

Available online at www.sciencedirect.com

provided by Elsevier - Publisher Connector

Topology and its Applications

Topology and its Applications 155 (2008) 965–971

www.elsevier.com/locate/topol

\mathbb{Z}_2 actions on complexes with three non-trivial cells

Mahender Singh

School of Mathematics, Harish-Chandra Research Institute, Chhatnag road, Jhunsi, Allahabad 211019, India

Received 7 September 2007; received in revised form 18 December 2007; accepted 18 December 2007

Abstract

In this paper, we study \mathbb{Z}_2 actions on a cell complex *X* having its cohomology ring isomorphic to that of the wedge sum $P^2(n) \vee S^{3n}$ or $S^n \vee S^{2n} \vee S^{3n}$. We determine the possible fixed point sets depending on whether or not *X* is totally nonhomologous to zero in $X_{\mathbb{Z}_2}$ and give examples realizing all possible cases. © 2007 Elsevier B.V. All rights reserved.

MSC: primary 55S17; secondary 55R20

Keywords: Cohomology ring; Fibration; Group action; Join; Totally non-homologous to zero; Wedge sum

1. Introduction

Toda [9] studied the cohomology ring of a space *X* having only non-trivial cohomology groups $H^{in}(X;\mathbb{Z}) = \mathbb{Z}$ for $i = 0, 1, 2$ and 3, where *n* is a fixed positive integer. Let $u_i \in H^{in}(X; \mathbb{Z})$ be a generator for $i = 1, 2$ and 3. Then the ring structure of $H^*(X;\mathbb{Z})$ is completely determined by the integers *a* and *b* such that

 $u_1^2 = au_2$ and $u_1u_2 = bu_3$.

Such a space is said to be of type (a, b) . Note that, when *n* is odd, we must have $a = 0$ [9, Theorem 1].

Let *p* be a prime. One can see that for a space *X* of type (a, b) there exists always a cell complex *K* = *S*^{*n*} ∪ *e*^{2*n*} ∪ *e*^{3*n*} with three non-trivial cells such that *H*[∗](*X*; \mathbb{F}_p) ≅ *H*[∗](*K*; \mathbb{F}_p). We shall write *X* \simeq *p Y* if there

is an abstract isomorphism of graded rings $H^*(X; \mathbb{F}_p) \stackrel{\cong}{\to} H^*(Y; \mathbb{F}_p)$ (not necessarily induced by a continuous map *Y* → *X*). Similarly, we use the notation $\overline{X} \simeq_{p} P^{h}(n)$ to mean that $H^{*}(X; \mathbb{F}_{p}) \cong \mathbb{F}_{p}[z]/z^{h+1}$, where *z* is a homogeneous element of degree *n*.

Given spaces X_i with chosen base points $x_i \in X_i$ for $i = 1, 2, ..., n$, their wedge sum $\bigvee_{i=1}^n X_i$ is the quotient of the disjoint union $\prod_{i=1}^{n} X_i$ obtained by identifying the points x_1, x_2, \ldots, x_n to a single point called the wedge point.

One can see that a space *X* of type *(a, b)* is determined by the integers *a* and *b* in terms of the familiar spaces as follows.

If $b \not\equiv 0 \mod p$, then

 $X \simeq_{p} S^{n} \times S^{2n}$ for $a \equiv 0 \mod p$

E-mail address: msingh@mri.ernet.in.

^{0166-8641/\$ –} see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2007.12.008

and

$$
X \simeq_p P^3(n) \quad \text{for } a \not\equiv 0 \text{ mod } p.
$$

And, if $b \equiv 0 \mod p$, then

 $X \simeq_{p} S^{n} \vee S^{2n} \vee S^{3n}$ for $a \equiv 0 \mod p$

and

$$
X \simeq_p P^2(n) \vee S^{3n} \quad \text{for } a \not\equiv 0 \text{ mod } p.
$$

Let the cyclic group $G = \mathbb{Z}_p$ act on a space *X* of type (a, b) . This gives a fibration $X \hookrightarrow X_G \to B_G$, where $X_G = (X \times E_G)/G$ is the orbit space of the diagonal action on $X \times E_G$ and is called the Borel construction on *X* (see [2, Chapter IV]) and B_G is the base space of the universal principal *G*-bundle $G \hookrightarrow E_G \rightarrow B_G$ called the classifying space of the group G. We say that X is totally non-homologous to zero in X_G if the inclusion of a typical fiber *X* → *X_G* induces a surjection in the cohomology $H^*(X_G; \mathbb{F}_p) \to H^*(X; \mathbb{F}_p)$. This condition is equivalent to a nice relation between the cohomology of the space and the fixed point set (Proposition 2).

