

Available online at www.sciencedirect.com

brought to you by T CORE

Topology and its Applications

Topology and its Applications 155 (2008) 965-971

www.elsevier.com/locate/topol

\mathbb{Z}_2 actions on complexes with three non-trivial cells

Mahender Singh

School of Mathematics, Harish-Chandra Research Institute, Chhatnag road, Jhunsi, Allahabad 211019, India Received 7 September 2007; received in revised form 18 December 2007; accepted 18 December 2007

Abstract

In this paper, we study \mathbb{Z}_2 actions on a cell complex X having its cohomology ring isomorphic to that of the wedge sum $P^2(n) \vee S^{3n}$ or $S^n \vee S^{2n} \vee S^{3n}$. We determine the possible fixed point sets depending on whether or not X is totally non-homologous to zero in $X_{\mathbb{Z}_2}$ and give examples realizing all possible cases. © 2007 Elsevier B.V. All rights reserved.

MSC: primary 55S17; secondary 55R20

Keywords: Cohomology ring; Fibration; Group action; Join; Totally non-homologous to zero; Wedge sum

1. Introduction

Toda [9] studied the cohomology ring of a space X having only non-trivial cohomology groups $H^{in}(X; \mathbb{Z}) = \mathbb{Z}$ for i = 0, 1, 2 and 3, where n is a fixed positive integer. Let $u_i \in H^{in}(X; \mathbb{Z})$ be a generator for i = 1, 2 and 3. Then the ring structure of $H^*(X; \mathbb{Z})$ is completely determined by the integers a and b such that

 $u_1^2 = au_2$ and $u_1u_2 = bu_3$.

Such a space is said to be of type (a, b). Note that, when n is odd, we must have a = 0 [9, Theorem 1].

Let *p* be a prime. One can see that for a space *X* of type (a, b) there exists always a cell complex $K = S^n \cup e^{2n} \cup e^{3n}$ with three non-trivial cells such that $H^*(X; \mathbb{F}_p) \cong H^*(K; \mathbb{F}_p)$. We shall write $X \simeq_p Y$ if there is an abstract isomorphism of graded rings $H^*(X; \mathbb{F}_p) \xrightarrow{\cong} H^*(Y; \mathbb{F}_p)$ (not necessarily induced by a continuous map $Y \to X$). Similarly, we use the notation $X \simeq_p P^h(n)$ to mean that $H^*(X; \mathbb{F}_p) \cong \mathbb{F}_p[z]/z^{h+1}$, where *z* is a homogeneous element of degree *n*.

Given spaces X_i with chosen base points $x_i \in X_i$ for i = 1, 2, ..., n, their wedge sum $\bigvee_{i=1}^n X_i$ is the quotient of the disjoint union $\bigsqcup_{i=1}^n X_i$ obtained by identifying the points $x_1, x_2, ..., x_n$ to a single point called the wedge point.

One can see that a space X of type (a, b) is determined by the integers a and b in terms of the familiar spaces as follows.

If $b \not\equiv 0 \mod p$, then

 $X \simeq_p S^n \times S^{2n}$ for $a \equiv 0 \mod p$

E-mail address: msingh@mri.ernet.in.

^{0166-8641/\$ -} see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2007.12.008

and

$$X \simeq_p P^3(n)$$
 for $a \not\equiv 0 \mod p$

And, if $b \equiv 0 \mod p$, then

 $X \simeq_p S^n \vee S^{2n} \vee S^{3n}$ for $a \equiv 0 \mod p$

and

 $X \simeq_p P^2(n) \vee S^{3n}$ for $a \not\equiv 0 \mod p$.

Let the cyclic group $G = \mathbb{Z}_p$ act on a space X of type (a, b). This gives a fibration $X \hookrightarrow X_G \to B_G$, where $X_G = (X \times E_G)/G$ is the orbit space of the diagonal action on $X \times E_G$ and is called the Borel construction on X (see [2, Chapter IV]) and B_G is the base space of the universal principal G-bundle $G \hookrightarrow E_G \to B_G$ called the classifying space of the group G. We say that X is totally non-homologous to zero in X_G if the inclusion of a typical fiber $X \hookrightarrow X_G$ induces a surjection in the cohomology $H^*(X_G; \mathbb{F}_p) \to H^*(X; \mathbb{F}_p)$. This condition is equivalent to a nice relation between the cohomology of the space and the fixed point set (Proposition 2).

