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Using the Unfolded State as the Reference State Improves the Performance
of Statistical Potentials
Yufeng Liu and Haipeng Gong*
Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
ABSTRACT Distance-dependent statistical potentials are an important class of energy functions extensively used in modeling
protein structures and energetics. These potentials are obtained by statistically analyzing the proximity of atoms in all combina-
torial amino-acid pairs in proteins with known structures. In model evaluation, the statistical potential is usually subtracted by the
value of a reference state for better selectivity. An ideal reference state should include the general chemical properties of poly-
peptide chains so that only the unique factors stabilizing the native structures are retained after calibrating on reference state.
However, reference states available as of this writing rarely model specific chemical constraints of peptide bonds and therefore
poorly reflect the behavior of polypeptide chains. In this work, we proposed a statistical potential based on unfolded state
ensemble (SPOUSE), where the reference state is summarized from the unfolded state ensembles of proteins produced accord-
ing to the statistical coil model. Due to its better representation of the features of polypeptides, SPOUSE outperforms three of the
most widely used distance-dependent potentials not only in native conformation identification, but also in the selection of close-
to-native models and correlation coefficients between energy and model error. Furthermore, SPOUSE shows promising possi-
bility of further improvement by integration with the orientation-dependent side-chain potentials.
INTRODUCTION
With the rapid development of genomics, especially the
success of Human Genome Project, hundreds of thousands
protein-encoding sequences have been deposited into the
gene database. As a contrast, only ~73,000 of these
sequenced proteins have their structures determined (1),
constituting <0.4% of the >20,000,000 sequence ensemble
(2). This huge gap between protein sequences and structures
is still broadening, and can only be filled by computational
modeling and structural prediction in the lack of break-
through in structure-determining techniques (3). In a typical
structural prediction algorithm, numerous structural models
are sampled in silico and evaluated by an energy function,
and finally the one with lowest energy is frequently chosen
as the best model, under the assumption that the native
conformation is energetically more favorable than all other
ones. Therefore, a precise energy function (or potential) is
the prerequisite for accurate protein structural prediction.

The potential functions can be roughly divided into two
major categories: physical potentials and statistical poten-
tials (4). Physical potentials, including CHARMM (5),
AMBER (6), GROMOS (7), and OPLS (8), are summarized
from physical laws and have been widely adopted in
molecular dynamics simulations. However, they are not only
time-consuming (9), but also weak in selecting good models
generated by real-time protein structural prediction algo-
rithms (10). More importantly, physical force fields neglect
the entropy effect—a factor thatmust be considered in protein
folding and free energy calculation. Statistical potentials, on
the other hand, are derived from the high-resolution structures
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deposited in theProteinDataBank (PDB) (1).Due to their high
efficiencies in selecting the close-to-native conformations,
they have beenwidely used in the protein structure prediction,
ab initio folding, model assessment, etc (9).

Based on the interaction type, statistical potentials can be
further classified into several categories, including distance-
dependent potentials (9–20), contact-based potentials (21–
24), and numerous other interaction-type based potentials.
One of the first reported statistical potentials was a
residue-level contact-based potential that incorporated
contact frequencies over short-range, medium-range, and
long-range (21). Many statistical potentials have been devel-
oped since then, among which the distance-dependent
potential is the most commonly used (9).

To date, all distance-dependent statistical potentials are
based on two assumptions:

1. the native structure corresponds to the lowest energy
model; and

2. according to Boltzmann assumption, energy is propor-
tional to the negative logarithm of the state probability,
which can be expressed as

E ¼ �RT lnðPÞ; (1)

where R is the ideal gas constant, T is the temperature, and P
is the state probability.
To rule out the nonspecific chemical features of polypep-
tides, a proper reference state is often integrated, which
makes Eq. 1 as

E ¼ �RT ln

�
Pobs

Pexp

�
; (2)

where Pobs is the observed probability derived from high-
resolution crystal structures, and Pexp is the expected
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probability of the reference state. Because the universal
crystal structure database is used by all distance-dependent
potentials in estimating Pobs, the major difference comes
from the choice of reference state. The first distance-depen-
dent potential, introduced in the 1990s by Sippl et al. (11),
took the average of all atom pairs in the crystal structures
as the reference state. In successive studies, several other
potentials were built similarly by estimating Pexp from the
PDB database, but the structural details of the native state
had to be removed from the reference state, either by aver-
aging all-atom pairs or by shuffling the atomic positions
(10,13,14).