The fixed point sets of \mathbb{Z}_p actions for the case $b \neq 0 \mod p$ have been investigated in detail by Bredon [1] and Su [7,8] for all primes p. And the fixed point sets of \mathbb{Z}_p actions for the case $b \equiv 0 \mod p$ have been completely determined by Dotzel and Singh [3,4] for odd primes p. In this paper, we settle the remaining case when $p = 2$ and obtain the following results:

Theorem 1. Let $G = \mathbb{Z}_2$ act on a space X of type $(a, 0) \text{ mod } 2$ with trivial action on $H^*(X; \mathbb{Q})$ and fixed point set F . *Suppose X* is totally non-homologous to zero in X_G , then F has at most four components satisfying the following:

- (1) If *F* has four components, then each is acyclic, *n* is even and $a \equiv 0 \mod 2$.
- (2) *If F has three components, then n is even and*

 $F \simeq_2 S^r \sqcup \{point_1\} \sqcup \{point_2\}$ *for some even integer* $2 \leq r \leq 3n$.

(3) *If F has two components, then either*

 $F \simeq_2 S^r \sqcup S^s$ *or* $(S^r \vee S^s) \sqcup \{point\}$ *for some integers* $1 \le r, s \le 3n$

or

 $F \simeq_2 P^2(r) \sqcup \{point\}$ *for some even integer* $2 \le r \le n$.

(4) *If F has one component, then either*

$$
F \simeq_2 S^r \vee S^s \vee S^t \quad \text{for some integers } 1 \leq r, s, t \leq 3n
$$

or

 $F \simeq_2 S^s \vee P^2(r)$ *for some integers* $1 \leq r \leq n$ *and* $1 \leq s \leq 3n$ *.*

Further, if n is even, then X is always totally non-homologous to zero in XG.

Theorem 2. Let $G = \mathbb{Z}_2$ act on a space X of type $(a, 0) \text{ mod } 2$ with trivial action on $H^*(X; \mathbb{Q})$ and fixed point set F . *Suppose X* is not totally non-homologous to zero in X_G , then either $F = \phi$ or $F \simeq_2 S^r$, where $1 \leq r \leq 3n$ is an odd *integer.*

We shall prove Theorem 1 in Section 3 and Theorem 2 in Section 4. We include examples in the proofs to show that all the cases are realizable.

2. Preliminaries

Our methods will be standard and for details we refer to Bredon [1]. As the spaces of concern in this paper are finite cell complexes, the cohomology used will be the cellular cohomology with coefficients in the field \mathbb{F}_2 of two elements unless otherwise stated. Recall that, $X \simeq_2 P^h(n)$ means that the mod 2 cohomology ring of *X* is isomorphic to $\mathbb{F}_2[z]/z^{h+1}$, where *z* is a homogeneous element of degree *n*. The following result is well known.

Proposition 1. *If X is a finite cell complex such that* $X \simeq_2 P^h(n)$ *, then*

 $n = 1, 2, 4$ *for* $h \ge 2$

and

 $n = 8$ *for* $h = 2$.

See [6, *Chapter* I, 4.5]*.*

The following facts about \mathbb{Z}_2 actions can be easily deduced.

Proposition 2. Let $G = \mathbb{Z}_2$ act on a finite cell complex X with fixed point set F. Then X is totally non-homologous to *zero in XG if and only if*

$$
\sum_{i\geqslant 0} rk\,H^i(F) = \sum_{i\geqslant 0} rk\,H^i(X).
$$

See [1, *Chapter* VII, 1.6]*.*

Proposition 3. Let $G = \mathbb{Z}_2$ *act on a finite cell complex* X *with fixed point set* F *. Then*

$$
\sum_{i\geqslant 0} rk\,H^i(F)\leqslant \sum_{i\geqslant 0} rk\,H^i(X).
$$

See [1, *Chapter* III, 7.9]*.*

The following lemma is crucial for our results.