The fixed point sets of \mathbb{Z}_p actions for the case $b \neq 0 \mod p$ have been investigated in detail by Bredon [1] and Su [7,8] for all primes p. And the fixed point sets of \mathbb{Z}_p actions for the case $b \equiv 0 \mod p$ have been completely determined by Dotzel and Singh [3,4] for odd primes p. In this paper, we settle the remaining case when p = 2 and obtain the following results:

Theorem 1. Let $G = \mathbb{Z}_2$ act on a space X of type $(a, 0) \mod 2$ with trivial action on $H^*(X; \mathbb{Q})$ and fixed point set F. Suppose X is totally non-homologous to zero in X_G , then F has at most four components satisfying the following:

- (1) If *F* has four components, then each is acyclic, *n* is even and $a \equiv 0 \mod 2$.
- (2) If F has three components, then n is even and

 $F \simeq_2 S^r \sqcup \{point_1\} \sqcup \{point_2\}$ for some even integer $2 \leq r \leq 3n$.

(3) If F has two components, then either

 $F \simeq_2 S^r \sqcup S^s$ or $(S^r \lor S^s) \sqcup \{point\}$ for some integers $1 \leq r, s \leq 3n$

or

 $F \simeq_2 P^2(r) \sqcup \{point\}$ for some even integer $2 \leq r \leq n$.

(4) If F has one component, then either

$$F \simeq_2 S^r \vee S^s \vee S^t$$
 for some integers $1 \leq r, s, t \leq 3n$

or

 $F \simeq_2 S^s \vee P^2(r)$ for some integers $1 \leq r \leq n$ and $1 \leq s \leq 3n$.

Further, if n is even, then X is always totally non-homologous to zero in X_G .

Theorem 2. Let $G = \mathbb{Z}_2$ act on a space X of type $(a, 0) \mod 2$ with trivial action on $H^*(X; \mathbb{Q})$ and fixed point set F. Suppose X is not totally non-homologous to zero in X_G , then either $F = \phi$ or $F \simeq_2 S^r$, where $1 \leq r \leq 3n$ is an odd integer.

We shall prove Theorem 1 in Section 3 and Theorem 2 in Section 4. We include examples in the proofs to show that all the cases are realizable.

966

2. Preliminaries

Our methods will be standard and for details we refer to Bredon [1]. As the spaces of concern in this paper are finite cell complexes, the cohomology used will be the cellular cohomology with coefficients in the field \mathbb{F}_2 of two elements unless otherwise stated. Recall that, $X \simeq_2 P^h(n)$ means that the mod 2 cohomology ring of X is isomorphic to $\mathbb{F}_2[z]/z^{h+1}$, where z is a homogeneous element of degree n. The following result is well known.

Proposition 1. If X is a finite cell complex such that $X \simeq_2 P^h(n)$, then

n = 1, 2, 4 for $h \ge 2$

and

n = 8 for h = 2.

See [6, Chapter I, 4.5].

The following facts about \mathbb{Z}_2 actions can be easily deduced.

Proposition 2. Let $G = \mathbb{Z}_2$ act on a finite cell complex X with fixed point set F. Then X is totally non-homologous to zero in X_G if and only if

$$\sum_{i \ge 0} rk H^i(F) = \sum_{i \ge 0} rk H^i(X).$$

See [1, Chapter VII, 1.6].

Proposition 3. Let $G = \mathbb{Z}_2$ act on a finite cell complex X with fixed point set F. Then

$$\sum_{i \ge 0} rk H^i(F) \leqslant \sum_{i \ge 0} rk H^i(X).$$

See [1, Chapter III, 7.9].

The following lemma is crucial for our results.

