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Abstract

Let G= (V , E) be a digraph with a distinguished set of terminal vertices K ⊆ V and a vertex s ∈ K . We define the s, K-diameter
of G as the maximum distance between s and any of the vertices of K. If the arcs fail randomly and independently with known
probabilities (vertices are always operational), the diameter-constrained s, K-terminal reliability of G, Rs,K(G, D), is defined as
the probability that surviving arcs span a subgraph whose s, K-diameter does not exceed D.

The diameter-constrained network reliability is a special case of coherent system models, where the domination invariant has
played an important role, both theoretically and for developing algorithms for reliability computation. In this work, we completely
characterize the domination of diameter-constrained network models, giving a simple rule for computing its value: if the digraph
either has an irrelevant arc, includes a directed cycle or includes a dipath from s to a node in K longer than D, its domination is 0;
otherwise, its domination is −1 to the power |E|−|V |+1. In particular this characterization yields the classical source-to-K-terminal
reliability domination obtained by Satyanarayana.

Based on these theoretical results, we present an algorithm for computing the reliability.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and reliability model

In this paper we are concerned with digraphs (directed digraphs) G = (V , E), where V and E are the set of vertices
and arcs of G, respectively. A subgraph G′ = (V ′, E′) of a digraph G = (V , E) is a digraph such that V ′ ⊆ V , and
E ⊆ E, and G′ is a spanning subgraph of G if V ′ = V .

For a digraph G = (V , E), we denote a dipath P from vertex u to vertex v (also called a u, v-dipath) in G as
P = 〈(u1 = u, u2), (u2, u3), . . . , (ur−1, ur = v)〉, where the vertices of P are distinct, and (uj , uj+1) is an arc of
G. Moreover, let r − 1 be the length of P. A directed cycle (dicycle) C in G is obtained from P by allowing u = v.
Furthermore, we say that a digraph G is cyclic if it contains a directed cycle; otherwise G is acyclic.
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The distance between vertex u and vertex v of a digraph G is defined as the length of the shortest dipath from vertex
u to vertex v in G, and in the case that no dipath exists between u and v, the distance is infinite.

A communication network can be modeled by a digraph (also called its underlying graph) G, where the set of nodes
(e.g., packet switches) and communication links of the network are the vertices and arcs of G, respectively. Moreover,
since a communication network could be subject to random failures of its components, we represent this probabilistic
behavior of the network by assigning failure probabilities to the vertices and/or arcs of its underlying digraph. A widely
used probabilistic model is the one where arcs fail randomly and independently with known probabilities, and where
vertices are always operational; when we mention a probabilistic digraph, we will refer to this model.

Let G = (V , E) be a probabilistic digraph, with terminal vertex set K ⊆ V , and distinguished vertex s ∈ K (called
the source node), and diameter bound D. The s, K-diameter of G is defined as the maximum distance from s to any
other vertex u ∈ K . By the definition of distance, in the case that no dipath exists from vertex s to some vertex u ∈ K ,
then the s, K-diameter is infinite.

The diameter-constrained s, K-terminal reliability Rs,K(G, D) is defined [13] as the probability that the surviving
arcs span a subgraph of G whose s, K-diameter does not exceed D, or equivalently, as the probability that for each
vertex u ∈ K , there exists an operating dipath (i.e., a dipath composed of surviving arcs of G) from s to u of at most D
arcs. This reliability measure subsumes the classical source-to-K-terminal reliability Rs,K(G) of a probabilistic digraph
G (see [18] for a complete discussion on this subject), which is the probability that the surviving arcs span a subgraph
where there exists an operational dipath between s and u, u ∈ K: noting that the longest dipath in G has at most n − 1
arcs, where n is the number of nodes of G, we have that Rs,K(G) is equal to Rs,K(G, D) for D = n − 1.

As the classical reliability does not take into account the length of the dipaths connecting the terminal nodes of a
digraph G, this reliability model was extended to assess the probability that there are short-enough dipaths from the
source vertex s to a set of terminal vertices of G.That is the case in multicasting-routing with end-to-end delay constraints,
where a source node must broadcast messages to a set of destination nodes in a network (e.g., teleconference), while
these messages must meet certain delay constraints. This problem can be modeled as a digraph with a source node s, a
set M of destination nodes, and where each arc is assigned a weight corresponding to the delay to be experienced by a
packet traveling along this arc.

A line of research in this area is the study of techniques to obtain diameter-constrained Steiner trees, in order to ensure
that a packet traveling from the source to a terminal node can arrive within the allowed delays [5–7,11,15]. Another
area of research consists in meeting with diameter and two-connectivity objectives by extending an existing topology
with new arcs [4]. To our knowledge none of these previous works take into account the operational probability of the
network components, thus the diameter-constrained reliability measure may be applied to determine the suitability of
a network to meet end-to-end delay constraints.

The domination of a digraph is a graph-theoretic measure which appeared in alternative formulations for improving
the efficiency of evaluating the classical reliability. In this paper, we give a characterization of the domination of a
digraph, for the diameter-constrained reliability model, which in particular yields the domination for the classical case.
For a digraph G = (V , E), with terminal set K, source node s ∈ K , and diameter bound D, the diameter-constrained
s, K-terminal reliability can be computed as a sum of terms involving the domination of some spanning subgraphs
of G. Even though, for general graphs, the computation of the reliability remains a #P -complete problem, since the
evaluation of the classical source-to-K-terminal reliability belongs to this computational class (see [14]), the application
of the domination for calculating the diameter-constrained reliability substantially reduces the computational effort.