Lemma 4. Let $G = \mathbb{Z}_2$ act on a finite cell complex *X* with trivial action on the rational cohomology $H^*(X; \mathbb{Q})$ *, then*

$$
\chi(X) = \chi(F).
$$

Proof. By Theorem 7.2 of Bredon [1, Chapter III], we have

$$
\pi^i: H^i(X/G; \mathbb{Q}) \stackrel{\cong}{\to} H^i(X; \mathbb{Q})^G \quad \text{for all } i \geq 0,
$$

where $\pi : X \to X/G$ is the orbit map. Since G acts trivially on the cohomology, the fixed point set $H^i(X; \mathbb{Q})^G =$ *H*^{*i*}(*X*; \mathbb{Q}) for all *i* \geq 0. This gives \overline{H} ^{*i*}(*X/G*; \mathbb{Q}) \cong H ^{*i*}(*X*; \mathbb{Q}) for all *i* \geq 0 and hence χ (*X*) = χ (*X/G*). By Theorem 7.10 of Bredon [1, Chapter III], we have

$$
\chi(X) + \chi(F) = 2\chi(X/G)
$$

and hence $\chi(X) = \chi(F)$. \Box

Remark. The results quoted above are true for a general class of spaces called finitistic spaces using the Čech cohomology with coefficients in the field \mathbb{F}_2 (which is the same as the cellular cohomology on cell complexes). Recall that, a paracompact Hausdorff space is said to be finitistic if its every open covering has a finite dimensional open refinement, where the dimension of a covering is one less than the maximum number of members of the covering which intersect non-trivially [1, Chapter III]. Clearly a compact space is finitistic. Hence a space *X* of type *(a,* 0*)* mod 2 is finitistic being compact.

Now we consider a \mathbb{Z}_2 action on the unit sphere $S^n = \{(x_1, x_2, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} x_i^2 = 1\}$ that we shall use in constructing examples in the following sections. For $0 \le r \le n$, $S^r \subseteq S^n$, where $S^r = \{(x_1, x_2, ..., x_{n+1}) \in S^n \mid$ $x_{r+2} = x_{r+3} = \cdots = x_{n+1} = 0$. The \mathbb{Z}_2 action on S^n given by

$$
(x_1, x_2, \ldots, x_{n+1}) \mapsto (x_1, x_2, \ldots, x_{r+1}, -x_{r+2}, -x_{r+3}, \ldots, -x_{n+1})
$$

has *S^{<i>r*} as its fixed point set. Given any point $x \in S^n$, we consider $\{x, -x\}$ as $S^0 \subset S^n$. Then the above action on S^n . for $r = 0$, has $\{x, -x\}$ as its fixed point set.

We shall also use the join $X \star Y$ of two spaces X and Y, which is defined as the quotient of $X \times Y \times I$ under the identifications $(x, y_1, 0) \sim (x, y_2, 0)$ and $(x_1, y, 1) \sim (x_2, y, 1)$, where *I* is the unit interval. That is, we are collapsing the subspace $X \times Y \times \{0\}$ to *X* and $X \times Y \times \{1\}$ to *Y*. Note that, if a group *G* acts on both *X* and *Y* with fixed point sets F_1 and F_2 , respectively, then the induced action of *G* on the join $X \star Y$ has $F_1 \star F_2$ as its fixed point set.

3. Proof of Theorem 1

Let *X* be totally non-homologous to zero in X_G . Then by Proposition 2,

$$
\sum_{i\geqslant 0} rk\,H^i(F) = \sum_{i\geqslant 0} rk\,H^i(X) = 4.
$$

It follows that *F* has at most four components.

Case 1. Suppose *F* has four components, then it is clear that each is acyclic. Let \bar{u}_i denote the reductions of u_i mod 2. If $a \neq 0 \mod 2$, then $\overline{u}_1^2 = \overline{u}_2 \neq 0$ and hence $H^n(F) \neq 0$ [1, Chapter VII, 7.3] showing that *F* has a non-acyclic component. Therefore, in this case $a \equiv 0 \mod 2$. By Lemma 4, we have $\chi(X) = \chi(F) = 4$ and hence *n* must be even.