Lemma 4. Let $G = \mathbb{Z}_2$ act on a finite cell complex X with trivial action on the rational cohomology $H^*(X; \mathbb{Q})$, then

$$\chi(X) = \chi(F).$$

Proof. By Theorem 7.2 of Bredon [1, Chapter III], we have

$$\pi^i: H^i(X/G; \mathbb{Q}) \xrightarrow{=} H^i(X; \mathbb{Q})^G$$
 for all $i \ge 0$,

where $\pi : X \to X/G$ is the orbit map. Since *G* acts trivially on the cohomology, the fixed point set $H^i(X; \mathbb{Q})^G = H^i(X; \mathbb{Q})$ for all $i \ge 0$. This gives $H^i(X/G; \mathbb{Q}) \cong H^i(X; \mathbb{Q})$ for all $i \ge 0$ and hence $\chi(X) = \chi(X/G)$. By Theorem 7.10 of Bredon [1, Chapter III], we have

$$\chi(X) + \chi(F) = 2\chi(X/G)$$

and hence $\chi(X) = \chi(F)$. \Box

Remark. The results quoted above are true for a general class of spaces called finitistic spaces using the Čech cohomology with coefficients in the field \mathbb{F}_2 (which is the same as the cellular cohomology on cell complexes). Recall that, a paracompact Hausdorff space is said to be finitistic if its every open covering has a finite dimensional open refinement, where the dimension of a covering is one less than the maximum number of members of the covering which intersect non-trivially [1, Chapter III]. Clearly a compact space is finitistic. Hence a space *X* of type (*a*, 0) mod 2 is finitistic being compact. Now we consider a \mathbb{Z}_2 action on the unit sphere $S^n = \{(x_1, x_2, \dots, x_{n+1}) \in \mathbb{R}^{n+1} | \sum_{i=1}^{n+1} x_i^2 = 1\}$ that we shall use in constructing examples in the following sections. For $0 \le r \le n$, $S^r \subseteq S^n$, where $S^r = \{(x_1, x_2, \dots, x_{n+1}) \in S^n | x_{r+2} = x_{r+3} = \dots = x_{n+1} = 0\}$. The \mathbb{Z}_2 action on S^n given by

$$(x_1, x_2, \dots, x_{n+1}) \mapsto (x_1, x_2, \dots, x_{r+1}, -x_{r+2}, -x_{r+3}, \dots, -x_{n+1})$$

has S^r as its fixed point set. Given any point $x \in S^n$, we consider $\{x, -x\}$ as $S^0 \subset S^n$. Then the above action on S^n , for r = 0, has $\{x, -x\}$ as its fixed point set.

We shall also use the join $X \star Y$ of two spaces X and Y, which is defined as the quotient of $X \times Y \times I$ under the identifications $(x, y_1, 0) \sim (x, y_2, 0)$ and $(x_1, y, 1) \sim (x_2, y, 1)$, where I is the unit interval. That is, we are collapsing the subspace $X \times Y \times \{0\}$ to X and $X \times Y \times \{1\}$ to Y. Note that, if a group G acts on both X and Y with fixed point sets F_1 and F_2 , respectively, then the induced action of G on the join $X \star Y$ has $F_1 \star F_2$ as its fixed point set.

3. Proof of Theorem 1

Let X be totally non-homologous to zero in X_G . Then by Proposition 2,

$$\sum_{i \ge 0} rk H^i(F) = \sum_{i \ge 0} rk H^i(X) = 4.$$

It follows that F has at most four components.

Case 1. Suppose *F* has four components, then it is clear that each is acyclic. Let \bar{u}_i denote the reductions of $u_i \mod 2$. If $a \neq 0 \mod 2$, then $\bar{u}_1^2 = \bar{u}_2 \neq 0$ and hence $H^n(F) \neq 0$ [1, Chapter VII, 7.3] showing that *F* has a non-acyclic component. Therefore, in this case $a \equiv 0 \mod 2$. By Lemma 4, we have $\chi(X) = \chi(F) = 4$ and hence *n* must be even.

For $a \equiv 0 \mod 2$, we can take $X = S^n \vee S^{2n} \vee S^{3n}$. Consider the \mathbb{Z}_2 actions on the spheres S^n , S^{2n} and S^{3n} with exactly two fixed points each and then take their wedge sum at some fixed points. This gives a \mathbb{Z}_2 action on X with the disjoint union of four points as its fixed point set.