In Section 2, we present some preliminary definitions and notation that will be used in the following sections,
and introduce the domination for general systems. In Section 3 we give a complete characterization of the diameter-
constrained reliability domination of a digraph. In Section 4 we formally prove this domination characterization, and
finally, in Section 5, we present an algorithm based on the previous theoretical results.

The notation in this paper follows that of Harary [8], unless otherwise noted.

2. Preliminaries and domination

As we are considering digraphs, we use the notation indG(u) and outdG(u) to denote the indegree and outdegree of
vertex u in G, respectively, where the indegree of u is the number of arcs directed into u, while the outdegree is the
number of arcs emanating from u.
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Fig. 1. Different types of trees of a digraph G.

The following definitions and notation will be used in the remainder of this paper:

(i) Let G = (V , E, P(E)) be a probabilistic digraph with a distinguished set K ⊆ V , vertex s ∈ K , and D ∈ Z+,
where n = |V |, and where P : E �→ [0, 1] are the operational probabilities of the arcs in set E. We represent the
operational probability of an arc (or arc reliability) x ∈ E as p(x) and we have p(x) = 1 − q(x), where q(x) is
the probability of failure.

(ii) Let the sample space � represent the set of all possible subsets of E, corresponding to sets of operational arcs
(i.e., � = 2E).

(iii) Under independent failures assumption each H ∈ � has probability

P(H) =
∏
x∈H

p(x)
∏
x /∈H

q(x).

(iv) H ∈ � is a pathset or operating state if H spans a subgraph whose s, K-diameter is at most D.
(v) Let OD

K(E) = {H ∈ � : H is a pathset}.
(vi) An operating state H of OD

K(E) is called a minpath if H −{x} /∈ OD
K(E) for all x ∈ H (i.e., a minpath is a minimal

operating state).
(vii) A K-tree T of a digraph G, is a tree, rooted at s, covering all the vertices of K, and such that any pendant vertex u

(i.e., u has indegree 1 and outdegree 0) of T belongs to K. In addition, a K-tree whose s, K-diameter is at most D
is called a D, K-tree (see Fig. 1).

(viii) G is called a D, K-digraph, if every arc of G lies in some D, K-tree of G.

From the definition of Rs,K(G, D) and definition (v) one gets

Rs,K(G, D) = Pr
(

OD
K(E)

)
=

∑
H∈OD

K(E)

∏
x∈H

p(x)
∏
x /∈H

q(x). (1)

The following lemma gives a characterization of the minpaths M of OD
K(E):

Lemma 1. Let G = (V , E) be a digraph with terminal set K, vertex s ∈ K , and bound D; M is a minpath of G if and
only if M is a D, K-tree.

We next discuss the definition of the domination invariant in the case of general systems, and in the case of the
diameter-constrained network reliability.
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A graph invariant called the reliability domination of a graph G was introduced by Satyanarayana and Prabhakar
[17] for the classical network reliability models, and has since been explored by several researchers in reliability
theory [1–3,9,10]. The reliability domination plays an important role, allowing to efficiently implement the principle
of inclusion–exclusion of probability theory applied to the evaluation of reliability measures for general reliability
systems.

Let E be a finite set, and 2E be the power set of E. A non-empty subset C ⊆ 2E is called a clutter of E if for any two
elements C1, C2 ∈ C, whenever C1 ⊆ C2, then C1 = C2. A pair (E, C) will be referred to as a system and a system is
coherent if each element of E is contained in some element of C. A formation of (E, C) is a collection of elements of
C whose union yields E. The signed domination of the system (E, C), denoted d(E, C), is defined as the number of
odd formations minus the number of even formations of E, where a formation is said to be odd or even if it is of odd
or even cardinality, respectively. Trivially by the previous definitions, a non-coherent system has no formations, so its
signed domination is 0.

The clutters associated with the operation and failure of a specific element x ∈ E are defined as follows. Let
C − x = {C − x : C ∈ C} and C−x = {C ∈ C : x /∈ C}. Now C−x is clearly a clutter but C − x may not be one. We
define C+x to be the collection of elements of C − x which are not proper supersets of some element of C − x. For an
element x ∈ E, C−x and C+x are called the minors with respect to x of C. Huseby [9,10] showed the following result:

Theorem 1. If (E, C) is a system, with x ∈ E, and minors C−x and C+x of C, then d(E, C) = d(E − {x}, C+x) −
d(E − {x}, C−x).

We look now at the case of the diameter-constrained s, K-terminal reliability of a digraph G = (V , E) with K ⊆ V ,
s ∈ K , and diameter bound D. The system underlying our model is (E, FD,K(G)), where E is the set of arcs of G,
and where FD,K(G) is the collection of D, K-trees of G. A formation F of G is then a collection of D, K-trees of G
whose union is E, the set of arcs of G. The signed domination of a digraph G = (V , E), simply called domination, and
denoted as d(E, FD,K(G)), with respect to a given subset K ⊆ V , s ∈ K , and bound D, is the number of odd minus
the number of even formations of G.

For brevity, in what follows we will use the standard notation C to represent FD,K(G), which is the clutter set
in the diameter-constrained model. Also we denote the domination d(E, FD,K(G)) as dD,K(G). In addition, we
observe that if x is an arc of G, then T is a D, K-tree of G such that x /∈ T iff T is a D, K-tree of G − x. Therefore
d(E − {x}, C−x) = dD,K(G − x). Using this notation, the equation in Theorem 1 can be re-written as

dD,K(G) = d(E − {x}, C+x) − d(E − {x}, C−x) (2)

= d(E − {x}, C+x) − dD,K(G − x). (3)

We next state the main results of this work, in which we characterize the domination for diameter-constrained reliability
models, and we discuss how these results can be used to compute the reliability of a network.