For $a \equiv 0 \mod 2$, we can take $X = S^n \vee S^{2n} \vee S^{3n}$. Consider the \mathbb{Z}_2 actions on the spheres S^n , S^{2n} and S^{3n} with exactly two fixed points each and then take their wedge sum at some fixed points. This gives a \mathbb{Z}_2 action on *X* with the disjoint union of four points as its fixed point set.

Case 2. Suppose that *F* has three components, then

$$
F \simeq_2 S^r \sqcup \{point_1\} \sqcup \{point_2\} \quad \text{for some integer } 1 \leq r \leq 3n.
$$

Note that $\chi(F) = 2$ or 4 according as r is odd or even. As $\chi(X) = \chi(F)$, both *n* and r are even.

For $a \equiv 0 \mod 2$ and even integers *r* and *n* such that $2 \le r \le 3n$, we take $X = S^n \vee S^{2n} \vee S^{3n}$. Consider the \mathbb{Z}_2 actions on the spheres S^n and S^{2n} with exactly two fixed points each and the action on S^{3n} with S^r as its fixed point set. Taking their wedge sum at some fixed points gives a \mathbb{Z}_2 action on *X* with $F = S^r \sqcup \{point_1\} \sqcup \{point_2\}$.

For $a \neq 0$ mod 2, we know that $X \simeq_2 P^2(n) \vee S^{3n}$.

If *Y* is a space such that $H^*(Y; \mathbb{F}_2) = \mathbb{F}_2[z]/z^{h+1}$, where *z* is of degree *n*, then by Proposition 1, we have $n = 2$, 4 or 8 for $h = 2$. Therefore, we can take $Y = \mathbb{C}P^2$ the complex projective 2-space, $\mathbb{H}P^2$ the quaternionic projective 2-space or $\mathbb{O}P^2$ the Cayley projective plane, according as $n = 2$, 4 or 8, respectively.

For $n = 2$, let $S^5 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \mid \sum_{i=1}^3 |z_i|^2 = 1\}$. Consider the \mathbb{Z}_2 action on S^5 given by $(z_1, z_2, z_3) \mapsto$ $(z_1, z_2, -z_3)$. This action commutes with the usual S^1 action on S^5 and hence descends to an action on $\mathbb{C}P^2$. As S^3 ⊂ *S*⁵ is fixed under the \mathbb{Z}_2 action on S^5 , it is easy to see that

 $S^2 \sqcup \{point\}$

is the fixed point set of the \mathbb{Z}_2 action on $\mathbb{C}P^2$.

Similarly, for $n = 4$, let \mathbb{H} be the normed division algebra of quaternions and $S^{11} = \{(w_1, w_2, w_3) \in \mathbb{H}^3 \mid$ $\sum_{i=1}^{3} |w_i|^2 = 1$ and consider the \mathbb{Z}_2 action on S^{11} given by $(w_1, w_2, w_3) \mapsto (w_1, w_2, -w_3)$. This action commutes with the usual S^3 action on S^{11} . As above, one can see that

 $S^4 \sqcup \{point\}$

is the fixed point set of the induced action of \mathbb{Z}_2 on $\mathbb{H}P^2$.

For $n = 8$, Bredon [1, Chapter VII] has constructed a \mathbb{Z}_2 action on $\mathbb{O}P^2$ with

 $S^8 \sqcup \{point\}$

as its fixed point set.

Now, consider the \mathbb{Z}_2 action on S^{3n} with exactly two fixed points. Taking $X = Y \vee S^{3n}$, where the wedge sum is taken at the isolated fixed point of *Y* and a fixed point of S^{3n} , we get a \mathbb{Z}_2 action on *X* with the fixed point set $F = S^r \sqcup \{point_1\} \sqcup \{point_2\}$ for some even integer $2 \le r \le 3n$.

Case 3. Suppose *F* has two components, then

 $F \simeq_2 S^r \sqcup S^s$, $(S^r \vee S^s) \sqcup \{point\}$ or $P^2(r) \sqcup \{point\}$ for some *r* and *s*.

By Lemma 4, $\chi(X) = \chi(F)$. If *n* is odd, $\chi(F) = 0$ and hence

 $F \simeq_2 S^r \sqcup S^s$ or $(S^r \vee S^s) \sqcup \{point\}$ for odd integers $1 \le r, s \le 3n$.

