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Abstract

In this Letter, expectation values of exponential fields in the 2-dimensional Euclidean sine-Gordon field theory are ca
with variational perturbation approach up to the second order. Our numerical analysis indicates that for not large valu
exponential-field parametera, our results agree very well with the exact formula conjectured by Lukyanov and Zamolodc
[Nucl. Phys. B 493 (1997) 571].
 2004 Elsevier B.V.
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1. Introduction

This Letter briefly reports our investigation on va cuum expectation value (VEV) of the exponential fieldeiaφ(�r)
in the sine-Gordon (sG) field theory,Ga , with variational perturbation theory (VPT). Here,a is a parameter, an
φ(�r) is the field operator at the 2-dimensional Euclidean space (2DES) point�r = (x, τ ) (τ is the Euclidean time).

In 1997, starting from the exact expressions for the three special cases: the couplingβ → 0 (semi-classical limit),
β = 1

2 anda = β , Lukyanov and Zamolodchikov guessed an exact formula for the VEV ofeiaφ(�r) in the sG field
theory at anyβ2 < 1 and|Re(a)| < 1/(2β) [1]. Then, defining “fully connected” one-point functions,σ2n (n is any
natural number), from the VEVs of even-power fieldsφ2n, they showed thatσ2 andσ4 from the above-mentione
exact formula agree with those from perturbation theory for the sG field theory up toβ4 and thatσ2 agrees with
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the corresponding one-point function from perturbation theory up tog the coupling in the massive Thirring mode
which is the fermion version of the sG field theory[2]. Furthermore, based on the reflection relations with Liouv
reflection amplitude[3], some extra arguments for supporting the conjectured exact formula were presented
collaborators with them in the subsequent papers[4]. Slightly later, in 2000, checks from perturbation theories
both an angular and a radial quantization approaches for the massive Thirring model indicated that the per
result up tog exactly coincides with the corresponding result obtained by expanding the exact formula accord
to the couplingg [5]. Additionally, a numerical study for the model in finite volume also provides evidence fo
conjectured exact formula[6]. Thus, these investigations have given the conjectured exact formula for the V
eiaφ(�r) a complete check for the case ofβ → 1

2 (g → 0 is equivalent toβ2 → 1
2, from Eq. (8) in Ref.[1]), and

some indirect evidences for its validity. Obviously, a direct check for the cases ofβ2 �= 1
2 (Ref. [1] has provided a

partial check for the case ofβ → 0) is still needed.
In fact, VPT[7] may provide such a check. It is some kind of expansion theory similar to the perturbation t

However, because it properly “grafts” the variational approach onto the perturbation theory, the VPT produces
perturbative results which are valid for any coupling strength, including both weak and strong couplings. Mo
because the principle of minimal sensitivity (PMS)[8] is used to determine a man-made parameter, the VP
believed to be a convergent theory, and its approximateaccuracy can be systematically controlled and impro
to tend towards the exact[7]. The primitive idea of VPT is not a new one and can date back to 1955 at lea[9].
Now, it has developed with many equivalent practical schemes, and has been applied to quantum fiel
(QFT), condensed matter physics, statistical mechanics, chemical physics, and so on[7]. In this Letter, based o
the variational perturbation scheme in one of our former joint papers[10] (the scheme in Ref.[10] was stemmed
from the Okopinska’s optimized expansion[11], and proposed by Stancu and Stevenson[12]), we will develop
a variational perturbation scheme for the purpose of the present Letter and calculate approximatelyGa up to the
second order. No explicit divergences exist in the resultant expression owing to the adoption of the Co
normal-ordering renormalization prescription[2,10,13]. One will see that our investigation strongly support
conjectured exact formula.

In next section, we will develop the VPT to calculate the VEV ofeiaφ(�r) and give the VEV ofeiaφ(�r) up to the
second order in VPT. In Section3, we will report our numerical results and make a numerical comparison betwe
our results and the exact ones. A brief conclusion will be made in Section4.

2. VPT for VEVs and approximate Ga up to the second order

We consider the 2-dimensional Euclidean sG field theory with the following Lagrangian density

(1)LsG= 1

2
∇�rφ�r∇�rφ�r − 2Ω cos(

√
8πβφ�r ).