Case 2. Suppose that *F* has three components, then

 $F \simeq_2 S^r \sqcup \{point_1\} \sqcup \{point_2\}$ for some integer $1 \le r \le 3n$.

Note that $\chi(F) = 2$ or 4 according as r is odd or even. As $\chi(X) = \chi(F)$, both n and r are even.

For $a \equiv 0 \mod 2$ and even integers r and n such that $2 \leq r \leq 3n$, we take $X = S^n \vee S^{2n} \vee S^{3n}$. Consider the \mathbb{Z}_2 actions on the spheres S^n and S^{2n} with exactly two fixed points each and the action on S^{3n} with S^r as its fixed point set. Taking their wedge sum at some fixed points gives a \mathbb{Z}_2 action on X with $F = S^r \sqcup \{point_1\} \sqcup \{point_2\}$.

For $a \neq 0 \mod 2$, we know that $X \simeq_2 P^2(n) \lor S^{3n}$.

If *Y* is a space such that $H^*(Y; \mathbb{F}_2) = \mathbb{F}_2[z]/z^{h+1}$, where *z* is of degree *n*, then by Proposition 1, we have n = 2, 4 or 8 for h = 2. Therefore, we can take $Y = \mathbb{C}P^2$ the complex projective 2-space, $\mathbb{H}P^2$ the quaternionic projective 2-space or $\mathbb{O}P^2$ the Cayley projective plane, according as n = 2, 4 or 8, respectively.

2-space or $\mathbb{O}P^2$ the Cayley projective plane, according as n = 2, 4 or 8, respectively. For n = 2, let $S^5 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \mid \sum_{i=1}^3 |z_i|^2 = 1\}$. Consider the \mathbb{Z}_2 action on S^5 given by $(z_1, z_2, z_3) \mapsto (z_1, z_2, -z_3)$. This action commutes with the usual S^1 action on S^5 and hence descends to an action on $\mathbb{C}P^2$. As $S^3 \subset S^5$ is fixed under the \mathbb{Z}_2 action on S^5 , it is easy to see that

 $S^2 \sqcup \{point\}$

is the fixed point set of the \mathbb{Z}_2 action on $\mathbb{C}P^2$.

Similarly, for n = 4, let \mathbb{H} be the normed division algebra of quaternions and $S^{11} = \{(w_1, w_2, w_3) \in \mathbb{H}^3 \mid \sum_{i=1}^3 |w_i|^2 = 1\}$ and consider the \mathbb{Z}_2 action on S^{11} given by $(w_1, w_2, w_3) \mapsto (w_1, w_2, -w_3)$. This action commutes with the usual S^3 action on S^{11} . As above, one can see that

 $S^4 \sqcup \{point\}$

is the fixed point set of the induced action of \mathbb{Z}_2 on $\mathbb{H}P^2$.

For n = 8, Bredon [1, Chapter VII] has constructed a \mathbb{Z}_2 action on $\mathbb{O}P^2$ with

 $S^8 \sqcup \{point\}$

as its fixed point set.

Now, consider the \mathbb{Z}_2 action on S^{3n} with exactly two fixed points. Taking $X = Y \vee S^{3n}$, where the wedge sum is taken at the isolated fixed point of Y and a fixed point of S^{3n} , we get a \mathbb{Z}_2 action on X with the fixed point set $F = S^r \sqcup \{point_1\} \sqcup \{point_2\}$ for some even integer $2 \leq r \leq 3n$.

Case 3. Suppose F has two components, then

 $F \simeq_2 S^r \sqcup S^s$, $(S^r \lor S^s) \sqcup \{point\}$ or $P^2(r) \sqcup \{point\}$ for some r and s.

By Lemma 4, $\chi(X) = \chi(F)$. If *n* is odd, $\chi(F) = 0$ and hence

 $F \simeq_2 S^r \sqcup S^s$ or $(S^r \lor S^s) \sqcup \{point\}$ for odd integers $1 \le r, s \le 3n$.