3. Characterization of the domination and application to reliability evaluation

Let G = (V , E) be a digraph with terminal set K, vertex s ∈ K, e = |E| arcs, n = |V | vertices, and let D be the
diameter bound. We define the following operation:

• LP(G, s, K): if G is s, K connected (i.e., there exists a dipath from s to any vertex u ∈ K in G), this operation
returns the length of the longest dipath from s to any vertex u ∈ K; otherwise it returns ∞.

Recall that if G is not a D, K-digraph, there are some arcs in E which are not covered by any D, K-tree, thus the
corresponding system is non-coherent, and there are no formations over the clutter FD,K(G) able to cover E, and as a
result the domination is zero.

For all digraphs, the domination is completely characterized by the following theorems (which are proved in
Section 4):

Theorem 2. Let G = (V , E) be a cyclic digraph with terminal set K, source node s ∈ K , and diameter bound D�0,
then dK,D(G) = 0.
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Theorem 3. Let G = (V , E) be an acyclic digraph with terminal set K, source node s ∈ K , e = |E| arcs, n = |V |
vertices, and let D�0 be the diameter bound, then

dD,K(G) =
{

(−1)e−n+1 G is a D, K-digraph, and LP(G, s, K)�D,

0 otherwise.

When D = n − 1, we obtain the classical source-to-K-terminal reliability model as a particular case. As all
dipaths are of length smaller than n, then LP(G, s, K)�D. Then this characterization reduces to the results in
[16], that is the domination is 0 if there is a directed cycle in G or G is not a D, K-digraph, and (−1)e−n+1

otherwise.
These results are useful for computing the reliability of a given network. For a digraph G = (V , E), termi-

nal set K, and vertex s ∈ K , let M = {M1, M2, . . . , Ml} be the set of minpaths of OD
K(E). The situation where

all the arcs of Mi operate (survive), is a random event which will be denoted by Ei . By inclusion–exclusion we
obtain

Rs,K(G, D) = Pr

(
l⋃

i=1

Ei

)
=
∑

i

Pr(Ei) −
∑
i<j

Pr(EiEj ) + · · · + (−1)l+1Pr(E1E2 . . . El), (4)

where the event EiEj . . . Em is the event that all the arcs of the subgraph obtained by the union of Mi, Mj , . . . , Mm

are operating.
In Eq. (4), the terms correspond to subgraphs obtained by the union of minpaths. As discussed previously, for the

diameter-constrained s, K-terminal reliability of a digraph G, with terminal set K, vertex s ∈ K , and diameter bound
D, the minpaths are D, K-trees, the formations are sets of minpaths, and the subgraphs are D, K-digraphs. The same
D, K-digraph can be obtained from different formations; this means that it may appear more than once, sometimes
with positive sign, and sometimes with negative sign, depending if the corresponding formation has an odd or an
even number of D, K-trees. In fact, its net contribution will be exactly the number of odd minus the number of even
formations of the graph, i.e., its domination invariant. Thus using these facts and the above definitions, we can rewrite
Eq. (4) as

Rs,K(G, D) =
∑
H∈H

dD,K(H)P r(H), (5)

where H is the class of all D, K-digraphs of G, and Pr(H) is the probability that the arcs of H are operative.

4. Proofs

We define two operations on a digraph G = (V , E) with distinguished terminal set K, and source vertex s ∈ K

• OP1(G, x): suppose u is a vertex of G such that indG(u) > 1, and x = (s, u) be an arc of G. This operation returns
an arc x′ = (v, u) with x′ 
= x.

• OP2(G, K, s): let V ′ = {u ∈ V − {s} : (s, u) ∈ E}, and suppose that ∀u ∈ V ′, indG(u) = 1. This operation returns
a digraph G∗ with terminal set K∗ = K − V ′ − {s} ∪ s∗, where G∗ is obtained from G by identifying s and the
vertices of V ′ (i.e., contracting the arcs emanating from s and deleting self-loops) into one vertex s∗ (i.e., s∗ is the
new source of G∗).

The following lemmas plays an important role:

Lemma 2. Let G = (V , E) be a digraph with terminal set K, and source node s ∈ K . Suppose that x = (s, u) is an
arc of G, and indG(u) > 1, then dD,K(G) = −dD,K(G − x).

Proof. Let x′ 
= (s, u) be the arc returned by OP1(G, x), and suppose that T ′ = (V ′, E′) is a D, K-tree of G such
that x′ is an arc of T ′. Considering Eq. (3), in order to show that d(E − {x}, C+x) = 0, is sufficient to prove that
the system (E − {x}, C+x) is not coherent. Consider the tree T obtained from T ′ by deleting x′ and adding the arc
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x, and possibly deleting any pendant vertices which do not belong to K, created by this transformation. Since T ′ is a
D, K-tree, then also T is a D, K-tree, since any path that uses the arc x′ in T ′, is replaced by the arc x in T. Then we
have T − x ⊆ T ′ − x′ ⊂ T ′, and both T ′ as well as T − x belong to C − x, but T − x ⊂ T ′, thus T ′ /∈ C+x . Therefore
we conclude that no elements of C+x contain x′, and the system (E − x, C+x) is not coherent. �

Lemma 3. Let G=(V , E) be a D, K-digraph with terminal set K, and source node s ∈ K such that all nodes adjacent
to s have indegree 1, and suppose OP2(G, K, s) returns a digraph G∗ with terminal set K∗ and source node s∗, then
dD,K(G) = dD−1,K∗(G∗). Moreover, G∗ is a D − 1, K∗-digraph.