In this Letter, the subscript�r represents the coordinate argument, for example,φ�r ≡ φ(�r), and∇�r is the gradient in
the 2DES. The Lagrangian density Eq.(1) is nothing but Eq. (5) in Ref.[1] if one makes the transformφ → φ√

8π

(hereafter, we will useei
√

8πaφ(�r) instead ofeiaφ(�r) and consequently the parametera and the couplingβ in this
Letter are identical to those in Ref.[1], respectively). If taking

√
8πβ → β and 2Ω = m2/β2 and adding the

term m2/β2 in the Lagrangian density, one will get the Euclidean version of the sG Lagrangian density
discussed in Ref.[10]. In Eq.(1), the dimensionlessβ is the coupling parameter andΩ is another parameter wit
the dimension[lenth]−2 in the natural unit system. It is always viable to haveβ � 0 without loss of generality. Th
classical potentialV (φ�r ) = −2Ω cos(

√
8πβφ�r ) is invariant under the transformφ → φ + 2πn√

8πβ
with any integern,

and so the classical vacua are infinitely degenerate. So do the quantum vacua of the sG field theory accordin
Ref. [10]. Here, as did in Ref.[1], we choose to consider the symmetry vacuum with the expectation value
sG field operatorφ�r vanishing instead of those spontaneous symmetry broken vacua.
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The VEV of the exponential fieldei
√

8πaφ(�r) is defined as follows[1]

(2)Ga ≡ 〈
ei

√
8πaφ(0)

〉 ≡
∫
Dφ exp{i√8πaφ(0)}exp{− ∫

d2�r LsG}∫
Dφ exp{− ∫

d2�r LsG} .

For simplicity, the exponential field in Eq.(2) is taken atr = 0. It is evident that the numerator and denominato
the right-hand side of Eq.(2) can easily be got from the following sG generating functional

(3)Z[J ] =
∫

Dφ exp

{
−

∫
d2�r [LsG− J�rφ�r ]

}
,

by takingJ�r = i
√

8πaδ(�r) (δ(�r) ≡ δ(x)δ(τ )) andJ = 0, respectively. In Eq.(3), J�r is an external source at�r. For
renormalizingGa , we will use its normal-ordering form[10,14].

To perform a variational perturbation expansion onGa , now we modifyZ[J ] in Eq.(3) by following Ref.[10]
only without shifting the fieldφ�r (this is not necessary here because we choose to consider the symmetrical vacu
as aforementioned). That is, first introduce a parameterµ by adding a vanishing term

∫
d2�r 1

2φ�r (µ2 − µ2)φ�r into
the exponent of the functional integral in Eq.(3), then rearrange the exponent into a free-field part plus a
interacting part, and finally insert a formal expansion factorε before the interacting part. Consequently, one ha

Z[J ] → Z[J ; ε] = exp

{
−

∫
d2�r

[
1

2
I(0)

(
µ2) − 1

2
I(0)

(
M2) + 1

2
M2I(1)

(
M2)]}

(4)× exp

{
−ε

∫
d2�r HI

(
δ

δJ�r
,µ

)}
exp

{
1

2
Jf −1J

}

with

(5)HI (φ�r ,µ) = −1

2
µ2φ2

�r − 2Ω cos(
√

8πβφ�r )exp
{
4πβ2I(1)

(
M2)}.

Here,M is a normal-ordering mass,

I(n)

(
Q2) ≡




∫ d2 �p
(2π)2

1
(p2+Q2)n

, for n �= 0,∫ d2p

(2π)2 ln(p2 + Q2), for n = 0

with �p a Euclidean momentum in 2DES, andJf −1J ≡ ∫
d2�r ′ d2�r ′′ J�r ′f −1

�r ′ �r ′′J�r ′′ with

(6)f −1
�r ′�r ′′ =

∫
d2 �p

(2π)2

1

p2 + µ2
ei �p·(�r ′′−�r ′) = 1

2π
K0

(
µ|�r ′′ − �r ′|).

In Eq.(6), Kn(z) is thenth-order modified Bessel function of the second kind. Note that Eq.(4) in the extrapolating
case ofε = 1 is only the normal-ordering expression of Eq.(3).

Expanding exp{−ε
∫

d2�r HI (
δ

δJ�r ,µ)} in Eq. (4) with Taylor series of the exponential, one can write norm
orderedGa as

(7)Ga = e4πa2I(1)(M2)

[∑∞
n=0 εn (−1)n

n!
∫ ∏n

k=1 d2�rkHI (
δ

δJ�rk
,µ)exp{1

2Jf −1J }]
J�r=i

√
8πaδ(�r)[∑∞

n=0 εn (−1)n

n!
∫ ∏n

k=1 d2�rkHI (
δ

δJ�rk
,µ)exp{1

2Jf −1J }]
J=0

∣∣∣∣∣
ε=1

.