And if *n* is even, $\chi(F) = 4$ and hence

 $F \simeq_2 S^r \sqcup S^s$ or $(S^r \lor S^s) \sqcup \{point\}$ for even integers $2 \le r, s \le 3n$

or

 $F \simeq_2 P^2(r) \sqcup \{point\}$ for some even integer $2 \leq r \leq n$.

For $a \equiv 0 \mod 2$, let $Y = S^{n-1} \star P^2(n)$. Consider a free \mathbb{Z}_2 action on S^{n-1} and that action on $P^2(n)$ which has the fixed point set $S^r \sqcup \{point\}$ for some r (which we constructed in Case 2). Let \mathbb{Z}_2 act on S^n with its fixed point set S^s for some s. Take $X = S^n \lor Y$, where the wedge sum is taken at the isolated fixed point of Y and some point of S^s . Then $X \simeq_2 S^n \lor S^{2n} \lor S^{3n}$ and has a \mathbb{Z}_2 action with the fixed point set $F \simeq_2 S^r \sqcup S^s$.

If we take the wedge sum at some point of S^r and some point of S^s , then X has a \mathbb{Z}_2 action with the fixed point set $F \simeq_2 (S^r \vee S^s) \sqcup \{point\}$.

Further, if we consider a free \mathbb{Z}_2 action on S^{n-1} , the trivial action on $P^2(n)$ and the action on S^n with exactly two fixed points, then $X = S^n \vee Y$, where the wedge is taken at some point of $P^2(n)$ and some fixed point of S^n , has a \mathbb{Z}_2 action with the fixed point set $F \simeq_2 P^2(n) \sqcup \{point\}$.

For $a \neq 0 \mod 2$, take $X = P^2(n) \lor S^{3n}$. Consider the \mathbb{Z}_2 action on $P^2(n)$ with $S^r \sqcup \{point\}$ as its fixed point set and the action on S^{3n} with S^s as its fixed point set. By taking the wedge sum at suitable points, we get a \mathbb{Z}_2 action on X with $F \simeq_2 S^r \sqcup S^s$ or $(S^r \lor S^s) \sqcup \{point\}$. Similarly, suitable actions on $P^2(n)$ and S^{3n} gives an action on X with $F \simeq_2 P^2(r) \sqcup \{point\}$.

Case 4. Suppose F has one component, then either

 $F \simeq_2 S^r \vee S^s \vee S^t$ for some integers $1 \leq r, s, t \leq 3n$

or

 $F \simeq_2 S^s \vee P^2(r)$ for some integers $1 \leq r \leq n$ and $1 \leq s \leq 3n$.

As $\chi(F) = \chi(X)$, for $F \simeq_2 S^r \vee S^s \vee S^t$ we must have either r, s and t all are even or exactly one of them is even. Similarly, for $F \simeq_2 S^s \vee P^2(r)$ we must have either s and r both even or both odd.

For $a \equiv 0 \mod 2$, take $X = S^n \vee S^{2n} \vee S^{3n}$. Consider the \mathbb{Z}_2 actions on S^n , S^{2n} and S^{3n} with S^r , S^s and S^t respectively as their fixed point sets. This gives an action on X with $S^r \vee S^s \vee S^t$ as its fixed point set, where the wedge is taken at some fixed points on the subspheres.

If we take $X = S^n \vee Y$, where $Y = S^{n-1} \star P^2(n)$ and consider the \mathbb{Z}_2 action on S^n with S^s as its fixed point set for some *s* and the action on *Y* with $P^2(r)$ as its fixed point set for some *r*, then we get a \mathbb{Z}_2 action on *X* with its fixed point set $F \simeq_2 S^s \vee P^2(r)$.

For $a \neq 0 \mod 2$, taking a suitable \mathbb{Z}_2 action on $X = P^2(n) \vee S^{3n}$ gives $F \simeq_2 S^s \vee P^2(r)$ for some integers r and s. Note that in this case the fixed point set cannot be a wedge of three spheres. Finally, suppose that n is even and X is not totally non-homologous to zero in X_G . Then by Proposition 2,

$$\sum_{i \ge 0} rk H^i(F) \neq \sum_{i \ge 0} rk H^i(X) = 4.$$

And by Proposition 3,

$$\sum_{i \ge 0} rk \, H^i(F) \le 3$$

This gives $\chi(F) = -1, 0, 1, 2 \text{ or } 3$. But, $\chi(F) = \chi(X) = 4$, a contradiction. This completes the proof of the theorem. \Box

4. Proof of Theorem 2

Let X be not totally non-homologous to zero in X_G . Then n is odd and hence $\chi(X) = 0$. By Lemma 4, we have $\chi(F) = 0$.