Proof. We must show the following:

(1) There exists a one-to-one correspondence between the D, K-trees of G and the D − 1, K∗-trees of G∗.
(2) There exists a one-to-one correspondence between the formations of G and the formations of G∗, moreover, a

formation of G and its corresponding formation of G∗ have the same cardinality.

Let U ={u1, u2, . . . , ur} be the set of vertices of G such that (s, ui) ∈ E. Let also T and T∗ represent the D, K-trees
of G and D − 1, K∗-trees of G∗, respectively.

We then construct a one-to-one correspondence � : T �→ T∗ from D, K-trees of G to the D − 1, K∗-trees of G∗ as
follows:

Let T ∗ be a tree obtained from T ∈ T by identifying the vertex s and the vertices adjacent to s in T, as a single vertex
s∗. It is clear that T ∗ is a D − 1, K∗-tree of G∗, as the identification to one node reduces the s, K-diameter of T by
one, moreover, the terminal set of T ∗ is K∗.

To show that � is one-to-one, suppose that �(T1) = �(T2) = T ∗. Let E′(T ∗) = {(s∗, v1), (s
∗, v2), . . . , (s

∗, vt )} be
the set of arcs of T ∗ emanating from s∗ in T ∗. Moreover, suppose that the arc (s∗, vi) corresponds to the arc (uji

, vi)

of G, and let U ′ = {uji
: (s∗, vi) ∈ E′(T ∗)}.

Let V1 and V2 be the set of vertices adjacent to s in T1 and T2, respectively. Since identifying s with V1 in T1 and
identifying s with V2 in T2 yield the same tree T ∗, it must be the case that U ′ is a subset of V1 and V2.

Moreover, partition V1 into U ′ and V ′
1, and V2 into U ′ and V ′

2, but the vertices of V ′
1 and V ′

2 must then have outdegree
0 in T1 and T2, respectively; this can only happen if both sets are terminal vertices of G, as T1 and T2 are D, K-trees
of G. Furthermore both sets can only be reached from s in G (i.e., V ′

1 ⊆ U and V ′
2 ⊆ U ), concluding that V ′

1 = V ′
2, as

T1 and T2 have the same terminal set. Thus V1 = V2, and since the vertices of V1 and V2 have indegree 1 in G, then
T1 = T2.

To show that � is onto, suppose that T ∗ is a D−1, K∗-tree of G∗ with arc-set E(T ∗)={(s∗, v1), (s
∗, v2), . . . , (s∗, vt ),

x1, x2, . . . , xp}.
In addition, suppose that the arc (s∗, vi) corresponds to the arc (uji

, vi) of G, and let U ′ = {uji
: (s∗, vi) ∈ E(T ∗)}.

Moreover, let K ′ = K − U ′ (i.e., the terminal vertices of G not covered by U ′).
We construct a D, K-tree, T, whose arc-set is E(T ) = {(s, u) ∈ E : u ∈ K ′} ∪⋃t

i=1{(uji
, vi)}⋃{x1, x2, . . . , xp},

and where T = �−1(T ∗). This finalizes the proof for (1).
To show (2), consider a formation F of G, and let F ∗ =⋃

T ∈F �(T ). As the D, K-trees of F cover all the arcs of G,
then the D − 1, K∗-trees of F ∗ also cover all the arcs of G∗, thus F ∗ is a formation of G∗. Moreover, |F ∗| = |F |, as
� is a bijection.

Conversely let F ∗ be a formation of G∗, and let F =⋃T ∗∈F ∗�−1(T ∗). It is obvious that the arcs of G corresponding
to the arcs of G∗ are covered by F.

We must also show that the arcs A = {(s, ui) : ui ∈ U} are also covered by D, K-trees of F.
Suppose that arc (s, u) of G is not covered by a tree of F. Then it must be the case that u has outdegree 0 in G,

otherwise there exists a T ∗ ∈ F ∗, containing the arc (s∗, v) corresponding to an arc (u, v) of G, and �−1(T ∗) contains
the arc (s, u).

Suppose that outdG(u) = 0, then clearly u ∈ K , otherwise G is not a D, K-digraph. Since F ∗ contains at least one
tree T ∗, �−1(T ∗) contains the arc (s, u). Therefore, since � is a bijection, we conclude that |F | = |F ∗|, concluding the
proof for (2).

Moreover, since G has at least one formation (i.e., G is a D, K-digraph), then from (2), it follows that G∗ has also
at least one formation, thus G∗ is a D − 1, K∗-digraph.
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Finally let fo and fe represent the number of odd and the number of even formations of G, respectively. Similarly let
f∗
o and f∗

e represent the number of odd and the number of even formations of G∗, respectively. Thus from (2) one gets
dD,K(G) = fo − fe = f∗

o − f∗
e = dD−1,K∗(G∗). �

The following lemma concerning cyclic D, K-digraphs can be easily proved:

Lemma 4. Let G = (V , E) be a cyclic D, K-digraph with terminal set K, and source node s ∈ K , then

(1) suppose that x = (s, u) is an arc of G, and indG(u) > 1, then G − x is also cyclic,
(2) suppose OP2(G, K, s) returns a digraph G∗ with terminal set K∗ and source node s∗, then G∗ is also cyclic.

