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Abstract

In this Letter, expectation values of exponential fields in the 2-dimensional Euclidean sine-Gordon field theory are calculated
with variational perturbation approach up to the second order. Our numerical analysis indicates that for not large values of the
exponential-field parameter our results agree very well with the exact formula conjectured by Lukyanov and Zamolodchikov
[Nucl. Phys. B 493 (1997) 571].
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1. Introduction

This Letter briefly reports our investigation on saum expectation value (VEV) of the exponential fieit?
in the sine-Gordon (sG) field theorg,,, with variational perturbation theory (VPT). Herejs a parameter, and
¢ (7) is the field operator at the 2-dimensional Euclidean space (2DES)#psiitt, 7) (t is the Euclidean time).

In 1997, starting from the exact expressions for the three special cases: the cguplifdsemi-classical limit),
B = % anda = B, Lukyanov and Zamolodchikov guessed an exact formula for the VEN“6f") in the sG field
theory atany8? < 1 and| Re(a)| < 1/(28) [1]. Then, defining “fully connected” one-point functions,, (n is any
natural number), from the VEVs of even-power fieltf, they showed that, andoy from the above-mentioned
exact formula agree with those from perturbation theory for the sG field theory gp @nd thato, agrees with
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the corresponding one-point function from perturbation theory wpottee coupling in the massive Thirring model,
which is the fermion version of the sG field the¢2y. Furthermore, based on the reflection relations with Liouville
reflection amplitud€3], some extra arguments for supporting the conjectured exact formula were presented by their
collaborators with them in the subsequent paffsSlightly later, in 2000, checks from perturbation theories in
both an angular and a radial quantization approaches for the massive Thirring model indicated that the perturbation
result up tog exactly coincides with the corresponding resultadbéd by expanding the exact formula according

to the coupling [5]. Additionally, a numerical study for the model in finite volume also provides evidence for the
conjectured exact formul®]. Thus, these investigations have given the conjectured exact formula for the VEV of
¢/¢® a complete check for the case pf— 3 (¢ — 0 is equivalent tgg? — 1, from Eq. (8) in Ref[1]), and

some indirect evidences for its validityb@iously, a direct check for the casesgf # % (Ref.[1] has provided a

partial check for the case @f— 0) is still needed.

In fact, VPT[7] may provide such a check. It is some kind of expansion theory similar to the perturbation theory.
However, because it properly “grafts” the variationgbeoach onto the perturbation theory, the VPT produces non-
perturbative results which are valid for any coupling strength, including both weak and strong couplings. Moreover,
because the principle of mimal sensitivity (PMS)8] is used to determine a man-made parameter, the VPT is
believed to be a convergent theory, and its approxiraateiracy can be systematically controlled and improved
to tend towards the exaff]. The primitive idea of VPT is not a new one and can date back to 1955 af$ast
Now, it has developed with many equivalent practical schemes, and has been applied to quantum field theory
(QFT), condensed matter physics, statistical mechanics, chemical physics, anfr$olothis Letter, based on
the variational perturbation scheme in one of our former joint pai@js(the scheme in Ref10] was stemmed
from the Okopinska’s optimized expansifii], and proposed by Stancu and Stevengd@j), we will develop
a variational perturbation scheme for the purpose of the present Letter and calculate approxilmatelio the
second order. No explicit divergences exist in the resultant expression owing to the adoption of the Coleman’s
normal-ordering renormalization prescriptifiy10,13] One will see that our investigation strongly support the
conjectured exact formula. )

In next section, we will develop the VPT to calculate the VEW@#® and give the VEV 0£/“?™) up to the
second order in VPT. In Secti@) we will report our numerical results dmake a numerical comparison between
our results and the exact ones. A brief conclusion will be made in Segtion

2. VPT for VEVsand approximate G, up to the second order
We consider the 2-dimensional Euclidean sG field theory with the following Lagrangian density

Lsg= %v;qs;v;«p; — 292 coS/87 B¢y). @)

In this Letter, the subscriptrepresents the coordinate argument, for examgles ¢ (¥), andVy; is the gradient in

the 2DES. The Lagrangian density Efj) is nothing but Eg. (5) in Ref1] if one makes the transforg — \/%

(hereafter, we will use’V874® instead ofe!*® and consequently the parameteand the coupling in this