Besides statistical analysis through the database, the
reference state could also be derived from physical
modeling and theoretical deduction. Three distance-depen-
dent potentials, DFIRE (15), DOPE (9), and random walk
(RW) (19), were created sequentially, all of which are
among the most popular energy functions used in structural
modeling and prediction nowadays. DFIRE modeled the
reference state as finite ideal gas, where the distance distri-
bution of two randomly placed atoms follows the power law
ðra;a ¼ 1:61Þ. The clean form of the reference state and the
good performance in model evaluation render the popularity
of DFIRE. Nevertheless, it is less effective in evaluating
distantly placed atom pairs, because atomic pairwise
distance in the reference state can increase unlimitedly so
as to exceed the overall polypeptide chain length. DOPE
modified the reference state to a homologous sphere isovo-
lumic to the native protein to restrain the atomic distance,
but it neglected the chain connectivity and volume of poly-
peptides. RW further improved the reference state by intro-
ducing the chain connectivity according to the random-walk
model in the polymer theory. However, the chain volume is
overlooked in the random-walk model. In addition, the poly-
mer theory (and therefore the random-walk model) cannot
completely describe the key properties of polypeptides,
especially their tendencies to fold into unique three-dimen-
sional native structures.

Theoretically, the best reference state should include prop-
erties universal to all polypeptide chains and exclude the
properties of folded proteins so that only the unique attributes
of the native conformations are retained in the statistical
potential after normalization upon the reference state
(Eq. 2). Unfortunately, none of the above-mentioned refer-
ence states fulfill this requirement completely. Intuitively,
theunfolded state of a protein chain couldbe a goodcandidate,
not only because it contains all chemical-linking information
about the polypeptide chain, but also because nonbonded
interactions are nearly absent in it. Moreover, this strategy
agrees with the theoretical thinking of the protein folding
process from statistical mechanics. For instance, when the
unfolded state is taken as the reference, Eq. 2 automatically
becomes the free energy change over the folding process.

The unfolded state is of key importance in protein folding
research and has been extensively studied in the last decade
(25,26). Proteins in unfolded state were thought to be struc-
turally featureless random-coil polymers for a long time
(27), because the radius of gyration predicted according to
this model coincided with experimental data (28,29). Never-
theless, both experiments (30,31) and computational calcu-
lations (32,33) illustrated that considerable nativelike local
topologies remain even in the extremely denatured proteins
(26,34). In 2005, Jha et al. (35) proposed a statistical coil
model, which reconciled the discrepancy between the
radius-of-gyration scale and the residual nativelike
topology. Furthermore, their model agreed well with the
residual dipolar coupling data measured by NMR experi-
ment under denaturing conditions. Fitzgerald et al. (4)
calculated the Pexp from the unfolded state model of ubiqui-
tin, and reported improvement of their potential in selecting
reduced protein structures, in which all atoms beyond b-
carbons are removed. Despite their success, derivation of
the reference curve from a single protein impedes its appli-
cation in longer protein chains.

Designed to facilitate structural prediction, the perfor-
mance of statistical potentials ideally should be evaluated
by their capability to promote the folding of protein struc-
tures in real-time molecular simulation, an approach hard
to conduct due to the high computational expense. As an
alternative, the statistical potentials are frequently tested
using the decoy set, a set of structures with identical primary
sequences to the native conformation. However, that method
is challenged by the diversity in the protocols required to
produce the decoys. During the submission of our study,
Deng et al. systematically compared the performance of
currently available statistical potentials using different decoy
sets, and concluded ‘‘the performance of the potentials relies
on the origin of decoy generations and no reference state can
clearly outperform others in all decoy sets’’ (36).

In this work, we statistically reanalyzed the pairwise
atomic distances in the unfolded state model of numerous
protein chains, summarized an empirical formula to
describe the dependence of this probability distribution on
protein chain lengths, and took this formula as the reference
state curve (Pexp in Eq. 2) to generate a novel, to our knowl-
edge, all-atom distance-dependent statistical potential
(SPOUSE). Testing upon decoy sets shows that SPOUSE
is more powerful in native structure recognition and compet-
itive in best model selection. Furthermore, it can be greatly
improved by integrating an orientation-dependent side-
chain potential term. The program SPOUSE is available at
http://166.111.152.91/SPOUSE.html for free downloading.
THEORY

Mathematical background

According to Boltzmann assumption, protein potential is
proportional to the negative logarithm of the probability of
a given state as
Biophysical Journal 103(9) 1950–1959
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E ¼ �RT , lnðPðx1; x2;.; xNÞÞ; (3)

where E is the total potential of a molecule, R is the ideal gas
constant, T denotes the temperature, and P(x1,x2,.,xN) is
the probability of the state in which the N atoms are
described by their coordinates x1,x2,.,xN. Due to the high
computational expense and the limited data in PDB, the
N-dimensional joint probability is often reduced to the
product of all pairwise probabilities in practice by neglect-
ing the many-body interactions (9). Consequently, Eq. 3 is
transformed to