The following lemma is concerned with acyclic D, K-digraphs:

Lemma 5. Let G = (V , E) be an acyclic D, K-digraph with terminal set K, and source node s ∈ K , then

(1) suppose that x = (s, u) is an arc of G, and indG(u) > 1, then G−x is an acyclic digraph where LP(G−x, s, K)=
LP(G, s, K),

(2) suppose OP2(G, K, s) returns a D − 1, K∗-digraph G∗ with terminal set K∗ and source node s∗, then G∗ is also
acyclic, and LP(G∗, s∗, K∗) = LP(G, s, K) − 1.

Proof. To show (2), we first note from Lemma 3, that if G is a D, K-digraph, and OP2(G, K, s) returns a digraph
G∗, then G∗ is a D − 1, K∗-digraph. The fact that G∗ is acyclic is obvious, and since a longest dipath from s must
use exactly one arc of the ones contracted to obtain G∗, and there are no arcs between the vertices adjacent to s, then
LP(G∗, s∗, K∗) = LP(G, s, K) − 1.

To show (1), let x′ = (v, u) the arc returned by OP1(G, x). Since G is a D, K-digraph, then there exists a D, K-tree
containing x′, thus there exists a dipath P ′ = 〈(s, v1), (v1, v2), . . . , (vr−1, vr ), (vr , u)〉, where vr = v in G.

If a longest dipath from s in G does not contain x, then the lemma follows trivially.
Suppose that P = 〈(s, u), (u1, u2), . . . , (uc−1, uc)〉 is a longest dipath in G containing x. If ui = vj , for some

i, 1� i�c, and some j, 1�j �r (i.e., dipath P intercepts P ′), then G contains a directed cycle, contradicting the
hypothesis that G is acyclic. By this observation, if we replace the arc (s, u) in P by the dipath P ′, we obtain a dipath
not containing x whose length is at least the length of P. �

In the next lemma, we characterize acyclic D, K-digraphs G for which x = (s, u) is an arc with indG(u) > 1, and
G − x is not a D, K-digraph.

Lemma 6. Let G = (V , E) be an acyclic D, K-digraph with terminal set K, and source node s ∈ K . Suppose that
x = (s, u) is an arc of G, indG(u) > 1, and G − x is not a D, K-digraph, then LP(G, s, K) > D.

Proof. We first note from Lemma 5(1) that it is sufficient to show that LP(G − x, s, K) > D, as the length of the
longest dipath is preserved whenever we delete x.

Suppose that x′ = (v, u) is the arc returned from OP1(G, x). Consider a D, K-tree of G, T, containing x. As G is a
D, K-digraph, then there exists a D, K-tree containing the arc x′, assuring the existence of an s, u-dipath containing
the arc x′. Then either (T − x)+ x′ is a K-tree (not necessarily a D, K-tree) or it can be extended to a K-tree by adding
missing arcs to establish a dipath from s to the tail of x′ (i.e., v). Thus all the arcs of G − x are either covered by
the D, K-trees of G containing x′, or from the K-trees mentioned in the previous observation. Thus we conclude that
G − x is a d, K-digraph, for some diameter bound d. But G − x is not a D, K-digraph, thus d > D. This implies that
G− x has at least a K-tree with s, K-diameter greater than D, and therefore G− x has a dipath from s of length greater
than D. �

We are now ready to present the proofs of the main results, which were stated in the previous section.

Theorem 2. Let G = (V , E) be a cyclic digraph with terminal set K, source node s ∈ K , and diameter bound D�0,
then dK,D(G) = 0.
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Proof. If G is not a D, K-digraph then the theorem follows trivially, thus we can assume that G is a D, K-digraph.
The theorem will be established by induction on the number of arcs (i.e., |E|) of G.

Basis: let |E|=0 and D�0. Since there do not exist cyclic D, K-digraphs with no arcs, then the assertion is vacuously
true.

For the induction step, let G be a cyclic D, K-digraph with |E| > 0, terminal set K, source node s ∈ K , and diameter
bound D�0, and suppose that the theorem holds for all cyclic d, K ′-digraphs, with d �0, and fewer arcs than G.

If D = 0 then the only possible D, K-digraph is the solitary G = ({s}, ∅), thus we can assume that D > 0 as E > 0.
Suppose that there exists an arc (s, u) in G, such that indG(u) > 1.
If G − x is not a D, K-digraph, then dD,K(G − x) = 0 and by Lemma 2, dD,K(G) = −dD,K(G − x) = 0.
If G − x is a D, K-digraph, by Lemma 2, dD,K(G) = −dD,K(G − x), but by Lemma 4(1), G − x is also cyclic,

and as it has fewer arcs than G, by the induction hypothesis dD,K(G − x) = 0.
Suppose that every vertex adjacent to s has indegree 1, and let G∗ the graph with terminal set K∗, and source node s∗,

obtained from operation OP2(G, K, s). Since G is a D, K-digraph, then by Lemma 3, G∗ is a D − 1, K∗-digraph, and
dD,K(G) = dD−1,K∗(G∗). But from Lemma 4(2), G∗ is also cyclic, and as G∗ has fewer arcs than G, by the induction
hypothesis dD−1,K∗(G∗) = 0, thus the theorem follows. �

Theorem 3. Let G = (V , E) be an acyclic digraph with terminal set K, source node s ∈ K , e = |E| arcs, n = |V |
vertices, and let D�0 be the diameter bound, then

dD,K(G) =
{

(−1)e−n+1 G is a D, K-digraph, and LP(G, s, K)�D,

0 otherwise.