Thus, according to the formula (0.313) on p. 14 in Ref.[15], Ga can be expanded as the following series ofε

(8)Ga = [
G(0)

a + ε1G(1)
a + ε2G(2)

a + · · · + εnG(n)
a + · · ·]

ε=1.

This series withε = 1 is independent of the man-made parameterµ, but to get its closed form is beyon
our ability. Hence one can truncate it at any order ofε to approximate it and then the truncated results will
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dependent uponµ. This arbitrary parameterµ should be determined according to the PMS[8] as mentioned in the
introduction. That is, under the PMS,µ will be chosen from roots which make the first (or second) derivativ
the truncated result with respect toµ vanish[8,10,12]. Thus,µ will depend on the truncated order. It is believ
that it is this dependence that makes the truncated result approach the exactGa order by order[7]. Thus the above
procedure provides an approximate method of calculatingGa which can systematically control its approximati
accuracy. It is evident that this procedure has no limitsto the model coupling and is a non-perturbative method

Executing the above procedure, wehave truncated the series in Eq.(8) at the second order ofε, and the three
coefficients are

(9)G(0)
a = exp

{
4πa2I(1)

(
M2)}[exp

{
1

2
Jf −1J

}]
J�r=i

√
8πaδ(�r)

,

(10)

G(1)
a = − exp

{
4πa2I(1)

(
M2)}[∫

d2�r HI

(
δ

δJr
,µ

)
exp

{
1

2
Jf −1J

}]
J�r=i

√
8πaδ(�r)

+ G(0)
a

[∫
d2�r HI

(
δ

δJr

,µ

)
exp

{
1

2
Jf −1J

}]
J�r=0

,

and

G(2)
a = 1

2!e
4πa2I(1)(M2)

[∫
d2�r1 d2�r2HI

(
δ

δJ�r1

,µ

)
HI

(
δ

δJ�r2

,µ

)
exp

{
1

2
Jf −1J

}]
J�r=i

√
8πaδ(�r)

− 1

2!G
(0)
a

[∫
d2�r1 d2�r2HI

(
δ

δJ�r1

,µ

)
HI

(
δ

δJ�r2

,µ

)
exp

{
1

2
Jf −1J

}]
J�r=0

(11)+ G(1)
a

[∫
d2�r HI

(
δ

δJr

,µ

)
exp

{
1

2
Jf −1J

}]
J�r=0

,

respectively.
Performing carefully operations in Eqs.(9)–(11), we obtain the following expression ofGa approximated up to

the second order ofε, GII
a = [G(0)

a + εG
(1)
a + ε2G

(2)
a ]ε=1,

GII
a =

(
µ2

M2

)a2(
1− 2a2K02

) + 4π
Ω

M2

(
µ2

M2

)a2+β2−1

K0c − 1

2π2a2
(

µ2

M2

)a2

K0111

+ 2a4
(

µ2

M2

)a2

(K02)
2 − 8π

Ω

M2
a2

(
µ2

M2

)a2+β2−1

K02K0c − 2

π

Ω

M2
β2

(
µ2

M2

)a2+β2−1

K02c

+ 4

π

Ω

M2aβ

(
µ2

M2

)a2+β2−1

K011s + 8π2
(

Ω

M2

)2(
µ2

M2

)a2+2β2−2

(K0c)
2

(12)+
(

Ω

M2

)2(
µ2

M2

)a2+2β2−2

K0ec11 +
(

Ω

M2

)2(
µ2

M2

)a2+2β2−2

K0ee11,

where

K02 ≡
∞∫

0

dx xK2
0(x), K0c ≡

∞∫
0

dx x
[
cosh

(
4aβK0(x)

) − 1
]
,

K0111=
2π∫

dθ1

2π∫
dθ2

∞∫
dρ1

∞∫
dρ2ρ1ρ2K0(R)K0(ρ1)K0(ρ2),
0 0 0 0
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K02c =
2π∫
0

dθ1

2π∫
0

dθ2

∞∫
0

dρ1

∞∫
0

dρ2ρ1ρ2
(
K0(R)

)2[cosh
(
4aβK0(ρ2)

) − 1
]
,

K011s =
2π∫
0

dθ1

2π∫
0

dθ2

∞∫
0

dρ1

∞∫
0

dρ2 ρ1ρ2K0(R)K0(ρ1)sinh
(
4aβK0(ρ2)