And if *n* is even, $\chi(F) = 4$ and hence

 $F \simeq_2 S^r \sqcup S^s$ or $(S^r \vee S^s) \sqcup \{point\}$ for even integers $2 \le r, s \le 3n$

or

 $F \simeq_2 P^2(r) \sqcup \{point\}$ for some even integer $2 \le r \le n$.

For $a \equiv 0 \mod 2$, let $Y = S^{n-1} \star P^2(n)$. Consider a free \mathbb{Z}_2 action on S^{n-1} and that action on $P^2(n)$ which has the fixed point set $S^r \sqcup \{point\}$ for some *r* (which we constructed in Case 2). Let \mathbb{Z}_2 act on S^n with its fixed point set S^s for some *s*. Take $X = S^n \vee Y$, where the wedge sum is taken at the isolated fixed point of *Y* and some point of S^s . Then $X \simeq_{2} S^{n} \vee S^{2n} \vee S^{3n}$ and has a \mathbb{Z}_{2} action with the fixed point set $F \simeq_{2} S^{r} \sqcup S^{s}$.

If we take the wedge sum at some point of S^r and some point of S^s , then *X* has a \mathbb{Z}_2 action with the fixed point set $F \simeq_2 (S^r \vee S^s) \sqcup \{ \text{ point} \}.$

Further, if we consider a free \mathbb{Z}_2 action on S^{n-1} , the trivial action on $P^2(n)$ and the action on S^n with exactly two fixed points, then $X = S^n \vee Y$, where the wedge is taken at some point of $P^2(n)$ and some fixed point of S^n , has a \mathbb{Z}_2 action with the fixed point set $F \simeq_2 P^2(n) \sqcup \{point\}.$

For $a \neq 0$ mod 2, take $X = P^2(n) \vee S^{3n}$. Consider the \mathbb{Z}_2 action on $P^2(n)$ with $S^r \sqcup \{point\}$ as its fixed point set and the action on S^{3n} with S^s as its fixed point set. By taking the wedge sum at suitable points, we get a \mathbb{Z}_2 action on *X* with $F \simeq 2$ *S^r* ∟ *S^s* or $(S^r \vee S^s) \sqcup \{point\}$. Similarly, suitable actions on $P^2(n)$ and S^{3n} gives an action on *X* with $F \simeq_2 P^2(r) \sqcup \{point\}.$

Case 4. Suppose *F* has one component, then either

 $F \simeq_2 S^r \vee S^s \vee S^t$ for some integers $1 \le r, s, t \le 3n$

or

 $F \simeq_2 S^s \vee P^2(r)$ for some integers $1 \le r \le n$ and $1 \le s \le 3n$.

As $\chi(F) = \chi(X)$, for $F \simeq 2$ $S^r \vee S^s \vee S^t$ we must have either *r*, *s* and *t* all are even or exactly one of them is even. Similarly, for $F \simeq_{2} S^{s} \vee P^{2}(r)$ we must have either *s* and *r* both even or both odd.

For $a \equiv 0 \mod 2$, take $X = S^n \vee S^{2n} \vee S^{3n}$. Consider the \mathbb{Z}_2 actions on S^n , S^{2n} and S^{3n} with S^r , S^s and S^t respectively as their fixed point sets. This gives an action on *X* with $S^r \vee S^s \vee S^t$ as its fixed point set, where the wedge is taken at some fixed points on the subspheres.

If we take *X* = *Sⁿ* ∨ *Y*, where *Y* = *Sⁿ⁻¹* ★ $P^2(n)$ and consider the \mathbb{Z}_2 action on *Sⁿ* with *S^s* as its fixed point set for some *s* and the action on *Y* with $P^2(r)$ as its fixed point set for some *r*, then we get a \mathbb{Z}_2 action on *X* with its fixed point set $F \simeq_2 S^s \vee P^2(r)$.

For $a \neq 0$ mod 2, taking a suitable \mathbb{Z}_2 action on $X = P^2(n) \vee S^{3n}$ gives $F \simeq_2 S^s \vee P^2(r)$ for some integers *r* and *s*. Note that in this case the fixed point set cannot be a wedge of three spheres.