Proof. If G is not a D, K-digraph then the theorem follows trivially, thus we can assume that G is a D, K-digraph.
The theorem will be established by induction on the number of arcs (i.e.,|E|) of G.

Basis: when |E| = 0, the only acyclic D, K-digraph is the G = ({s}, ∅) and dD,K(G) = 1 = (−1)e−n+1, for D�0.
For the induction step, let G be an acyclic D, K-digraph with |E| > 0, terminal set K, source node s ∈ K , and

diameter bound D�0; suppose that the theorem holds for all acyclic d, K ′-digraphs, with d �0, and fewer arcs
than G.

If D = 0 then the only possible D, K-digraph is the solitary G = ({s}, ∅), thus we can assume that D > 0 as E > 0.
Suppose that there exists an arc (s, u) in G, such that indG(u) > 1. Consider the following cases:

(a) If G − x is not a D, K-digraph, then dD,K(G − x) = 0 and by Lemma 2, dD,K(G) = −dD,K(G − x) = 0. But in
this case, Lemma 6 tell us that LP(G, s, K) > D.

(b) If G − x is a D, K-digraph, from Lemma 5(1), G − x is also acyclic and LP(G, s, K) = LP(G − x, s, K).
If LP(G, s, K)�D then LP(G − x, s, K)�D, and by the induction hypothesis, dD,K(G − x) = (−1)e−1−n+1 as
G − x has one arc fewer that G, but from Lemma 2, dD,K(G) = −dD,K(G − x) = (−1)e−n+1.
Similarly if LP(G, s, K) > D then LP(G − x, s, K) > D, then by the induction hypothesis, dD,K(G − x) = 0, but
it follows from Lemma 2 that dD,K(G) = −dD,K(G − x) = 0.

Suppose that every vertex adjacent to s has indegree 1, and let G∗ = (V ∗, E∗) be the graph with terminal set K∗,
and source node s∗, obtained from operation OP2(G, K, s). Since G is a D, K-digraph, then by Lemma 3, G∗ is a
D − 1, K∗-digraph, and dD,K(G) = dD−1,K∗(G∗). But from Lemma 5(2), G∗ is also acyclic and LP(G∗, s∗, K∗) =
LP(G, s, K) − 1.

If LP(G, s, K) > D then LP(G∗, s∗, K∗) > D − 1 and as G∗ has fewer arcs than G, then from the induction
hypothesis, dD−1,K∗(G∗) = 0, and dD,K(G) = dD−1,K∗(G∗) = 0.

If LP(G, s, K)�D then LP(G∗, s∗, K∗)�D − 1. Let e∗ = |E∗|, and n∗ = |V ∗|. Let also U = {u1, u2, . . . , ur}
be the set of vertices of G such that (s, ui) ∈ E. As indG(u) = 1, u ∈ U , then e∗ = e − |U | and n∗ = n − |U |.
Since LP(G∗, s∗, K∗)�D − 1, and as G∗ has fewer arcs than G, then from the induction hypothesis, dD−1,K∗(G∗) =
(−1)e

∗−n∗+1. But from Lemma 3, dD,K(G) = dD−1,K∗(G∗) = (−1)e
∗−n∗+1 = (−1)e−n+1. �

5. Algorithm

In this section we present an algorithm for the computation of the diameter-constrained s, K-terminal reliability
based upon Eq. (5) and the characterization of the domination stated in Theorems 2 and 3.
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It is easy to see that in any digraph G containing a set of parallel arcs {x1, x2, . . . , xm} emanating from a node u, and
directed into a node v, and with corresponding reliabilities {p(x1), p(x2), . . . , p(xm)}, the parallel arcs can be replaced
by a single arc x = (u, v) with reliability

p(x) = 1 −
m∏

i=1

(1 − p(xi)), (6)

without affecting the reliability of G; thus we are only concerned with digraphs without parallel arcs.
For a digraph G=(V , E), with terminal set K ⊆ V , and distinguished vertex s ∈ K , we say that G is s, K-connected

if there exists in G an s, u-dipath for every u ∈ K . If indG(s) = 0, we will denominate this graph s-rooted, and from
this point on we will be only concerned with s-rooted digraphs, since if that is not the case, then dD,K(G)=0, as stated
in the following claim:

Claim 1. Suppose that G = (V , E) is a digraph with terminal set K ⊆ V , vertex s ∈ K and diameter bound D. If
indG(s) > 0 then dD,K(G) = 0.

We next need to define irrelevant arcs.
Definition (ix) Given a graph G = (V , E), with terminal set K ⊆ V , vertex s ∈ K , an arc x = (u, v) ∈ E is an

irrelevant arc if

(a) the arc x belongs to a connected component G′ = (V ′, E′) of G, where V ′ ⊆ V − K ,
(b) the vertex u ∈ V − K has indG(u) = 0,
(c) the vertex v ∈ V − K has outdG(u) = 0.

According to Theorems 2 and 3, the algorithm should only be concerned in identifying acyclic D, K-digraphs whose
longest s, u-dipath, u ∈ K , is of length at most D. The following Lemma gives a sufficient condition for such digraphs.

Lemma 7. Given a digraph G = (V , E), with terminal set K, and vertex s ∈ K , suppose that G is an acyclic,
s, K-connected digraph, with no irrelevant arcs, and LP(G, s, K)�D, then G is a D, K-digraph.

Proof. We will proceed by contradiction.
Suppose G is acyclic, s, K-connected digraph, with no irrelevant arcs, and whose longest s, u-dipath, u ∈ K , is of

length at most D, and G is not a D, K-digraph. Then it must be the case that G has an arc x = (u, v) that is not contained
in any D, K-tree of G.

