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Abstract 

In this paper we investigate parallel searching in the plane using robots as searchers. We show 
that a huge number of robots are not necessary for several problems and under different 
assumptions. This corresponds to real situations since, actually, the number of processors of 
parallel machines is fixed and independent of the dimension of the problem to be solved. 

I. Introduction 

The problem considered in this paper was suggested by practical motion planning 
problems. The real stimulation came from the fact that we had the opportunity to use a 
parallel T-node machine with 32 processors for running our software. Therefore, we 
were concerned with the following natural question: Can we develop optimal parallel 
search in the plane with a limited number of processors (robots)? Several parallel 

algorithms have been developed recently in computational geometry but the complexity 
appears to be interesting only from a theoretical point of view since the result is usually 
expressed in terms of n processors (n ~ oo), where n is also the dimension of the 
problem. A recent work [6] deals with the speed-up that can be given by the paralleliza- 
tion of a problem when the number of processors is fixed and independent of the 
dimension of the problem. 

We address several problems of finding a given goal in parallel with incomplete 
information about the goal's position. The goal is either a point in a line (one dimension) 
or a line in a plane (two dimensions). We model each processor as a robot, and we say 
that the goal is found when the robot reaches the goal. We can have several searching 
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models. The simplest one, but not very interesting, is that when a robot finds the goal, it 
does not care about the other robots. A better model, which we use most of the time, is 
to assume that the robots have some means of instantaneous contact (say a radio) such 
that when a robot finds the goal all other robots stop (or go to where the goal is). Yet 
another model is when the robots do not have a communication device. So, there has to 
be some kind of protocol such that the robot that finds the goal can find the other robots 
and direct them to the goal. We include one example for this model. 

We consider two measures: the distance travelled by the robots and the time to reach 
the goal. We denote by D the distance to the goal (which may be not known). Without 
loss of generality, we also assume that all robots are initially placed at the same starting 

point (origin) and that they travel at the same speed V (if you have different speeds, the 
worst case will always happen to the slowest robot). We call D / V  a unit of time, and 

we use a normalized speed V = D units of distance/time. The sequential solution to the 
problems addressed here are given in [1,2], and are related to searching without 
information, on-line algorithms, and motion planning [9]. 

The paper is organized as follows. Section 2 presents the parallel searching problem 
and outlines some results for searching a point on a line. Section 3 presents the bounded 
two dimensional case and also discusses average case analysis. Section 4 addresses the 
unbounded case in two dimensions. Our analysis was performed by using the Maple 

symbolic algebra system [5]. A preliminary version of this paper was presented at [3]. 

2. Searching for a point  on a line 

Suppose that the robot needs to find some point on a line whose position is unknown 
to the robot. Two different types of situations can occur: 

(1) The point is at a known distance D, 
(2) The point is at an unknown distance. 

2.1. The point is at  distance D 

In the worst case, one robot travels a distance 3D and the time needed is equal to 3 

units. The total distance travelled by two robots is 2 D and the time necessary to find the 
goal is 1 unit. Obviously, more robots do not help for this task. 

2.2. The point  is at unknown distance 

Assume that after when the point is found, the distance of it to the origin is D. In the 
solution for one robot a distance of 9D must be travelled and the time needed is equal to 
9 units [1,2]. This is optimal up to lower order terms. For two robots the distance 
travelled is 2 D and the time necessary to find the goal is 1 unit and more robots do not 
help. If  both robots must reach the goal, the distance increases to 4D and the time to 3 
units (the robot that finds the goal waits for the other robot). 
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Fig. 1. Parallel solution without communication. 

Let's now have the following variation: both robots cannot communicate. Hence, the 

robot that finds the goal must find the other robot, tell him, and then both must go back 
to the goal. To have a solution the robots must agree on a protocol such that they can get 

in contact in the future. One possibility is to stop and wait at certain intervals before any 
of them finds the goal (or in other words, they agree to reduce the speed). Suppose that 
they wait R time/distance units. The robot that finds the goal, goes back at full speed 
until meets the other robot and they return together (see Fig. 1). They will meet because 

one robot is going faster than the other robot. 
After the first robot reaches the goal, we have that L is such that (1) L + 2 D  =L +R 

v -v  ' 

where (L + 2 V ) / V  is the time of traversal when at full speed by the robot that finds the 
goal and L(1 /V+R)  is the time spend by the other robot after the goal is found 

(without this robot knowing that the goal was found). Therefore: 

2D 
L =  

VR" 

Hence, the total distance is: 

4 D + 2 L + 2 L + 4 D = 8 D  1+ . 

Therefore, asymptotically on R, the distance approaches 8 1 ) <  9D. The total time 

that both robots take to find the goal is: 

T ( R ) =  V + D R + 2  + D  R +  

Minimizing T(R) we obtain: R = 2 /V  (they wait half the time), which gives a total 
distance of 12D and T =  9D/V  or 9 units of time. That is, they take the same time as 
one robot! In other words, the advantage of using more than one robot depends upon 
whether or not they have some instantaneous communication device. 
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Another possible protocol would be that both robots agree to return to the origin in a 
certain manner. However, this idea is not better than the one just analyzed on distance or 
time. However, if we have more robots, we can have two robots searching and coming 
back to certain points, while the other robots can carry messages between the searchers 
until the goal is found. In this case, the goal can be reached in a smaller time. 