E ¼ �RT
X
isj

lnðPðxi; xjÞÞ; (4)

where i and j refer to two interacting atoms. In other words,

the total potential of a given protein conformation can be
approximated by the sum of all pairwise potentials. For
distance-dependent statistical potentials, Eq. 4 can be
further deduced to the following formula when taking
account of the reference state,

E ¼ �RT
X
isj

ln

�
Pobs

�
rij
�

Pexp

�
rij
��; (5)

where rij is the distance between atom i and j, and Pobs(rij)
and Pexp(rij) are the observed and expected pairwise proba-
bility, respectively. In structural predictions, to significantly
reduce the computational expense, usually only the atom
pairs located within a certain cutoff value R0 are considered
in the energy estimation. Therefore, all statistical potentials
actually force the energy at R0 to zero and output the relative
energy of a structure as

E ¼ �RT
X
isj

ln

�
Pobs

�
rij
�
=PobsðR0Þ

Pexp

�
rij
�
=PexpðR0Þ

�
: (6)

Both observed and expected probabilities are thereby
normalized by the respective probabilities at the cutoff
distance.
Derivation of the observed probability

The observed pairwise probability of SPOUSE Pobs(rij) was
calculated using selected high-resolution nonredundant
crystal structures. The relative position between atom pairs
was omitted, based on the report that symmetric potentials
outperform their asymmetric counterparts (37).
Derivation of the expected probability

One-thousand unfolded models for protein chains of various
lengths were produced to compute the expected probability.
As shown in Fig. S3 in the Supporting Material, 1000
Biophysical Journal 103(9) 1950–1959
models are sufficient to capture the pairwise atomic distance
distribution. The backbone and side-chain atoms were
treated separately, because the former is spatially more
constrained.

The pairwise distances between backbone atoms are all
represented by distances between the a-carbons (CA) of
the two corresponding residues for simplification in this
work. Histogram of CA-CA distances from the unfolded
state model of ubiquitin (see Fig. S1) indicates a rather noisy
distribution within 10 Å and a much smoother distribution at
longer distance. The discrete distribution at short distance
mainly corresponds to the interaction between atoms
residing in neighboring (N1) or alternating (N2) residues,
respectively. Hence, the overall distribution is finally esti-
mated by the weighted average of a local and nonlocal
distribution, where the local one contains the N1 and N2
terms and the nonlocal one describes the distances between
atoms separated by no less than two residues in the primary
sequence (called NL3 here). For simplicity, the local distri-
bution is further reduced to one single N12 term and repre-
sented by a Gaussian function. Finally, by weighted
averaging of the local and nonlocal distribution (P12 and
PNL3), the pairwise expected probability for backbone atoms
Pexp is formulated as

Pexp ¼ w12P12 þ wNL3PNL3; (7)

where w12 and wNL3 are the weights for the local and

nonlocal distribution and could be estimated by counting
the respective interacting pairs (e.g., 2N-3 local residue pairs
and N(N-1)/2-(2N-3) nonlocal residue pairs) in a chain with
N residues as

w12 ¼ 2N � 3

NðN � 1Þ=2 and wNL3 ¼ 1� w12:

The local distribution (P12) is universal for proteins of
various sizes and is simply represented by a Gaussian distri-
bution with the mean (5.05 Å) and standard deviation
(1.29 Å) estimated from the N12 distances of CA-CA
atom pairs in all unfolded state conformations. The standard
deviation is later multiplied by a factor for the following two
reasons:

1. CA-CA atom pairs in the unfolded state models are arti-
ficially too much confined, possibly because of the fixed
bond-length and ignorance of cis peptide bonds in
modeling (35). For instance, the N1 distance has an
extremely small standard deviation (0.0004 Å), tremen-
dously less than the actual value calculated from the
PDB (0.02 Å).

2. The Gaussian distribution is obtained from CA-CA atom
pairs and therefore should be flattened so as to represent
all backbone atom pairs. The multiplication factor was
tested among four possible choices (2,4,6,8) upon the
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decoy sets 4state_reduced (38) and lmds (39), and its
value was finally set to ‘‘6’’ for the best performance.

However, the nonlocal distribution (PNL3) should be depen-
dent on the chain length. For a protein chain of a fixed
length, the nonlocal distribution is found to follow the
log-normal distribution

f ðxÞ ¼ 1

x
ffiffiffiffiffiffiffiffiffiffi
2ps2

p exp

"
�ðln x � mÞ2

2s2

#
; x>0

well. Therefore the NL3 histograms for all unfolded protein
chains are fit with log-normal distribution and both param-
eters of log-normal distribution, m and s, show clear depen-
dence on the chain length N (see Fig. S2). Fortunately these
dependences can be well described by simple empirical
formulas (linear relationship for m and logarithm relation-
ship for s), as corroborated by the high-correlation coeffi-
cients in curve-fitting shown in Fig. S2. In other words,
both m and s can be accurately predicted and then the
nonlocal distribution PNL3 is known, once the number of
residues in a chain is given. After integrating the P12 distri-
bution using Eq. 7, the overall probability Pexp for backbone
atoms can be easily derived.