Since G is s, K-connected, and LP(G, s, K)�D, then G contains a D, K-tree T = (V ′, E′).
Suppose next that u, v ∈ K . Consider the unique path in T, P =〈(s=u1, u2), (u2, u3), . . . , (ur−1, ur =v)〉. Consider

the digraph T ′ obtained from T by deleting the arc (ur−1, v) and possibly any pendant vertices which do not belong to
K, and adding the arc (u, v). Since G is acyclic, clearly T ′ is a K-tree, but under the assumption that LP(G, s, k)�D,
then T ′ is also a D, K-tree, contradicting the notion that the arc e = (u, v) does not belong to any D, K-tree.

In the case that u ∈ K , and v ∈ V −K , since G does not contain irrelevant arcs, outd(v) 
= 0, this condition assures the
existence in G of a u, z-dipath, where z ∈ K , and (u, v) is an arc of this path. Since T contains all the vertices of K, then
there exists a dipath in G, P ′ =〈(u=v1, v2 =v), (v2, v3), . . . , (vt−1, vt )〉, where vt 
= u (since G is acyclic), is the only
vertex in P ′, where vt is also a vertex in T. Consider the unique path in T, P =〈(s=u1, u2), (u2, u3), . . . , (ur−1, ur=vt )〉,
and let T ′ be the digraph obtained from T by deleting the arc (ur−1, vt ) and possibly any pendant vertices which do not
belong to K, and adding the path P ′. Under the assumption that G is acyclic and LP(G, s, K)�D, T ′ is a D, K-tree,
contradicting the assumption that x = (u, v) does not belong to any D, K-tree.

The cases where u ∈ V − K , v ∈ K , and u ∈ V − K , v ∈ V − K , are proved in a similar fashion, by also not
allowing irrelevant arcs in which one of their end-points have indegree 0. �

We present now an algorithm for efficiently generating precisely all these digraphs having non-null domination. As
a first step, we assume that G is s-rooted. If this is not the case we can simply delete all arcs directed into s, obtaining
an s-rooted digraph. Moreover, parallel arcs are replaced by a single arc whose reliability is obtained as explained at
the beginning of this section.
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The algorithm has five stages:

(a) If G has irrelevant arcs, generate a digraph from G by deleting these arcs, and any isolated vertex u ∈ V − K

obtained from this deletion.
(b) If G is not s, K-connected, then do not generate any subgraphs from G.
(c) If G is s, K-connected and contains a dicycle, generate acyclic subgraphs of G.
(d) If G is s, K-connected, acyclic, and LP(G, s, K) > D, then generate all possible acyclic subgraphs G′ of G such

that LP(G′, s, K)�D.
(e) If G is s, K-connected, acyclic and LP(G, s, K)�D, then generate all possible subgraphs of G.

Generation of duplicate subgraphs at all stages is completely avoided by a simple check.
The algorithm grows a rooted directed tree with the following properties:

(1) Vertices represent non-empty subgraphs of G, the root vertex being G itself. Any vertex, say r, corresponds one-to-
one with the subgraph Gr which is of one of the following five types: (a) Gr contains irrelevant arcs, (b) Gr is not
s, K-connected, (c) Gr is s, K-connected and cyclic, (d) Gr is s, K-connected, acyclic, and LP(G, s, K) > D, (e)
Gr is s, K-connected, acyclic, and LP(G, s, K)�D.

(2) A link directed from vertex i to vertex j of the tree is labeled X, where X represents the set of arcs deleted from Gi

to obtain Gj .

The following additional definitions are needed to explain the directed tree generation:

(1) Father (Child): vertex i(j) is the father (child) of j (i) when there exists an link directed from i to j.
(2) Ancestor: vertex i is the ancestor to j when i is contained in the path from the root vertex to j (i 
= j ).
(3) Brother: vertices having the same father are termed brothers.
(4) Younger (Elder) Brother: a vertex i is the younger (elder) brother of vertex j, if the algorithm generates the children

of vertex i later (earlier) than the children of vertex j.

The algorithm starts at the root vertex and grows the tree progressively. There are five rules for generating the children
of vertex r, depending on the nature of Gr .

Rule 1. Gr has irrelevant arcs. Let X′ be the label corresponding to the set of irrelevant arcs of Gr . In this case
generate a new node representing the digraph obtained from Gr by deleting these arcs (and possibly any isolated
vertices obtained from this deletion), provided X′ ∩ X = ∅, where X is the label of the link incident into the elder
brothers of r or elder brothers of an ancestor of r; otherwise do not generate any children from Gr .

Rule 2. Gr is not s, K-connected. In this case Gr does not generate any children.
Rule 3. Gr is s, K-connected and cyclic. Consider a dicycle C in Gr containing the arcs x1, x2, . . . , xc. Then

Grj = Gr − xj , (j = 1, 2, . . . , c), is a child of Gr , provided {xj } ∩ X = ∅, where X is the label of a link incident into
the elder brothers of r or elder brothers of an ancestor of r. Determination of a dicycle is determined for example by
application of Depth First Search. Clearly a state Gr − xj where xj does not belong to the dicycle C, contains also C,
thus by Theorem 2, dD,K(Gk − xj ) = 0, so it is not necessary to generate this state.