The average case analysis depends on the probability distribution of finding the goal. 

In [1,2] it is shown that the optimal algorithm for many centered distributions over a 
finite range has an infinite number of turns. On the other hand, for a uniform 
distribution, the optimal algorithm is the same as the optimal worst case algorithm. With 
two robots, the optimal worst case solution would change only if the probability 
distribution of finding the goal is not symmetric with respect to the starting point. 

3. Searching for a line at unit  distance 

We are looking for the set of paths of the robots, all starting at origin O, with 

smallest overall length, such that the convex hull of the union of these paths contains the 
circle of radius D centered at O, Searching for a line of arbitrary slope a known 
distance away (say 1 kilometer) in the plane was posed by Bellman [4] and was solved 

by Isbell [8]. The optimal worst case distance walked by a single robot is 1 + 77r/6 

+ ~ = 6.39. For two robots, we show that the asymmetric algorithm presented is better 
than a symmetric one. 

The algorithm is as follows. One goes straight with an angle (x  + y) of the other for a 
distance of length 1/cos(y) ,  the other goes straight for a distance of length I / cos (x ) ,  
then goes to the circle, follows it and takes the tangent perpendicular to the last tangent 
visited by the first robot (see Fig. 2) 

The overall distance is: 

1 1 37r 
- - + ~  + t a n ( x ) + - - - 2 ( x + y ) + l .  
cos (y )  cos (x )  2 

This is optimized for 

x =  -~-(30°), and y = a r c s i n  4 =0.8959 (51.3 ° ) 

giving d(2) = 6.206 (slightly better than one robot). The total time is: 

1 3~- 
t =  ~ + t a n ( x ) + - - - 2 ( x + y ) + l .  

cos(x) 2 

For the above values of x and y we obtain t = 4.605, which is about 72% of the time 
for the one robot solution. 

However, this asymmetric algorithm is not time optimal. The optimal is achieved 
when both robots travel the same distance. This implies the same value of x, but we 
have y = 1.303 (74.7°), giving t = 3.7898 which is only 59% of the one robot solution. 
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Fig. 2. Asymmetric algorithm for two robots. 

However,  the total distance jumps to 7.579, that is, 18% more than the one robot 

solution. 

The total worst case distance of  a symmetric algorithm for two robots (see Fig. 3) is 

given by 

d = 2 x-------- ~ + t a n ( x )  + - 2 x + 1 

Fig. 3. Symmetric algorithm for two robots. 
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Fig. 4. Symmetric algorithm for n > 2 shown for n = 4. 

which is also op t imized  for x = 7 r / 6  g iv ing  a total dis tance o f  2(1 + v~-) + 7 r /3  -- 6.511 

but a t ime o f  3.2556 which  is about  51% of  the one  robot  solution. 

For  n = 3 or  more  robots,  we found no better a lgor i thm than the symmet r ic  one:  they 

all go straight with an angle  o f  2~r/n be tween  two neighbour ing  robots.  They stop after 

t ravel l ing f =  1 / c o s ( T r / n )  (see Fig. 4). The  total dis tance for n robots is: 
n 

d ( n )  = , for  n > 2. cos( ) 
Table  1 shows the total d is tance in funct ion o f  n, including the t ime consumed.  Note  

that there is a t rade-of f  be tween  dis tance (opt imal  for n = 4) and t ime (opt imal  for large 

n). The  obvious  lower  bound for the dis tance is max(d (1 ) /n ,  n) consider ing that the n 

Table 1 
Distance and time for our best algorithm in function of n. 

n distance lower bound time lower bound 

1 6.3972 6.3972 6.3972 6.3972 
2 6.2059 3.1986 3.2556 1.5993 
3 6.0 3.0 2.0 1.0 
4 5.6569 4 1.4142 1.0 
5 6.1803 5 1.2361 1.0 
6 6.9282 6 1.1547 1.0 
7 7.7694 7 1.1099 1.0 
8 8.6591 8 1.0824 1.0 
9 9.5776 9 1.0642 1.0 

10 10.5146 10 1.0515 1.0 
n ~  n n 1 1.0 
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robots cannot do better than one robot divided by the number of robots, and that all the 

robots should get to the circle to be able to find the goal (and all of them should be 
used). The lower bound for the total time is then max(d(1) /n  2, 1). These lower bounds 

are also shown in Table 1. 