All side-chain atoms beyond the b-carbon were absent in
unfolded state ensembles and therefore their positions were
predicted using SCWRL4 (40) according to the backbone
topology. Though highly optimized, uncertainty may be
introduced during the process. For this reason, chain length
is neglected in treating these atoms and the distance distri-
bution is obtained by counting over all side-chain atom pairs
in all unfolded state models. The distance also follows a log-
normal distribution, with m and s being 4.29 and 0.78,
respectively. In the end, s is slightly amplified to 0.84 for
better performance tested in the decoy sets 4state_reduced
(38) and lmds (39).
TABLE 1 Native recognition test

Decoys DFIRE DOPE RW SPOUSE Targets

fisa 3(70.5) 3(90.0) 3(72.3) 3(63.3) 4

fisa_casp3 5(1.0) 4(2.4) 5(1.0) 5(1.0) 5
MATERIALS AND METHODS

Crystal structure database

The nonredundant structures used to generate the observed probability were

culled from PDB using the PISCES server (41). Only the structures deter-

mined by x-ray crystallography were preserved and all chains with missing

internal residues were removed. The database contains 2724 chains with

resolution <1.8 Å, R-factor <0.25, and pairwise sequence similarity

<25%. Within the database, 101 chains are identified as having >60%

sequence identity to the proteins in the test set (decoy set). After the

removal of these homologous proteins, the final database contains 2623

chains.

lattice_ssfit 8(1.0) 8(1.0) 8(1.0) 8(1.0) 8

molder 19(6.5) 19(6.2) 19(6.6) 18(6.7) 20

ROSETTA 22(22.8) 22(24.6) 21(23.4) 27(19.2) 59

I-TASSER 51(4.0) 48(28.4) 52(2.1) 53(1.7) 56

Total(average) 108(13.1) 104(23.3) 108(12.7) 114(10.7) 152

Numbers outside the parentheses are the numbers of identified native

conformations, and the ones in the parentheses are the average ranks of

native structures within the decoy sets.
Calculation of the observed probability

As with DOPE (9), SPOUSE contains 158 nonhydrogen residue-based atom

types after the deletion of nine chemically equivalent atoms. Thus, a total

number of 12,561 symmetric atom pairs are sampled. In practice, the prob-

ability is normalized according to the value at cutoff distance (see Eq. 6).
Data beyond the cutoff distance is ignored. In this work, the cutoff distance

is 15 Å except if otherwise mentioned. To obtain the distribution, the bin-

width is set to 0.5 Å, the values at the bin midpoints are counted from the

database, and all other values are estimated by linear interpolation.
Estimation of the expected probability

Thirteen nonhomologous chains (from 52 to 391 residues) were chosen (see

Table S1 in the Supporting Material), and 1000 unfolded state models were

generated for each of them by the Godzilla webserver (http://godzilla.

uchicago.edu/cgi-bin/unfolded.cgi) (35). Missing heavy atoms of the side

chains were replenished using SCWRL4 (40). The data fitting (in the

Theory section) was achieved through fitdistr() functions in the R statistical

package (http://www.r-project.org/) and the scientific PYTHON package

(http://www.scipy.org/).
Potential evaluation and comparison

The performance of SPOUSE was tested in eight popularly used decoy sets

(Table 1). The decoy sets 4state_reduced (38), lmds (39),fisa (42),fisa_casp3

(42), and lattice_ssfit (43,44), were downloaded from the Decoys ‘R’ Us

database (45) (http://dd.compbio.washington.edu/). The comparative-

modeling-based decoy set molder (46) was downloaded from the Sali lab

(ftp://salilab.org/decoys/comp_models.tar.gz). Another two real-time-simu-

lation-derived decoy sets ROSETTA (47) and I-TASSER (19) were obtained

from the websites http://depts.washington.edu/bakerpg/decoys/rosetta_

decoys_62proteins.tgz and http://zhanglab.ccmb.med.umich.edu/decoys/

decoy2.html, respectively.

