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Abstract

In this paper a damage model for ferroelectric materials is presented. It is implemented in terms of a user element in a commercial

FEM-code Abaqus. The model is based on micromechanical considerations of domain switching and its interaction with microc-

rack growth and coalescence. The influence of damage evolution on the effective material properties is demonstrated. Further, a

finite element analysis of a multilayer actuator is performed, showing damage and crack patterns.
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1. Introduction

Ferroelectric materials as components of smart structures are widely used in e.g. actuators, acoustic sensors as well

as in airfoil control systems. Due to the brittleness of these materials, fracture mechanical approaches are playing an

essential role in the modern research. Depending on the application, the material is subjected to mechanical, electrical

or combined electromechanical loading. The mechanics of these materials is significantly determined by irreversible

nonlinear ferroic effects arising on the microscopic scale, such as polarization switching. These switching processes

are accompanied by internal stresses due to the strain incompatibility between neighboring grains, which results

in damage and thus a significant variation of the material properties (Gellmann et al., 2013). That means that a

comprehensive ferroelectric material model should consider fracture and damage mechanical approaches. Besides

that, the long term reliability of smart structures requires the application of numerical tools predicting crack initiation

and growth under electromechanical loading conditions.
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2. Micromechanical Model

The nonlinear effects are modelled by decomposing the strain εi j and electric displacement Di additively into

a linear piezoelectric part denoted with a superscript rev and a remanent strain ε irri j and remanent polarization Pirr
i

emerging due to polarization switching phenomena

εi j = ε
rev
i j + ε

irr
i j , Di = Drev

i + Pirr
i . (1)

The remanent parts are functions of the load history and remain after switching off the electric field and mechanical

stress. The domain switching is simulated by applying a multidomain switching model of polycrystalline ferro-

electrics, as illustrated in Fig. 1. Four possible domain species are assumed with ν(N) being the volume fraction of the

Nth domain within the representative volume element (RVE). The volume fractions satisfy the following relation

4∑
N=1

ν(N) = 1, 0 ≤ ν(N) ≤ 1. (2)

The ferroelectric model is based on a thermodynamical potential

Ψ(εkl, Ei) =
1

2
Ci jklεi jεkl − eiklεklEi − 1

2
κi jEiE j −Ci jklε

irr
i j εkl + eiklε

irr
kl Ei − Pirr

i Ei (3)

leading to the macroscopic constitutive law in a RVE

σi j =
∂Ψ(εkl, Ei)

∂εkl

∣∣∣∣∣
Ei

= Ci jkl(εkl − ε irrkl ) − eki jEk, (4)

Di = − ∂Ψ(εkl, Ei)

∂Ei

∣∣∣∣∣
εkl

= eikl(εkl − ε irrkl ) + κikEk + Pirr
i . (5)

Here, εi j, σi j, Ei and Dk are respectively the components of the total strain, local stress tensor, electric field and electric

displacement vector. Ci jkl, eikl, κi j are respectively the effective elastic, piezoelectric and the dielectric constants,

which depend on the current configuration of domain structure in the RVE. They are obtained by averaging over all

domains within an RVE

Ci jkl =

4∑
N=1

C(N)
i jklν

(N), ei jk =

4∑
N=1

e(N)
i jk ν

(N), κi j =

4∑
N=1

κ(N)
i j ν

(N). (6)

For small deformations, the strain tensor and electric field are calculated from the displacement gradient and the

gradient of the scalar potential, respectively

εi j = (ui, j + u j,i)/2, Ei = −ϕ,i. (7)

Within each domain, the polarisation vector Pi is assumed to switch as soon as mechanical and electrical energy

reduction exceeds a critical energy barrier wγ
crit

, see Hwang et al. (1995). The switching is interpreted as the rotation

of the polarization vector around the out-of-plane axis, see Fig. 1. The evolution law for the change of internal

variables ν̇N reads

wγ(N)

diss
= σi jΔε

γ(N)

i j + EiΔPγ(N)

i , ν̇N = −ν̇0NH
⎛⎜⎜⎜⎜⎜⎝w
γ(N)

diss

wγ
crit

− 1

⎞⎟⎟⎟⎟⎟⎠ , (8)

where ν̇0N is a model parameter and different switching variants γ = ±90◦, 180◦ are distinguished. Here, wγ(N)

diss
is the

sum of mechanical and electrical work per unit volume for the Nth domain species and wγ
crit

corresponds to the minimal

energy required for domain switching, such that w±90◦
crit
=
√

2EC P0, and w180◦
crit
= 2EC P0. In Eq. (8) a generalized Reuss

approximation is implied. That is, the mechanical stresses and the electric field components are assumed to be constant
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Fig. 1. Schematic illustration of an RVE, a single polycrystalline grain with 4 possible tetragonal domain species and a single domain with poling

direction ψ in the (x1, x2) plane.

and are not modified by the switching events. The local coordinates of the spontaneous strain Δε
γ(N)

i j and change of

polarisation ΔPγ(N)

i are described by εD = (c − a)/a0

Δε±90◦
i j = εD

(
1 0

0 −1

)
, Δε180◦

i j = 0, (9)

ΔP+90◦
k = P0

(−1

1

)
, ΔP−90◦

k = P0

(−1

−1

)
, ΔP180◦

k = P0

(−2

0

)
. (10)

The changes of remanent strain and polarization induced by domain switching are calculated by building a sum over

all switching events weighted by the change of the corresponding volume fraction dν(N), such that

dε irri j =

4∑
N=1

Δε
γ(N)

i j dν(N), dPirr
i =

4∑
N=1

ΔPγ(N)

i dν(N). (11)

Note, once the polarization switches, the irreversible strain is locked and cannot be reverse-switched unless external

loads enforce it.