For the non-communicating robots model, it is enough for the robot that finds the 

goal to follow a circle of radius f to tell the other robots where the goal is. The extra 

distance travelled by all the robots to reach the goal is: 

'n-(n + 1) 

cos( ) 
which is also minimized for n = 4. 

3.1. The average case analysis 

We first examine the case of two robots using an asymmetric algorithm. Then we 

compare with the symmetric algorithm. A general result is also obtained for n robots 

using the symmetric algorithm. There are no known lower bounds for this problem. 

3.1.1. The asymmetric algorithm for  two robots 

The asymmetric algorithm is described in Fig. 2. We first compute the average total 

distance. We assume that y > x, 1 /cos(y)  < 1/cos(x)  + tan(x), and 37r/2 - 2x - 2y  

> 0, because in that range we have the optimal value for x and y. The analysis for the 

other cases is similar. 

The total distance is explained below in detail: 
• Both robots travel at the same time covering all the tangents from - x  to x for each 

path. Thus, the average distance until the first robot reaches A is: 

1 . 0  

-xcos(0) 2zr" 

• The second robot continues the search covering the tangents from x to y and - x  

to - y .  The first robot starts travelling from A to B. Therefore, considering that 

l / c o s ( 0 )  is an even function, we have 

y 1 d 0  

4fx cos(0) 2~-" 

• After the second robot stops, the first robot will complete the AB segment if the 

line has not been already found. After that, it follows the BC arc. Then, we have 

3'rr 

x, cos y, ' ) : 0  "° + t a n ( x )  + + 2 027r 
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Fig. 5, Another symmetric algorithm for two robots. 

• After traveling the BC arc, if the line is not found, we have the CD segment. The 

additional average distance for this case is: 

~- /2  ( 37r ) f 07 t an (  2 ] 2 ~ ~ O ] d O  m - 2 x - 2 y  + 
27r 2 

Adding all these contributions we obtain the total distance. This distance is optimized 

for x = 1.0573 . .  • (60.6 °) and y = 1.0641 • • • (61.0 °) giving d = 3.01156 . .  •.  

The total average time is given by the distance travelled by the first robot. Using the 

values obtained for x and y we get t = 1.9122 • • •.  However, as before this is not time 

minimal. The optimality on t is achieved for x = 1.014 • • • (58.1 °) and y = 1.370 - - .  

(78.5°), giving t = 1;671 and d = 3 .613.  

3.1.2. Symmetric case for two robots 
The symmetric algorithm shown in Fig. 3 is not the best on average. In fact, the 

algorithm shown in Fig. 5 is better. This happens because going further away from the 

perimeter of  the circle maximizes the chance of  finding the goal earlier. 

Let d be the total average distance travelled by the two robots. The distance d is 

given by: 

(ix Jo 1 dO 2 ~ ' -  4 x  ~_ZXz(O)~.~ 
d = 2 x cos(  0-~ 2 ~  + 2"n" c o s ( x )  + 
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Table 2 
Results for the symmetric algorithm 

151 

n d t 

1 3.4699[7] 3.4699 
2 2.5392 1.2696 

3 3.2576 1.0859 
4 4.1222 1.0306 

5 5.0732 1.0146 
6 6.0492 1.0082 

7 7.0354 1.0051 

8 8.0267 1.0033 

9 9.0209 1.0023 
10 10.017 1.0017 

n ---, ~ n 1 

with z(O) = (cos(0 + x ) / c o s ( x )  - 1) /cos (0  + 2x).  This function is optimized for x = 
1.0095 • - • (57.8 °) giving d = 2.539, which is a clear improvement over the asymmetric 

algorithm. The expected time t is d /2 .  

3.1.3. The symmetric algorithm for  n robots 

We consider n robots starting from the center of  the circle as in Fig. 4. The angle 

between two adjacent robots is now 2~r/n. When a robot R finds the line, the other have 

walked n - 1 times the distance travelled by R. The probability that none of  the robots 

have found the line when a robot finds it, in function of  the angle covered is 

nO 
p(O)  = 1 - - -  

77" 

That average distance walked for that robot is then 

d , = l + f % p ( O )  cos ° 1127r = 1 - - - +  i n t a n  + n "4- "~n " 
t l  

With n robots, the average (total) distance travelled is therefore given by: 

n((4 d = n d ~ = n - l +  In tan + = n +  6n 2 + O ( n - 4 ) .  

Numerical evaluation with Maple gives the results shown in Table 2, giving for 
completeness also the values for n < 3. 