The three widely used distance-dependent potentials DFIRE, DOPE, and

RWwere tested for comparison. In addition, a statistical potential including

orientation-dependent side chains, named GOAP (20), was downloaded

from http://cssb.biology.gatech.edu/GOAP to evaluate possible improve-

ments by integrating orientation-dependent features. For a strict compar-

ison of the choice of reference state, DFIRE and RW potentials in this

work were calculated in a similar way to SPOUSE, by replacing the

SPOUSE reference curve with the theoretical formulas of DFIRE and

RW taken from the respective published articles. The DOPE potential

was calculated using the assess_dope function in MODELLER9v8 (48)

due to the lack of detailed instruction on how to estimate the parameter

a in the original article.
RESULTS

Comparison of the reference state

In Fig. S4, the probability distribution Pexp is calculated for
a 76-residue chain and is overlaid on the top of the histo-
gram of CA-CA distance (obtained from the unfolded state
Biophysical Journal 103(9) 1950–1959
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models of ubiquitin which also contains 76 residues).
DFIRE and RW reference curves are also included for visual
comparison. The SPOUSE empirical distribution curve
agrees fairly well with the histogram, greatly exceeding
both DFIRE and RW theoretical distributions. This indicates
that the SPOUSE backbone reference state better captures
the properties of polypeptide chains.

Both backbone and side-chain SPOUSE reference curves
are created for a 100-residue chain, normalized by the value
at R0 ¼ 15 Å, and plotted in Fig. 1. DFIRE and RW curves
are shown again for comparison. DFIRE and RW reference
curves are almost indistinguishable after normalization. RW
and DOPE articles (9,19) showed that the DOPE curve is
also very close to both DFIRE and RW curves after normal-
ization. This explains the close performance of these three
potentials listed in the literature, because limited progress
has been made in capturing the essential characteristics of
polypeptide chains despite the successive improvements in
modeling the reference state. On the contrary, although
the discrepancy between the SPOUSE backbone curve and
the DFIRE and/or RW curves reduces significantly after
normalization, great difference still exists, especially at
distance <5 Å, where the SPOUSE backbone curve is
significantly higher than the other models. The SPOUSE
side-chain curve, however, is lower than the DFIRE and/or
RW curves when the distance is <8 Å. According to
Eq. 2, these changes will weaken the backbone-backbone
interactions and strengthen the interactions including side-
chain atoms at a short distance.
FIGURE 1 Comparison of reference states for different potentials. Five

reference states, including SPOUSE backbone (solid line), SPOUSE side

chain (dotted line), DFIRE (dashed line), RW (dash-dotted line), and infin-

ite SPOUSE backbone (triangle line), which equally weights the separate

terms as RWare drawn after normalized at cutoff distance for a 100-residue

polypeptide.
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Comparison of the energy function

The energy functions are plotted in Fig. S5 as examples for
four different types of pairwise atomic interactions:

1. Backbone-backbone interaction.
2. Backbone-sidechain interaction.
3. Interactions between hydrophobic side-chain atoms.
4. Interactions between hydrophobic and hydrophilic side-

chain atoms.

As expected from their indistinguishable reference curves,
DFIRE and RW potentials are quite close to each other in
all four cases.

In Fig. S5 A, both DFIRE and RW potentials experience
the deepest trough at 2.2 Å, indicating extremely strong back-
bone-backbone interactions there. A simple analysis over
crystal structures on the distribution of distance between
atom pairs residing in neighboring residues (N1) and all other
atom pairs (NL2) suggests that onlyN1 atom pairs are heavily
populated in this region (2.2 Å). (see Fig. S6). Therefore, the
deep trough at 2.2 Å is principally caused by the large popu-
lation of N1 atom pairs, a group of atom pairs playing negli-
gible roles in conformation selection, becauseN1 pairs make
roughly equal energetic contribution in two conformations as
long as the primary sequence is identical. The other atom
pairs (NL2), which are of greater importance, will also sense
this artificially amplified potential and will be biased toward
2.2 Å, a distance they rarely approach in reality (see Fig. S6).

In other words, both DFIRE and RW artificially tend to
favor the extremely compact or compressed protein chains.
This artifact is, however, greatly alleviated in SPOUSE, as
suggested by the much shallower trough at 2.2 Å. Simulta-
neously, the two troughs located at ~7 and 8 Å are stabilized
by a small amount in SPOUSE compared to DFIRE and RW.
Therefore, SPOUSE generally favors the mildly compact
protein chains but refuses to apply additional awards on the
compressed chains. On the other hand, the SPOUSE back-
bone energy curve around 3–5 Å is elevated relative to
DFIRE and RW. Elevation in this region will impair the
stability of the local secondary structures (see Discussion).
Fig. S5 B shows that backbone-sidechain interactions within
4–8 Å are stronger in SPOUSE than in DFIRE and RW, sug-
gesting that SPOUSE favors denser backbone-sidechain
packing. In terms of interactions between side-chain atoms,
SPOUSE does not display much difference from DFIRE
and RW (see Fig. S5, C and D).
Recognition of native conformation

Eight most widely used independent decoy sets are used to
test the capability of SPOUSE to recognize the native
conformations from decoys against DFIRE, DOPE, and
RW. Table 1 lists the number of decoy sets in which the
native conformation can be successfully selected based on
the rule of lowest energy. For objective comparison, results
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of decoy sets 4state_reduced and lmds (shown in Table S2)
are excluded from Table 1, because they have been used in
the parameter optimization of SPOUSE. Except for the
slightly worse result in molder, SPOUSE is the best in all
decoy sets. The advantage is especially significant in
ROSETTA, where SPOUSE succeeds in 27 out of the total
59 targets, at least fivemore than the other potentials. In total,
SPOUSE correctly recognizes 114 native conformations out
of the 152decoy setswith a success rate of 75%.As a contrast,
the success rates for DFIRE, DOPE, and RWare 71%, 68%,
and 71%, respectively, lower than SPOUSE.