Rule 4. Gr is s, K-connected, acyclic, and LP(Gr, s, K) > D. Consider a longest s, u-dipath L in Gr containing the
arcs x1, x2, . . . , xl . Then Grj =Gr − xj , (j = 1, 2, . . . , l), is a child of Gr , provided {xj }∩X =∅, where X is the label
of a link incident into any elder brother of r or elder brother of an ancestor of r. A longest s, u-dipath can be found by
application of a longest path algorithm with time complexity O(|V | + |E|) for acyclic digraphs (see for example [12]).
It is not necessary to consider a state Gr − xj where xj does not belong to the dipath L, because Gr − xj is either not
s, K-connected and its domination is 0, or it is s, K-connected and contains the path L of length greater than D, and
by Theorem 3 its domination is also 0.

Rule 5. Gr is s, K-connected, acyclic, and LP(Gr, s, K)�D. Let Gr = (Vk, Ek). Assuming that Gr does not have
irrelevant arcs, it follows from Lemma 7 that Gr is a D, K-digraph, therefore contributing to the total reliability by
(−1)|Er |−|Vr |+1∏

x∈Ek
p(x). Moreover, let Grj = Gr − xj , xj ∈ Er be a child of Gr , provided {xj } ∩ X = ∅, where X

is the label of a link incident into any elder brother of r or elder brother of an ancestor of r.
The algorithm applies the previous rules recursively, and employs a rooted tree, called Auxt, as an auxiliary data

structure. This data structure is used to maintain the states already generated and to avoid state duplications. This is
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done by determining, at each step, whether the arcs to be deleted from the digraph under consideration are contained
in the label of a link incident into any brother or elder brother of an ancestor of this digraph.

We now present the pseudo-code of the algorithm:
Algorithm
Input: Original s-rooted digraph G, and diameter bound D.
Output: Source-to-all-terminal reliability R of G.
Data structures:

P(E). Represents the operational probabilities of the set of arcs E of the original digraph G, and the operational
probability of an arc x ∈ E is denoted as p(x).

R. Global variable to represent the diameter-constrained reliability. Originally R = 0.
r. Current vertex being considered. This is a global variable and originally r = 0.

Gr . Current digraph under consideration. Originally G0 = G.
nr . Number of vertices of Gr .
er . Number of arcs of Gr .

Auxt. Rooted tree auxiliary data structure. Originally Auxt contains only the vertex r = 0, that represents the original
graph G0 = G.

Auxiliary procedures:

(1) AddAuxt (vertex l, vertex m, label X). This procedure will add a link from vertex l into a new vertex m of Auxt,
whose label is X corresponding to a set of arcs deleted from Gl to obtain Gm.

(2) bool CheckAuxt (vertex l, label X). This procedure will backtrack from vertex l to find if any of the arcs represented
by the label X, is an arc of set of arcs corresponding to a label incident into any elder brother or ancestor’s elder
brother of a vertex l (we assume that each vertex contains the label of its father). If that is the case will return true,
otherwise will return false. This routine is computationally efficient, since the longest possible path from the root
of Auxt is of at most |E| links.

Main procedure:

CalcRel (Graph Gr )
1. Let crntvrtx = r; current vertex of the rooted tree;
2. If (Gr = (Vr , Er) contains a set of irrelevant arcs E′)

2.1. Let X the label of E′;
2.2. If (CheckAuxt(crntvrtx, X) = = false)

2.2.1. Let r = r + 1;
2.2.2. AddAuxt(crntvrtx, r, X);
2.2.3. Let Gr = Gcrntvrtx − E′;
2.2.4. CalcRel(Gr);

2.3. return;
3. Apply Depth First Search to determine s, K-connectedness or detect dicycles.
4. If (Gr = (Vr , Er) is not s, K-connected) return;
5. If (Gr = (Vr , Er) is cyclic)

5.1. Let C = {x1, x2, . . . , xc} be the arcs of a dicycle of Gr .
5.2. For (xi ∈ C) do

5.2.1. If (CheckAuxt(crntvrtx, xi) = = false)
5.2.1.1. Let r = r + 1;
5.2.1.2.AddAuxt(crntvrtx, r, xi);
5.2.1.3. Let Gr = Gcrntvrtx − xi ;
5.2.1.4. CalcRel(Gr);

5.3. return;
6. Determine LP(Gr, s, K);
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7. If (Gr = (Vr , Er) is acyclic and LP(Gr, s, K) > D).
7.1. Let L = {x1, x2, . . . , xl} be the arcs of a longest s, u-dipath of Gr .
7.2. For (ei ∈ L) do

7.2.1. If (CheckAuxt(crntvrtx, xi) = = false)
7.2.1.1. Let r = r + 1;
7.2.1.2. AddAuxt(crntvrtx, r, xi);
7.2.1.3. Let Gr = Gcrntvrtx − xi ;
7.2.1.4. CalcRel(Gr);

7.3. return;
8. If (Gr = (Vr , Er) is acyclic and LP(Gr, s, K)�D).

8.1. Let R = R + (−1)er−nr+1 ×∏
e∈Er

p(e);
8.2. For (xi ∈ Er ) do

8.2.1. If (CheckAuxt(crntvrtx, xi) = = false)
8.2.1.1. Let r = r + 1;
8.2.1.2. AddAuxt(crntvrtx, r, xi);
8.2.1.3. Let Gr = Gcrntvrtx − xi ;
8.2.1.4. CalcRel(Gr);

8.3. return;

Of the possible 2|E| states (i.e., digraphs) to be evaluated, steps 2, 5, and 6 of the above algorithm represent a significant
reduction on the total number of executable operations performed, since many states are avoided, especially when the
digraphs contain irrelevant arcs, when they contain several directed cycles, or when the diameter bound D is small.
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