Letter are identical to those in Rdfl], respectively). If takingy/87 8 — g and 22 = m?/p? and adding the
termm?/82 in the Lagrangian density, one will get the Euclidean version of the sG Lagrangian density which
discussed in Ref10]. In Eq. (1), the dimensionless is the coupling parameter as@l is another parameter with

the dimensiorilenth] =2 in the natural unit system. It is always viable to have 0 without loss of generality. The

classical potentiaV (¢;) = —252 coS+/87 B¢;) is invariant under the transforfn— ¢ + jg_;ﬂ with any integen,

and so the classical vacua are infinitely degenerateldthe quantum vacua of the sG field theory according to
Ref.[10]. Here, as did in Ref1], we choose to consider the symmetry vacuum with the expectation value of the
sG field operatop; vanishing instead of those spontaneous symmetry broken vacua.
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The VEV of the exponential fiele V&74¢® s defined as follow§l]

Ga=le JBra 40) [ Do explin/8rap(0)} expi— [ d%F csG}
f D¢ exp{— f d?F Lsc)
For simplicity, the exponential field in EQR) is taken at = 0. It is evident that the numerator and denominator in
the right-hand side of Eq2) can easily be got from the following sG generating functional

21 = / Do exp{— / 4 Lo — J;m}, @)

by taking J; = iv/8rad(7) (8(F) = 8(x)8(r)) andJ = 0, respectively. In Eq3), J; is an external source &t For
renormalizingG,, we will use its normal-ordering fori10,14]

To perform a variational perturbation expansion@g now we modifyZ[J] in Eg.(3) by following Ref.[10]
only without shifting the field; (this is not necessary here because hwv@ose to consider the symmetrical vacuum
as aforementioned). That is, first introduce a parametey adding a vanishing terrfi d% %¢7(M2 — 125 into
the exponent of the functional integral in E®), then rearrange the exponent into a free-field part plus a new
interacting part, and finally insert a formal expansion faetbefore the interacting part. Consequently, one has

[l 1 1
ZI— ZIJ; €l = eXD{—/dZF[Eho)(MZ) - §1<0)(M2) + §M21<1)(M2)“

xexp{—ev/dZFHl(%,,u)}eXp{%Jf_ll} (4)

2

with
1
Hi(r. )=~ 1292 — 252 cosv/8r By expldn 211y (M?) ). (5)
Here, M is a normal-ordering mass,
d%p 1
I (0%) = / @2 (7407 forn #0,
f(z & In(p2+ Q2), forn=0
with p a Euclidean momentum in 2DES, add~1J = [ d% d%" J~,fa, = J=n With
dzl; 1 L d ol /B4 1
q;ll;/z ip(r 7r)__K 2. 6

In Eq.(6), K, (z) is thenth-order modified Bessel function of the second kind. Note tha{gdn the extrapolating
case ok =1 is only the normal- ordering expression of E8).

Expanding eX[)—eder HI(MQ,;L)} in Eq. (4) with Taylor series of the exponential, one can write normal-
orderedG, as

[E0Zoe" S/ Thie 1d27kH’(BJ~ Xz YL Jeras )
[Xhoen S [ TTi- 1d2;kH’(BJ~ Ly expz /], e:l‘

Thus, according to the formula (0.313) on p. 14 in R&58], G, can be expanded as the following serieg of

Ga — 6471021(1) (Mz)

Go=[GP +e'GP + eGP+ +e"G +--] _;. (8)

This series withe = 1 is independent of the man-made parametebut to get its closed form is beyond
our ability. Hence one can truncate it at any ordee dd approximate it and then the truncated results will be
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dependent upon. This arbitrary parameter should be determined according to the P[8Fas mentioned in the
introduction. That is, under the PMg&, will be chosen from roots which make the first (or second) derivative of
the truncated result with respect ovanish[8,10,12] Thus,u will depend on the truncated order. It is believed
that it is this dependence that makes the truncated result approach th&gxader by ordef7]. Thus the above
procedure provides an approximate method of calculatipgvhich can systematically control its approximation
accuracy. It is evident that this procedure has no litatfhe model coupling and is a non-perturbative method.