Of course the average time needed by n robots (t = d / n )  searching with the 
symmetric algorithm is easily deduced thanks to the results above, and are given in 

Table 2. As we can see, for example, for n = 10 the parallel search of  a line at unit 

distance is very close to the limit 1. 
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4. Searching for  a line at  an  a rb i t r a ry  distance 

When the line is at an unbounded distance the best known algorithm for one robot is 

to follow a logarithmic spiral with radius r ( O ) =  k ° with k- -1 .237 ,  which gives a 

worst case asymptotic ratio between the distance travelled to the line distance of  13.81 

[1,2]. 
For n > 2 robots we can use the symmetric algorithm of  the previous section, 

obtaining the same results, because they do not depend on the distance to the line. So the 

distance travelled goes from 13.81 for n = 1 to 6 for n = 3. What about n = 2? The 

algorithms in the previous section for this case used the fact that the line distance was 

known. Based on the spiral search, a simple algorithm for n = 2 is to use two 

logarithmic spirals, with an angle difference of  7r, that is one robot follows the polar 

curve r l ( O ) = x  ° while the other robot uses r 2 ( 0 ) = x  °+~r. The worst case happens 

when the line is tangent to r~ and missed by it, and then is found by the other robot. 

Using the logarithmic spiral property that a tangent to it has angle ~b given by the 

relation x = exp(cot ~b), it is possible to show that if the tangent is missed at the angle 

ce by the first robot, then it is found by the second robot in the angle a + 17"-/3, where 

O 

IIIIIIIIIS IIIII " x N • x 

I 
I 

Fig. 6. Two robots algorithm for a line at unbounded distance. 



R. Baeza-Yates, R. Schott / Computational Geometry 5 (1995) 143-154 153 

/3 depends on ~b and is obtained from the law of  sines in the triangle formed by the 
origin O, the tangent point T and the intersection point I (see Fig. 6). That is 

r , ( a )  sin(~b) 
= X~r-~ = 

r2( a + 7 r -  /3) sin(Tr -- 6 - - /3 )  " 

The worst case asymptotic ratio is given by 

2(distance travelled from O to T) 

D 

The distance travelled from O to T is 

fc_~+~r-~x°dO= r,(  a + z r -  /3 ) sec(~b) 

and the distance to the line, D, is given by 

D = r l ( a  ) s i n ( 6 ) .  

So, the worst case ratio is x ~-~ sinE(~b). Minimizing this equation and the equation for 

/3 in function of  x(~b) we obtain a non-linear system of two equations where x and /3 

can be computed numerically obtaining x =  1 . 9 0 8 8 . . .  (or ~b= 57 °) and 13= 

1.7872 • • • (--~ 102 °) which gives a worst case ratio of  10.5288 • • • using 5.2644 units 

of  time. If  the first robot has to meet the second robot at the point where the goal was 
found, we have to add 5.7161 • • • units of  time. If  the second robot just has to reach the 

line, only 2 units of  time are needed (uses a perpendicular to the line). 

5. Conclusion and further aspects 

We have shown that: 

• searching in parallel for a point on a line at known or unknown distance has similar 

complexity, 

• searching in parallel for a line at unit distance can be done efficiently using a 

limited number n of  robots (that is, processors). For this problem it appears that the 

asymmetric algorithm presented here is better than a symmetric one for n = 2 in the 

worst case, but not on the average. For n > 2, the best is a symmetric algorithm. 
• the distance of  the line is not relevant for n > 2, and that there is a clear gap 

between using one or more than one robot when searching in the plane. 
• robot communication is necessary to achieve efficient parallelism, because other- 

wise meeting protocols have to be devised. 
We have seen that as the number of  robots increases, the searching algorithm is 

simpler, when n > 2. However, the problem complexity seems to be more complex for 
n = 2. In general, if we have d dimensions and we are trying to find a goal that is a 

( d -  1)-dimensional hyperplane, it is enough to have d + 1 robots to be able to use a 
simple symmetric algorithm. For example, in three dimensions, we need 4 robots whose 

positions at each moment of  searching form the vertices of  a regular tetrahedron. 
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For two dimensions,  the optimal algorithm for one robot when the distance of  the 

goal is not known seems to be a particular logarithmic spiral [1,2]. For n > 2 we can use 

a symmetric algorithm. For n = 2 we have presented a symmetric algorithm that 

improves over the non-parallel  solution, but not by much. 

We have not shown any lower bounds, besides the obvious ones. It is not clear which 

are the adequate techniques for this task. In [1,2] the lower bounds presented were 

obtained using several different arguments. 

Finally, we have been searching for a ( d -  l )-dimensional  goal on a d dimensional 

space with a 0-dimensional  object  (robot). Another possible generalization is to find the 

goal with an /-dimensional object, for 0 < i _< d -  2 (d  > 1). Another variation is to 

change the metric space (for example, a Manhattan metric). 
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