Finally, suppose that *n* is even and *X* is not totally non-homologous to zero in *XG*. Then by Proposition 2,

$$
\sum_{i\geqslant 0} rk\,H^i(F) \neq \sum_{i\geqslant 0} rk\,H^i(X) = 4.
$$

And by Proposition 3,

$$
\sum_{i\geqslant 0} rk\,H^i(F)\leqslant 3.
$$

This gives $\chi(F) = -1, 0, 1, 2$ or 3. But, $\chi(F) = \chi(X) = 4$, a contradiction. This completes the proof of the theorem. \square

4. Proof of Theorem 2

Let *X* be not totally non-homologous to zero in X_G . Then *n* is odd and hence $\chi(X) = 0$. By Lemma 4, we have $\chi(F) = 0.$

As above $\sum_{i \geqslant 0} r k H^i(F) \leqslant 3$. Observe that

if
$$
\sum_{i \ge 0} rk H^i(F) = 1
$$
, then $\chi(F) = 1$

and

if
$$
\sum_{i \ge 0} rk H^i(F) = 3
$$
, then $\chi(F) = 1, -1$ or 3.

Therefore, these cases do not arise. Further,

if
$$
\sum_{i \ge 0} rk H^i(F) = 0
$$
, then $F = \phi$

and

if
$$
\sum_{i \ge 0} rk H^i(F) = 2
$$
, then $\chi(F) = 0$ or 2.

But, $\chi(F) = 0$ and hence $F \simeq_2 S^r$ for some odd integer $1 \le r \le 3n$.

Recall that, when *n* is odd $a \equiv 0 \mod 2$ (see [9]). Let $h : S^3 \to S^2$ be the Hopf map and *Y* be the union of mapping cylinders of the sphere bundle maps

$$
S^2 \times S^n \stackrel{h \times 1}{\longleftrightarrow} S^3 \times S^n \stackrel{\text{projection}}{\longrightarrow} S^3.
$$

Then $H^*(Y; \mathbb{Z}) = H^*(S^2 \times S^{n+2}; \mathbb{Z})$ and *Y* is a manifold (see [5]). Let \mathbb{Z}_2 act freely on S^n and trivially on both S^2 and S^3 , then it act on *Y* with the fixed point set homeomorphic to S^3 . Remove a fixed point from *Y* to obtain a space $Z \simeq$ S^2 \vee *Sⁿ⁺²* with a \mathbb{Z}_2 action and contractible fixed point set. With \mathbb{Z}_2 acting trivially on S^{n-3} , consider the induced action on the join $W = S^{n-3} \star Z$ which is homotopically equivalent to $S^n \vee S^{2n}$. This action on *W* has a contractible fixed point set. For a given odd integer $1 \le r \le 3n$, consider the \mathbb{Z}_2 action on S^{3n} with S^r as the fixed point set. Then the wedge sum of *W* and S^{3n} at some fixed points is a space $X \simeq_2 S^n \vee S^{2n} \vee S^{3n}$ and has a \mathbb{Z}_2 action with its fixed point set $F \simeq_2 S^r$. It is clear that every \mathbb{Z}_2 action on $X = S^n \vee S^{2n} \vee S^{3n}$ has a non-empty fixed point set. \square

Acknowledgement

The author would like to thank the referee for many useful comments and suggestions which made the paper more readable.

References

- [1] G.E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972.
- [2] A. Borel, Seminar on Transformation Groups, Princeton Univ. Press, New Jersey, 1960.
- [3] R.M. Dotzel, T.B. Singh, Z*p* actions on spaces of cohomology type (*a,* 0), Proc. Amer. Math. Soc. 113 (1991) 875–878.
- [4] R.M. Dotzel, T.B. Singh, Cohomology ring of the orbit space of certain free Z*p* actions, Proc. Amer. Math. Soc. 123 (1995) 3581–3585.
- [5] P.S. Mostert, in: Proceedings of the Conference on Transformation Groups, New Orleans, 1967, pp. 245–280.
- [6] N.E. Steenrod, D.B.A. Epstein, Cohomology Operations, Ann. of Math. Stud., vol. 50, 1962.
- [7] J.C. Su, Periodic transformations on the product of two spheres, Trans. Amer. Math. Soc. 112 (1964) 369–380.
- [8] J.C. Su, Transformation groups on cohomology projective spaces, Trans. Amer. Math. Soc. 106 (1963) 305–318.
- [9] H. Toda, Note on cohomology ring of certain spaces, Proc. Amer. Math. Soc. 14 (1963) 89–95.