When a potential fails to recognize the native conformation
by the rule of lowest energy, the rank of native conformation
within the decoy set is another important factor to evaluate the
power of this potential. A low rankmeans that the potential is
challenged by very fewmisfolded conformers. Clearly, better
potentials should be able to approach lower ranks in most
decoy sets. The number in parentheses in Table 1 lists the
average rank of native conformations in each decoy set
when tested by different potentials. In this term, SPOUSE
also wins in almost all decoy sets. After averaging over all
decoy sets, SPOUSE has a mean rank of 10.7, better than
DFIRE (13.1), DOPE (23.3), and RW (12.7). In summary,
SPOUSE is significantly more powerful than the other major
potentials in recognizing native conformations.

Notably, all potentials show indistinguishably good
performance in the decoy sets fisa, fisa_casp3, lattice_ssfit,
and molder, indicating the limited testing power of these
sets. The evaluation results show largest variations in the
decoy sets ROSETTA and I-TASSER, two sets generated
from the most popular and successful protein structural
prediction programs, ROSETTA and I-TASSER, respec-
tively. Theoretically, decoy sets produced from real-time
structural prediction programs are more valuable in evalu-
ating the performance of statistical potentials. According to
the recent study by Deng et al. (36), all statistical potentials
are biased by decoy sets and no one is able to outperform
the others in all decoy sets. Therefore, the testing behaviors
in ROSETTA and I-TASSER should be considered more seri-
ously, due to their higher relevance to practical protein struc-
tural prediction, also because ROSETTA and I-TASSER
contains far more target proteins than the other decoy sets.
Notably, SPOUSE has the highest rank in both decoy sets.
TABLE 2 Selection of close-to-native models

Best models DFIRE DOPE RW SPOUSE

ROSETTA Top1 7.33 7.16 7.46 7.36

Top5 5.53 5.58 5.50 5.50

Top10 5.27 5.28 5.24 5.20

I-TASSER Top1 5.25 5.29 5.20 5.16

Top5 4.38 4.33 4.36 4.25

Top10 3.79 4.01 3.80 3.94

Top1, top5, or top10 are the top ranking 1, 5, or 10 models with lowest

calculated energy by the corresponding potentials, respectively. Numbers

are the smallest CaRMSD in the top models. The best performance in

each category is highlighted in bold.
Selection of the close-to-native models

Although recognition competence of native structures is
a quite important standard in potential evaluation, it is
somehow of limited usefulness in practice. The absence of
native structure during a blind structure prediction process
requires that a good potential should be able to select
close-to-native conformers solely by the criterion of energy
(9,10,19). These selected conformers could be further refined
to improve their similarity to the native structure by the struc-
tural refinement programs. As proposed by previous groups,
the real-time simulation and structure prediction-based
ROSETTA and I-TASSER decoy sets are more realistic and
challenging (19). Thus, we use them as the test sets to eval-
uate the selection of close-to-native models in this work.

The energetically most favorable top 1, 5, and 10
conformers are extracted from each decoy sets and the
a-carbon root-mean-square-distance (CaRMSD) of the best
model relative to the native conformation is listed in Table 2.
A good potential should approach small CaRMSD values in
all top 1/5/10 tests. In ROSETTA decoy sets, SPOUSE
performs best in top5 and top10 tests and ranks third in
top1 test. In I-TASSER decoy sets, SPOUSE wins top1 and
top5 test and ranks third in top10 test. After naively averaging
the performance of potential among the six tests, SPOUSE
has a mean rank of 1.67, lower than the values of DFIRE,
DOPE, and RW, which are 2.50, 3.17, and 2.33, respectively.

Despite the good relative performance of SPOUSE shown
above, the mean CaRMSD values obtained from different
potentials are quite close, suggesting the limited discrimi-
nating power of this test. This can be further demonstrated
by the overlap of error bars in the statistical analysis con-
ducted in a bootstrap strategy (see Table S3), where the
test was repeated in 10 decoy subsets obtained by randomly
removing 20% structures from the corresponding decoy set.
Correlation coefficient between energy andmodel
errors

In addition to the ability to select close-to-native conformer,
an ideal potential should possess the following property: the
conformations with lower energy should be closer to the
native structure, or have lower RMSDs (or higher TM-
scores). Thus, the overall energy landscape will be inclined
to the native conformation such that it naturally guides the
chain to fold into the native structure inmolecular simulation.
This inclination is most frequently quantitatively described
by the Pearson correlation coefficient (CC) between energy
and the relative distance (RMSD or TM-score) to the native
conformation. Decoy sets of good and poor CC are shown
in Fig. S7 as examples.