)
,

K0ec11 =
2π∫
0

dθ1

2π∫
0

dθ2

∞∫
0

dρ1

∞∫
0

dρ2ρ1ρ2
[
exp

{−4β2K0(R)
} − 1

][
cosh

(
4aβ

(
K0(ρ1) + K0(ρ2)

)) − 1
]
,

K0ee11 =
2π∫
0

dθ1

2π∫
0

dθ2

∞∫
0

dρ1

∞∫
0

dρ2ρ1ρ2
[
exp

{
4β2K0(R)

} − 1
][

exp
{−4aβ

(
K0(ρ1) − K0(ρ2)

)} − 1
]

with R =
√

ρ2
1 − 2ρ1ρ2 cos(θ1 − θ2) + ρ2

2.
In the right-hand side of Eq.(12), the first two terms are the expression ofGa approximated up to the first orde

of ε, GI
a = [G(0)

a +εG
(1)
a ]ε=1. To determine the arbitrary parameterµ for GI

a , as stated in the above, we can requ

that dGI
a

d(µ2)
= 0 according to the PMS, and have

(13)
µ2

M2
=

(
4π

Ω

M2
K0c

1− a2 − β2

a2(1− 2a2K02)

)1/(1−β2)

.

Thus, substituting last equation into the expression ofGI
a gives approximately the result ofGa up to the first order

in VPT. Note thatM can be taken as any positive value, and usually it can be referred to as unit when one
various quantities dimensionless for numerical calculations.

As for µ at the second order, following the next section, one can numerically check that the conditiondGII
a

d(µ2)
= 0

does not produce a realµ2 for a real value ofa. However, for a reala, Ga should be real because EVEs of od

power fields in the sG field theory vanish (see Eq.(2)). Hence we have to resort tod
2GII

a

d(µ2)2 = 0 for determiningµ at

this order (note thatµ enters the scheme in its squared powerµ2). Fortunately,µ can explicitly be obtained with
long expression from this condition, and then the approximateGa up to the second order in VPT can be concret
given from Eq.(12).

In the same way, one can approximately giveGa up to higher orders. Here we do not continue to conside
and next section we will carry out a numerical calculation on the first and the second order results.

In passing,G(n)
a in Eq. (8) is only the sum of allnth-order connected Feynman diagrams consisting of

external vertices from exp{i√8πaφ(0)} andn vertices fromHI (φ�r ,µ). Hence, one can also obtain the abo
results Eq.(12)by borrowing Feynman diagrammatic technique with the propagator of Eq.(6).

3. Numerical calculations and comparisons

To perform numerical calculations, we takeM = 1 and all physical quantities in Eqs.(12) and (13)are di-
mensionless. Simultaneously, one cancheck that this treatment (takingM = 1) amounts to taking the sam
normalization conditions as Eqs. (6) and (16) in Ref.[1]. Thus, our results can be compared with the exact form
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Fig. 1. Comparison between the first-order (GI
a , solid curve) and

conjectured exact (Gexact
a , dashed curve) sG expectation values of

exponential fields atβ = 0.2.

Fig. 2. Similar toFig. 1but atβ = 0.5.

Table 1
Comparisons:GII

a , GI
a andGexact

a for β = 0.5

a Gexact
a GI

a GII
a �I �II

0.01 0.999981 1.00001758 1.00001187 0.003661 0.003090
0.1 0.998193 1.001847531 1.00137859 0.36542 0.3185
0.2 0.993954 1.00850388 1.00678750 1.4639 1.2912
0.3 0.990960 1.02358276 1.01961512 3.2920 2.8917
0.4 0.995987 1.05423835 1.04769147 5.8486 5.1913
0.5 1.020682 1.11390679 1.10415979 9.1336 8.1786
0.6 1.086765 1.22971602 1.21627955 13.1538 11.9174
0.7 1.242866 1.46517988 1.44784716 17.8872 16.4926
0.8 1.634342 2.00162788 1.99288037 22.4730 21.9378

From Eq. (12) in Ref.[1], the dimensionlessΩ in Eqs.(12) and (13)can be written as

(14)Ω = �(β2)

π�(1 − β2)

[√
π�(1

2 + ξ
2)

2�(
ξ
2)

]2−2β2

with ξ = β2

1−β2 . In last equation, we took the soliton mass as unit to makeΩ dimensionless. For comparisons, w

also do so for the conjectured exact formula Eq. (20) in Ref.[1], Gexact
a , when it is employed.