Executing the above procedure, Wave truncated the series in E§) at the second order ef and the three
coefficients are

1
GO = expl4ra®l)(M? [exp{—]f‘llﬂ :
a o (M) 2 Ja=i/Bras(P)
5 1
GO = —explana®l ) (M? |:/ d%FH,; (—, M) exP{—Jf_ljﬂ
a of (M)} 8Jy 2 Ji=i/Bras(7)

S ) 1
+GO /der, — . u)expl ZJf7L , (10)
8J, 2 J;=0

1 2 2 ) ) 1
G@ = —Araly(M >U d271d2727'l1< ,M)H1< ,u) exp{—fflf”
a = o 8Jz, 8Jz, 2 Ja=i/Bras(P)
1 s s 1
- =GO fdz* d%’fH ) Hi(—., ) exp{ Zuf71
2 [ S Ty M WV e 2"/ J;=0
R 8 1
+ G fderI —. ) expi SIfTH : (11)
(SJr 2 Jz=0

respectively.
Performing carefully operations in E¢8)—(11) we obtain the following expression 6f, approximated up to
the second order af, G"! =[G + eGP + €2G Py,

2\ a2 2\ a?+p?-1 2\
m 2 ([ n 1 1%
ot=(3m) @2k vern((p) Ko ge(f) Ko
2\ @2 2\ a?+p%-1 2\ a?+p%-1
0 2 52
+2a4<'“_> (K02)2—8n—02('u—> KozKoc—;—M2ﬂ2<—M ) Koz

MZ
2 2 2 2
4 0 2 \a+po-1 0 \2 2\ a’+2p%-2
() e () () e

2,542 2,542
Ie) 2 MZ a’+2p°-2 0 2 MZ a’+2p°-2
+ (W) (W) Koec11+ (W) (W) Koee11, (12)

©)

and

where

(o8} oo
Koo= / dxxK§(x),  Koo= / dx x[cosh{4apKo(x)) — 1],
0 0

2 2

o0 o0
K0111=fd91fd92/dplfdpzplszo(R)Ko(pl)Ko(pz),
0 0 0 0
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K02c=/d91/d92/d /dPZPlPZ(KO(R)) [cosi{4aBKo(p2)) — 1].
0 o 0

Koee11

I
o
QU
AL
o
U
N
o —o

dpy / dp2 p1pa[exp{487Ko(R)} — 1] [exp{—4aB (Ko(py) — Ko(p2)} — 1]
0

with R = \/ P2 — 2012061 — 02) + p2.
In the right-hand side of Eq12), the first two terms are the expressionf approximated up to the first order
of e, G'a = [G,(IO) + eGél)]ézl. To determine the arbitrary parametefor GL, as stated in the above, we can require

|
dd(ig) =0 according to the PMS, and have

_p2
M_z . o ‘e —/32 1/(1-p?) (13)
e -\ ke a?(1— 2a?Ko2) '

Thus, substituting last equation into the expressio@ pfjives approximately the result 6f, up to the first order

in VPT. Note thatM can be taken as any positive value, and usually it can be referred to as unit when one renders
various quantities dimensionless for numerical calculations.

I
As for 1 at the second order, following the next section, one can numerically check that the coﬁ%}pa 0
does not produce a reaf for a real value ofi. However, for a reak, G, should be real because EVEs of odd-
power fields in the sG field theory vanish (see &j). Hence we have to resort )2 =0 for determiningu at

this order (note that enters the scheme in its squared poweéy. Fortunately,.. can explicitly be obtained with a
long expression from this condition, and then the approxirGatep to the second order in VPT can be concretely
given from Eq(12).

In the same way, one can approximately givg up to higher orders. Here we do not continue to consider it,
and next section we will carry out a numerical caltida on the first and the second order results.

In passing,G.” in Eq. (8) is only the sum of allth-order connected Feynman diagrams consisting of the
external vertices from expy/8ra¢(0)} andn vertices fromH; (¢5, ). Hence, one can also obtain the above
results Eq(12) by borrowing Feynman diagrammatic technique with the propagator qf6q.

3. Numerical calculations and comparisons

To perform numerical calculations, we takel = 1 and all physical quantities in Eq€l2) and (13)are di-
mensionless. Simultaneously, one aareck that this treatment (takingf = 1) amounts to taking the same
normalization conditions as Eqgs. (6) and (16) in RE[. Thus, our results can be compared with the exact formula.
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Fig. 1. Comparison between the first-ordé}l,( solid curve) and Fig. 2. Similar toFig. 1but atg = 0.5.
conjectured exact@SX@%! dashed curve) sG expectation values of
exponential fields g6 = 0.2.

Table 1

ComparisonsG!!, G!, andG&*@Ctfor g = 0.5

a ngact Gll GLI AI A“

0.01 0999981 100001758 100001187 003661 0003090
0.1 0.998193 1001847531 100137859 (B6542 03185
0.2 0.993954 100850388 100678750 14639 12912
0.3 0.990960 102358276 101961512 2920 28917
0.4 0.995987 105423835 104769147 B486 51913
0.5 1.020682 111390679 110415979 336 81786
0.6 1.086765 122971602 121627955 131538 119174
0.7 1.242866 146517988 144784716 18872 164926
0.8 1634342 200162788 199288037 22730 219378

From Eg. (12) in Ref[1], the dimensionles® in Eqs.(12) and (13an be written as

_ T [VArG+HT "
_nF(l—ﬁz)[ 2r () ] -

with & = %. In last equation, we took the soliton mass as unit to mak#imensionless. For comparisons, we

also do so for the conjectured exact formula Eq. (20) in R&f.G®2°! when it is employed.