The correlation coefficients of DFIRE, DOPE, RW, and
SPOUSE are calculated for the ROSETTA and I-TASSER
Biophysical Journal 103(9) 1950–1959
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decoy sets, and are then listed in Table 3. SPOUSE shows
highest CC value (0.460 or�0.472) in ROSETTA. According
to the statistical test conducted in a bootstrap strategy (see
Table S4), SPOUSE’s prominent performance is statistically
significant. In addition, bothDFIRE andRWapproach higher
CC values (~0.45 or �0.46) in this work than those listed in
the literature (~0.44 or�0.43), because of the rapid increase
of available crystal structures in PDB. In I-TASSER, SPOUSE
is worse than DFIRE and RW, with comparable performance
to DOPE (Table 3 and see Table S4). The reason of its relative
weak performancewill be analyzed in theDiscussion section.
DISCUSSION

About the reference state

To strictly analyze the influence of the reference state on the
performance of the statistical potential, SPOUSE, DFIRE,
and RW potentials are calculated using the same crystal
structure database, the same cutoff distance, and the same
repulsive penalty at short distance. In other words, all
factors other than the reference state are forced identical
to exclude their effects. Therefore, the advantage of
SPOUSE over DFIRE and RW in most tests can be ascribed
to its better modeling of the reference state. As described in
Results, the distinction between SPOUSE and DFIRE/RW is
most conspicuous at short distance (<4 Å in Fig. 1), where
the SPOUSE reference curve is elevated significantly, which
weakens short-range backbone-backbone interaction and
makes the energy well shallower (see Fig. S5 A). We believe
that this elevation results from the correct weighting of the
local and nonlocal distance distribution (see Eq. 7).

Let us suppose two residues separated by k residues in an
N-residue chain, and denote the distribution of the distance
between their a-carbons as P(rjk). Then distribution of
distance between any a-carbon pairs can be obtained by
simply averaging P(rjk) of all available k values (k ¼ 0,
1,., N-2), by assuming that residue pairs are equally prob-
able to be separated by k residues. This is actually the proce-
dure RW took in deriving the expected probability.
However, the above assumption is only valid when the chain
is infinitely long. In fact, in a finite N-residue chain, the
residue pairs separated by k residues appear (N-k-1) times
altogether. After dividing by the overall number of residue
pairs N(N-1)/2, the probability of observing a k-residue-
separated pair is
TABLE 3 Correlation coefficients in the ROSETTA and

I-TASSER decoy sets

Decoy set DFIRE DOPE RW SPOUSE

ROSETTA 0.449/�0.457 0.431/�0.424 0.451/�0.463 0.460/�0.472

I-TASSER 0.517/�0.497 0.479/�0.487 0.515/�0.507 0.497/�0.480

The values before and after the slash are the ones calculated from RMSD

and TM-score, respectively. The best performance in each category is high-

lighted in bold.
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PðkÞ ¼ N � k � 1

NðN � 1Þ=2;

which diminishes linearly with the increase of k. Therefore,
the distribution of local pairs should be assigned more
weights than the nonlocal pairs (as processed by SPOUSE
in Eq.7), and this leads to the elevation of SPOUSE refer-
ence curve at short distance. To verify this idea, we reder-
ived the expected probability of SPOUSE (see Eq. 7) by
assuming the equal probability of all CA-CA pairs (similar
to RW procedure), and plotted the curve (triangle-curve) in
Fig. 1. The curve falls toward the RW reference curve
significantly at short distance.

Correction on the weighting factors, however, brings an
unexpected side effect: the potential minima between 3
and 5 Å in SPOUSE backbone potential is also elevated,
which leads to the destabilization of local secondary struc-
tures and the drop of performance in decoy sets where back-
bone secondary structures are poorly assembled. The
relatively low performance of SPOUSE in the correlation
coefficient test in I-TASSER decoy set is caused by this
reason. For verification, the losses of secondary structures
in decoys relative to the native structures are estimated in
both ROSETTA and I-TASSER decoy sets, respectively, by