As above $\sum_{i \ge 0} rk H^i(F) \le 3$. Observe that

if
$$\sum_{i \ge 0} rk H^i(F) = 1$$
, then $\chi(F) = 1$

and

if
$$\sum_{i \ge 0} rk H^i(F) = 3$$
, then $\chi(F) = 1, -1 \text{ or } 3$.

Therefore, these cases do not arise. Further,

if
$$\sum_{i \ge 0} rk H^i(F) = 0$$
, then $F = \phi$

and

if
$$\sum_{i \ge 0} rk H^i(F) = 2$$
, then $\chi(F) = 0$ or 2.

But, $\chi(F) = 0$ and hence $F \simeq_2 S^r$ for some odd integer $1 \le r \le 3n$.

Recall that, when *n* is odd $a \equiv 0 \mod 2$ (see [9]). Let $h : S^3 \to S^2$ be the Hopf map and *Y* be the union of mapping cylinders of the sphere bundle maps

$$S^2 \times S^n \stackrel{h \times 1}{\longleftrightarrow} S^3 \times S^n \stackrel{\text{projection}}{\longrightarrow} S^3$$

Then $H^*(Y; \mathbb{Z}) = H^*(S^2 \times S^{n+2}; \mathbb{Z})$ and Y is a manifold (see [5]). Let \mathbb{Z}_2 act freely on S^n and trivially on both S^2 and S^3 , then it act on Y with the fixed point set homeomorphic to S^3 . Remove a fixed point from Y to obtain a space $Z \simeq_2 S^2 \vee S^{n+2}$ with a \mathbb{Z}_2 action and contractible fixed point set. With \mathbb{Z}_2 acting trivially on S^{n-3} , consider the induced action on the join $W = S^{n-3} \star Z$ which is homotopically equivalent to $S^n \vee S^{2n}$. This action on W has a contractible fixed point set. For a given odd integer $1 \leq r \leq 3n$, consider the \mathbb{Z}_2 action on S^{3n} with S^r as the fixed point set. Then the wedge sum of W and S^{3n} at some fixed points is a space $X \simeq_2 S^n \vee S^{2n} \vee S^{3n}$ and has a \mathbb{Z}_2 action with its fixed point set $F \simeq_2 S^r$. It is clear that every \mathbb{Z}_2 action on $X = S^n \vee S^{2n} \vee S^{3n}$ has a non-empty fixed point set. \Box

Acknowledgement

The author would like to thank the referee for many useful comments and suggestions which made the paper more readable.

References

- [1] G.E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972.
- [2] A. Borel, Seminar on Transformation Groups, Princeton Univ. Press, New Jersey, 1960.
- [3] R.M. Dotzel, T.B. Singh, \mathbb{Z}_p actions on spaces of cohomology type (a, 0), Proc. Amer. Math. Soc. 113 (1991) 875–878.
- [4] R.M. Dotzel, T.B. Singh, Cohomology ring of the orbit space of certain free \mathbb{Z}_p actions, Proc. Amer. Math. Soc. 123 (1995) 3581–3585.
- [5] P.S. Mostert, in: Proceedings of the Conference on Transformation Groups, New Orleans, 1967, pp. 245–280.
- [6] N.E. Steenrod, D.B.A. Epstein, Cohomology Operations, Ann. of Math. Stud., vol. 50, 1962.
- [7] J.C. Su, Periodic transformations on the product of two spheres, Trans. Amer. Math. Soc. 112 (1964) 369-380.
- [8] J.C. Su, Transformation groups on cohomology projective spaces, Trans. Amer. Math. Soc. 106 (1963) 305-318.
- [9] H. Toda, Note on cohomology ring of certain spaces, Proc. Amer. Math. Soc. 14 (1963) 89-95.