The above outlined model is implemented into a FE algorithm by introducing two additional terms on the right-

hand side of the algebraic system of equations, { fe} and {qe}, such that

[Kuu]{u} + [Kuϕ]{ϕ} = { f } + { fe}, (12)

[Kϕu]{u} + [Kϕϕ]{ϕ} = {q} + {qe}. (13)

The additional terms describe the residual stresses and spontaneous polarization due to domain wall motion and are

calculated as follows

{ fe} =
∫

VE
[Bu]T[C]{ε irr}dV, {qe} =

∫
VE

[Bϕ]T([e]{ε irr} − {Pirr})dV. (14)

Here, the matrices [Bu] and [Bϕ] relate the nodal variables {u} and {ϕ} with strain and electric field, in accordance with

Eq. (7). The generalized stiffness matrices are given as follows

[Kuu] =

∫
VE

[Bu]T [C][Bu]dV, [Kϕϕ] = −
∫
VE

[Bϕ]T [κ]T [Bϕ]dV, [Kuϕ] = [Kϕu]T =

∫
VE

[Bu]T [e]T [Bϕ]dV. (15)
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Now, the effective properties of damaged ferroelectric materials are calculated. The constitutive law, as given by

Eqs. (4) and (5) is still valid. However, the material constants are modified by the damage. Therefore, a general

relation between the volume averages of two piezoelectric field variables Π and Z is considered as

〈Z〉 = F
〈Π〉, (16)

with Π = (σ11, σ22, σ12,D1,D2)T, and Z = (ε11, ε22, 2ε12,−E1,−E2)T. Here, F
 is the generalized compliance. More-

over, Eq. (16) can be written in an equivalent constitutive formulation with strain and electric field being independent

variables 〈Π〉 = C
〈Z〉. The average strain and electric field density can be decomposed into two parts 〈Z〉 = ZM + ZC

with ZM = FMΠ0 representing the matrix and ZC = FCΠ0 the defect phase. Here, 〈Π〉 = Π0 are the external loads.

Then, it can be shown that the generalized compliance F
 as well as C
 are given as the sum of the generalized

compliance of the matrix medium FM = [CM]−1 and a contribution to be determined through the crack surface defor-

mation FC, i.e. F
 = FM + FC. The contribution of micro cracks to the averaged strain and el. field density ZC is

given by

εCi j =
1

2A

+a∫
−a

(Δuin j + Δu jni) dxc
1, EC

i = −
1

A

+a∫
−a

Δϕ ni dxc
1. (17)

The calculations are done by applying the so called dilute model where defect interaction is neglected. Jumps of the

displacement and the electric potential across crack surfaces are given by

ΔuM = 2YMN

√
a2 − (xc

1
)2 ΠN2. (18)

The latter is drawn from a closed form solution of the piezoelectric Griffith crack problem (Ricoeur and Kuna, 2003).

This means, that the crack is assumed to be in a flawless matrix medium. Here, YMN is the Irwin matrix. Note that

Eqs. (17) and (18) are given in the coordinate system of a microcrack (xc
1
, xc

2
). After calculating FC , the material

properties in Eqs. (14) and (15) are updated according to

C
 = [(CM)−1 + FC]−1. (19)

The influence of damage evolution is governed by a damage parameter f = 4a2/A which describes the density of

microcracks, that is f = 0 for a flawless material and f = 1 for the full damage. The microcrack initiation is

controlled by a mode-I stress intensity factor KI = KIC , where KI =
√
πanσI and σI is the maximal principal stress.

Once the criterion is satisfied the microcrack is initiated and the calculation continues with crack growth, such that

an = a0 + n · Δa and fn = f0 + n · Δ f , where an is the crack length associated with the damage parameter fn.

3. Example

The constitutive model has been implemented into the commercial FEM-code Abaqus in terms of a user element.

To show an example, the geometry of specimen used in laboratory experiments by Shindo et al. (2004) has been

chosen. Fig. 2 shows the sample which is a multilayer actuator consisting of four BaTiO3 piezoelectric ceramic

layers, alternating with surface and internal electrodes. The dimensions of the specimen in mm units are also shown

in Fig. 2.

The computational results are presented in Figs. 3 and 4, showing an excerpt around an internal electrode. Po-

larization vectors are presented in Fig. 3 at the end of the poling process with Emax = 5Ec corresponded to a layer

thikness of 5 mm. Maximal principal stresses are shown in Fig. 4. Those are largest close to the electrode tips leading

to crack initiation and damage of the actuator. This is because of the high concentration of induced electric field

and associated inelastic strain near the electrode tips. The results provided in Fig. 4 give useful information for the

damage analysis of advanced piezoelectric devices, although the damage model depicted in section 2 has not yet been

included in the simulations.
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Fig. 2. Geometry and electric boundary conditions of the computational model of a multilayer actuator. The dimensions of the specimen are given

in mm units.

Fig. 3. Polarization vectors around electodes inside actuator after poling process.

Fig. 4. Maximal principal stresses at the electrode tips during polarization process: red color (100 MPa), green color (35 MPa).
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