SSnative � SSdecoy
SSnative

� 100%;

where SS is the total number of noncoil residues according
to the secondary structures assigned by DSSP (36). As
shown in Fig. S8, I-TASSER decoys on average lose 40%
secondary structures. As a contrast, the secondary structure
contents are retained in the ROSETTA decoy set, possibly
because hydrogen-bonding potential is implemented in the
ROSETTA algorithm to optimize the local backbone struc-
tures. Therefore, the negative effect of SPOUSE on
secondary structure assembly can be rescued by explicit
hydrogen bonds (see the high CC values of SPOUSE in
the ROSETTA decoy sets).
Influence of the cutoff distance

Theoretically, greater cutoff distance results in better perfor-
mance by including more information. However, this is not
the case for most distance-dependent statistical potentials.
Many studies focused on the influence of cutoff distance
(13,14,50), but no views have been commonly accepted
yet. In practice, most statistical potentials adopt a 15 Å
cutoff. In this work, we compared the performance of
SPOUSE with those of DFIRE and RW at various cutoff
distances (from 14 Å to 20 Å) on all decoy sets.

The influence of cutoff distances on potentials is illus-
trated in Fig. 2. In all potentials, a larger cutoff distance
results in poorer performance in identifying native



FIGURE 2 Influence of the cutoff distance on different potentials. The

success number of SPOUSE (circle line) is higher than DFIRE (square

line) and RW (triangle line) at the whole range tested. Furthermore, it

decreases, at a much slower pace than DFIRE and RW, illustrating

a more robust performance at the variation of cutoff distance.

TABLE 4 Performance of orientation-dependent SPOUSE and

DFIRE

Decoys

DFIREþ
GOAP-AG

SPOUSEþ
GOAP-AG SPOUSE Targets

4state_reduced 7/0.732 7/0.734 6/0.551 7

lmds 7/0.123 7/0.134 7/0.126 10

fisa 3/0.268 3/0.302 3/0.283 4

fisa_casp3 5/0.167 5/0.175 5/0.261 5

molder 19/0.823 19/0.841 18/0.769 20

ROSETTA 47/0.488 48/0.495 27/0.460 59

I-TASSER 45/0.449 47/0.464 53/0.497 56

Total/average 133/0.489 136/0.500 119/0.484 161

Orientation-dependence integrated SPOUSE (SPOUSE þ GOAP-AG) and

the original GOAP (DFIRE þ GOAP-AG) are compared. The numbers

before the slash are the numbers of selected native conformations, and

the ones after the slash are the corresponding Pearson correlation coeffi-

cients. The corresponding number for SPOUSE alone was appended at right

to facilitate comparison.
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conformations. However, this weakening of performance is
most serious in DFIRE, because its reference state curve
increases rapidly at long distance (beyond 15 Å) and
violates the expectation that the distance between two atoms
in a polymer chain cannot exceed the end-to-end distance.
The performance of SPOUSE declines at a much slower
pace at large cutoff distances (~20 Å), because it better
models the reference state using a polypeptide chain. As ex-
pected, RW performs at an intermediate level between
SPOUSE and DFIRE, because partial information about
the connectivity is included in its reference state. In
summary, SPOUSE is more robust upon the change of cutoff
distance than the other distance-dependent statistical
potentials.
Possibility of improvement by orientation-
dependent side chains

Because composite statistical potentials are always better
than single-attribute-dependent potentials (51), many
distance-dependent potentials developed their composite
counterparts. Among them, GOAP (20) is a successful
example by combining the DFIRE potential and a self-devel-
oped orientation-dependent side-chain potential named as
GOAP-AG. The orientation-dependent side-chain potentials
usually can greatly improve the overall performance by
including themany-body effects rather than only considering
pairwise interactions (19,52). To speculate the future possi-
bility of SPOUSE to integrate with an orientation-dependent
side-chain potential, we combined SPOUSE and GOAP-AG
(SPOUSE þGOAP-AG) and tested its performance against
GOAP (or DFIREþGOAP-AG) on all the eight independent
decoy sets mentioned above except lattice_ssfit (in which
only a minor part of the decoy models are calculable by
the downloaded GOAP program).

Table 4 compares the performance of SPOUSEþGOAP-
AG versus GOAP (or DFIREþGOAP-AG) in the test of
native structure recognition (former) and the test of correla-
tion coefficient (latter). The data for SPOUSE alone is also
listed for easy comparison. As a whole, after the integration
of GOAP-AG, SPOUSE is significantly improved. In partic-
ular, it correctly selected 48 native conformations out of
59 ROSETTA targets, 21 more than before (SPOUSE alone).
At the same time, the correlation coefficient also rises
greatly (from 0.460 to 0.495). More importantly, SPOUSEþ
GOAP-AG potential prevails GOAP in all decoy sets tested,
in both the number of successful native recognition and the
correlation coefficients. This convinces us that SPOUSE
could be sufficiently improved by the integration of a suit-
able orientation-dependent side-chain potential.
SUPPORTING MATERIAL

Four tables and eight figures are available at http://www.biophysj.org/
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