Now we first report numerical results up to thesfiorder. Mathematica5.0 programm gives tkigt = 0.5 and
Ko is finite for the case ofif < 0.426925 which is involved in the range o < % for the conjectured exact
formula. Takings = 0.2 and 05 as examples, we compared our rest@fswith the conjectured exact results of
Ref.[1] in Figs. 1 and 2respectively. IrFigs. 1 and 2the solid curves ar€'!,, and the dashed curves ag&*act
In Fig. 1, G, decreases from 1 to 0 with the increaseaofThis tendency exists in the case @f< 0.4 or so.
Whena < 1 anda? + g2 > 1, Eq.(13) will produce a complex:? and one should use the second derivative for
determiningu. For sufficiently small3, one need not do so becausg tends to zero with the increaseobefore
u? approaches complex values Aiy. 2, G, increases almost from 1 with the increase of his tendency appears
for other larger values g8. These figures indicate that for the case:af 0.2 or so, the first-order results almost
completely agree with the conjectured exact results, and for largmir results differ from the exact results with
about ten percents or so (at most with 20 more percents wtagaproaches values with3 = 0.426925 satisfied,
seeTable ).

For calculatingGlz', we need to calculate integrals in E2) which are involved in the zeroth order modified
Bessel functions of the second kind. Noting Gegenbauer’s addition formula for the zeroth-order modified Bessel
functions of the second kinfd6] Ko(R) = Io(p1)Ko(p2) + 2,21 codn(61 — 62)11,(p1) Kn(p2) With p1 < p2
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(I, (p1) is thenth-order modified Bessel functions of the first kind), one can finish those integrals by dividing the
plane{p1, p2} into two parts: one part witlh; < p2 and the other withp; > p». In performing the calculations,
because of the oscillatory property of ¢o&®1 — 62)], it is enough to truncate the series in the Gegenbauer’s
addition formula at some. Finishing those integrals fg = 0.5 with long-time calculations of Mathematica5.0

system, we obtained the results@f and accordingly compared them wigf}, and the conjectured exact results

) | GL_GsxaCt n_ G!ll _Gsxact ) . ) I
in Table 1 In Table 1 A" = =¢—4— x 100 andA"™ = —“—4&— x 100. This table indicates that, has an about

one percent smaller difference from the conjectured exact resulGha g = 0.5. We also checked the cases of
smaller and larges (82 < 0.426925), and found the same conclusion.

4. Conclusion

In this Letter, in order to check éconjectured exact formula in R¢1], we have calculated the sG expectation
value of the exponential fiekd®? ") up to the second order with variational perturbation approach. According to our
numerical results in last section, for not largethe exact formula conjectured by Lukyanov and Zamolodchikov
in Ref.[1] is correct for all values of in the range of8? < 1, and for larger: (| Re(a)| < 1/(28)), our numerical
results can be believed to support the conjectured exact formula since our method is an approximate one. Thus,
from the existed reports in Reffl,4,5] and our report here, we believe that the conjectured exact formula in
Ref.[1] is completely convincible.

As ending the present Letter, we mention some interesting problems. The normal-ordering prescription amounts
to a renormalization procedure on the mass parameter and rG4Ksite for the range ofif < % If introducing
additional renormalization scheme on the couplihgnd the exponential-field parameterit will be possible to
obtain a finiteG, for the range o8 > % Furthermore, it will be also interesting to calculate the sG expecta-
tion values of the exponential fields on the asymmetneaiua. On the other hand, because it was an important
progress in calculating VEVs of local fields, the Lukyanov—Zamolodchikov conjecture i Réfas stimulated
generalizations or conjectures on the VEVs of local fields in some field thdaigsind hence the method in the
present Letter and its generalization to finite tempeeatase can be used to check onfirm those generalizations
or conjectures in Ref4,17]. Besides, although our results up to the second order improved the results up to the
first order,Table lindicates that the improvementis small. Since the Lukyanov—Zamolodchikov conjecture can be
believed to be correct, comparing it with higher-order contributions in VPT for the sG expectation values of the
exponential fields will provide the first check in QFT on the convergency of VPT.
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