Now we first report numerical results up to the first order. Mathematica5.0 programm gives thatK02 = 0.5 and
K0c is finite for the case ofaβ � 0.426925 which is involved in the range ofaβ < 1

2 for the conjectured exac
formula. Takingβ = 0.2 and 0.5 as examples, we compared our resultsGI

a with the conjectured exact results
Ref. [1] in Figs. 1 and 2, respectively. InFigs. 1 and 2, the solid curves areGI

a , and the dashed curves areGexact
a .

In Fig. 1, Ga decreases from 1 to 0 with the increase ofa. This tendency exists in the case ofβ < 0.4 or so.
Whena < 1 anda2 + β2 > 1, Eq.(13) will produce a complexµ2 and one should use the second derivative
determiningµ. For sufficiently smallβ , one need not do so becauseGa tends to zero with the increase ofa before
µ2 approaches complex values. InFig. 2, Ga increases almost from 1 with the increase ofa. This tendency appea
for other larger values ofβ . These figures indicate that for the case ofa < 0.2 or so, the first-order results almo
completely agree with the conjectured exact results, and for largera, our results differ from the exact results wi
about ten percents or so (at most with 20 more percents whena approaches values withaβ = 0.426925 satisfied
seeTable 1).

For calculatingGII
a , we need to calculate integrals in Eq.(12) which are involved in the zeroth order modifie

Bessel functions of the second kind. Noting Gegenbauer’s addition formula for the zeroth-order modified
functions of the second kind[16] K0(R) = I0(ρ1)K0(ρ2) + 2

∑∞
n=1 cos[n(θ1 − θ2)]In(ρ1)Kn(ρ2) with ρ1 < ρ2
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(In(ρ1) is thenth-order modified Bessel functions of the first kind), one can finish those integrals by dividin
plane{ρ1, ρ2} into two parts: one part withρ1 < ρ2 and the other withρ1 > ρ2. In performing the calculations
because of the oscillatory property of cos[n(θ1 − θ2)], it is enough to truncate the series in the Gegenbau
addition formula at somen. Finishing those integrals forβ = 0.5 with long-time calculations of Mathematica5
system, we obtained the results ofGII

a and accordingly compared them withGI
a and the conjectured exact resu

in Table 1. In Table 1, �I = GI
a−Gexact

a

Gexact
a

× 100 and�II = GII
a −Gexact

a

Gexact
a

× 100. This table indicates thatGII
a has an abou

one percent smaller difference from the conjectured exact result thanGI
a atβ = 0.5. We also checked the cases

smaller and largerβ (β2 < 0.426925), and found the same conclusion.

4. Conclusion

In this Letter, in order to check the conjectured exact formula in Ref.[1], we have calculated the sG expectat
value of the exponential fieldeiaφ(�r) up to the second order with variational perturbation approach. According t
numerical results in last section, for not largea, the exact formula conjectured by Lukyanov and Zamolodch
in Ref. [1] is correct for all values ofβ in the range ofβ2 < 1, and for largera (|Re(a)| < 1/(2β)), our numerical
results can be believed to support the conjectured exact formula since our method is an approximate o
from the existed reports in Refs.[1,4,5] and our report here, we believe that the conjectured exact formu
Ref. [1] is completely convincible.

As ending the present Letter, we mention some interesting problems. The normal-ordering prescription
to a renormalization procedure on the mass parameter and makesGI

a finite for the range ofaβ < 1
2. If introducing

additional renormalization scheme on the couplingβ and the exponential-field parametera, it will be possible to
obtain a finiteGa for the range ofaβ > 1

2. Furthermore, it will be also interesting to calculate the sG expe
tion values of the exponential fields on the asymmetricalvacua. On the other hand, because it was an impo
progress in calculating VEVs of local fields, the Lukyanov–Zamolodchikov conjecture in Ref.[1] has stimulated
generalizations or conjectures on the VEVs of local fields in some field theories[17], and hence the method in th
present Letter and its generalization to finite temperature case can be used to check or confirm those generalization
or conjectures in Ref.[4,17]. Besides, although our results up to the second order improved the results up
first order,Table 1indicates that the improvement is small. Since the Lukyanov–Zamolodchikov conjecture
believed to be correct, comparing it with higher-order contributions in VPT for the sG expectation values
exponential fields will provide the first check in QFT on the convergency of VPT.
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