experiments. For example, experiments similar to those by Sukharev
et al. can be repeated, but with a wider and controlled range of Vm, tp
and N values to validate the similarity behavior indicated by Eq. (6).
In particular, pulses with the same product, Vm× tp, should result in
similar values of TE. For uni-polar and bi-polar pulsing experiments,
different sizes of plasmids can be usedwhich leads to different diffusive
time scales, such that they may be detected in the measurements. In
addition, the length of each individual pulse can also be explored as a con-
trol parameter, such that the electrophoresis-dominant and diffusion-
dominant regimes can be differentiated.

5. Conclusions

In this work, we presented a 1D Fokker–Planck simulation for the
translocation of a DNA polymer through amembrane-bound nanopore,
within the context of electroporation-mediatedmolecular delivery. The
model provides a few important insights.

• The translocationmay occur on two disparate time scales, namely, the
electrophoretic time (~ms), and the diffusive time (~s). If the pulse is
sufficiently long to complete the translocation via electrophoretic
drifting, then the electrophoretic time scale is observed. Otherwise,
translocation completes (either successfully or unsuccessfully) on a
much longer diffusive time.

• The F-PST (the final probability of successful translocation) follows
the correlation,

F‐PST∼
Vmtp

� �a

Nb
:

The values of a and b are close to 1 and 1.5, respectively, for small
m0-values, or for DNA chains with small initial insertion distances.
The dependence of the F-PST on the product, Vm× tp, directly reflects
that translocation is primarily driven by electrophoretic drifting.

The simulation results are compared with experimental data from
previous studies. In particular, the diffusive time scale is proposed to
explain the frequency dependence observed in electroporation exper-
iments with uni- and bi-polar pulse trains. Another important contri-
bution of the work is that the model predicts trends and correlations
(such as Eq. (6)) that can be verified with well-defined experiments.

In this study, we begin with the initial condition that a small segment
of the polymer chain is already inserted into the pore, and the insertion
process itself is not considered. We remark that the latter is not a trivial
process, and the polymer chain needs to overcome an entropic barrier
to achieve this step. Muthukumar has used a continuummodel to exam-
ine this process, and solved for the steady-stateDNA capture rate in terms
of the entropic barrier height and location [67]. A similar model can be
developed, and be combinedwith the current one to improve the fidelity
of prediction. For example, such model can be used to possibly interpret
the formation of “DNA–membrane complexes” observed in experiments
[47–51].

Finally, the complete uptake of DNA is likely a complex process
involving many different mechanisms including electrophoresis, diffu-
sion, and endocytosis. The authors of the present work believe that
during the pulse, electrophoresis is the dominant mechanism in both
aggregating the molecules near the membrane, and transporting them
across. This modeling study thus may be harnessed to optimize DNA
electrotransfer by best taking advantage of electrophoretic transport.
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Appendix A

The main difference between the current model and previous ones
[61,62] is that we require a specific value for k0, which we determine
from D0, the chain diffusivity. The latter can be obtained from exper-
imental measurements. The relationship between k0 and D0 can be
derived by considering the Fokker–Planck equation in the natural
coordinate, namely, the center of mass of the entire chain, x:

∂P x; tð Þ
∂t ¼ ∂

∂x
D0

kBT
P x; tð Þ ∂f x; tð Þ

∂x þ D0
∂
∂x P x; tð Þ

� �
: ð7Þ

Comparing Eq. (7) with Eq. (1), and considering x=mL, we obtain
k0=D0/L2. Here, we take the characteristic length L to be 2Rg/N
(Fig. 11), where Rg is the radius of gyration. In otherwords, the transloca-
tion of the completeN segments is equivalent to a distance of 2Rg traveled
by the center of mass. Further considering that Rg=0.459lKN0.6, which is
derived for a polymer chain with one end pinned on a rigid wall [66], we
arrive at Eq. (2) in the proper text.

The bulk diffusivity of an N-segment DNA chain is found by the
measurements of Dauty et al. [69],

Dbulk ¼
1:344� 10−11

N0:68 m2
=s: ð8Þ

For the current model, we use a modified formula based on Eq. (8),

D0 ¼ αβDbulk: ð9Þ

The factor α arises from a reduction due to the crowdedness of
the cytoplasm. Extrapolating from the measurements by Dauty et al.
(see Fig. 4B therein), we use α=0.017 for a chain length of 4.7 kbp,
and α=0.01 for a chain length of 7.2 kbp.

The factor β is the reduction effect due to the fact that the polymer
chain is in the vicinity of a rigid wall. According to the measurements
by Kihm et al. for solid nanoparticles [70], this factor typically ranges
from 0 to 0.6 depending on the distance from the wall. Due to the lack
of data for near-wall DNA particles, we simply use β as a fitting param-
eter to generate the best comparison with data on DNA translation
through synthesized nanopores [71]. From Fig. 12, we obtain β=0.322
to achieve the best matching between our theoretical prediction
and the measurements. Note to generate this comparison, we use α=1
because no cells are involved.

We remark that Eq. (9) gives a constant D0 given a constant size of
DNA. A more accurate model can be derived where D0 is a function
of the translocation coordinate, m [61]. However, we have found no
appreciable difference between the results following this approach
and simply using Eq. (9) above. (The comparison is not shown here

image of Fig.�11


Fig. 12. Simulated results with β=0.322, in comparison with the experimental data
from Storm et al. [71]. The average translocation time ttran is plotted as a function of
DNA size. The transmembrane potential is Vm=0.12 V. The average translocation
time is defined as the most probable time required for the DNA molecule to complete
its translocation.
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for brevity.) The agreement results from the fact that the effective
diffusivity of the DNA chain is dominantly controlled by its much
reduced value in the cytoplasm. In this work, we therefore use Eq. (9)
as an approximation to the more complete diffusivity model.

The effective charge per DNA segment, ~zs, is given by the formula,

~zs ¼ 0:5� L
lbp

¼ 135N−0:4
: ð10Þ

The factor of 0.5 is obtained from the experiments byKeyser et al. [72],
which suggest that the effective charge of a DNA base pair (2 electrons) is
reduced by 75% within a pore. This reduction ratio corroborates with
the theoretical prediction by Ghosal [73], which attributes the effects to
viscous dragswithin the pore. Again, although these results are generated
for solid-state nanopores, we employ them due to the lack of measure-
ments for electropores.
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