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Abstract

In this paper, we study Z2 actions on a cell complex X having its cohomology ring isomorphic to that of the wedge sum
P 2(n) ∨ S3n or Sn ∨ S2n ∨ S3n. We determine the possible fixed point sets depending on whether or not X is totally non-
homologous to zero in XZ2 and give examples realizing all possible cases.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Toda [9] studied the cohomology ring of a space X having only non-trivial cohomology groups Hin(X;Z) = Z for
i = 0,1,2 and 3, where n is a fixed positive integer. Let ui ∈ Hin(X;Z) be a generator for i = 1, 2 and 3. Then the
ring structure of H ∗(X;Z) is completely determined by the integers a and b such that

u2
1 = au2 and u1u2 = bu3.

Such a space is said to be of type (a, b). Note that, when n is odd, we must have a = 0 [9, Theorem 1].
Let p be a prime. One can see that for a space X of type (a, b) there exists always a cell complex

K = Sn ∪ e2n ∪ e3n with three non-trivial cells such that H ∗(X;Fp) ∼= H ∗(K;Fp). We shall write X �p Y if there

is an abstract isomorphism of graded rings H ∗(X;Fp)
∼=→ H ∗(Y ;Fp) (not necessarily induced by a continuous map

Y → X). Similarly, we use the notation X �p P h(n) to mean that H ∗(X;Fp) ∼= Fp[z]/zh+1, where z is a homoge-
neous element of degree n.

Given spaces Xi with chosen base points xi ∈ Xi for i = 1,2, . . . , n, their wedge sum
∨n

i=1 Xi is the quotient of
the disjoint union

⊔n
i=1 Xi obtained by identifying the points x1, x2, . . . , xn to a single point called the wedge point.

One can see that a space X of type (a, b) is determined by the integers a and b in terms of the familiar spaces as
follows.

If b 	≡ 0 modp, then

X �p Sn × S2n for a ≡ 0 modp
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and

X �p P 3(n) for a 	≡ 0 modp.

And, if b ≡ 0 modp, then

X �p Sn ∨ S2n ∨ S3n for a ≡ 0 modp

and

X �p P 2(n) ∨ S3n for a 	≡ 0 modp.

Let the cyclic group G = Zp act on a space X of type (a, b). This gives a fibration X ↪→ XG → BG, where
XG = (X × EG)/G is the orbit space of the diagonal action on X × EG and is called the Borel construction on X

(see [2, Chapter IV]) and BG is the base space of the universal principal G-bundle G ↪→ EG → BG called the classi-
fying space of the group G. We say that X is totally non-homologous to zero in XG if the inclusion of a typical fiber
X ↪→ XG induces a surjection in the cohomology H ∗(XG;Fp) → H ∗(X;Fp). This condition is equivalent to a nice
relation between the cohomology of the space and the fixed point set (Proposition 2).

The fixed point sets of Zp actions for the case b 	≡ 0 modp have been investigated in detail by Bredon [1] and
Su [7,8] for all primes p. And the fixed point sets of Zp actions for the case b ≡ 0 modp have been completely
determined by Dotzel and Singh [3,4] for odd primes p. In this paper, we settle the remaining case when p = 2 and
obtain the following results:

Theorem 1. Let G = Z2 act on a space X of type (a,0) mod 2 with trivial action on H ∗(X;Q) and fixed point set F .
Suppose X is totally non-homologous to zero in XG, then F has at most four components satisfying the following:

(1) If F has four components, then each is acyclic, n is even and a ≡ 0 mod 2.
(2) If F has three components, then n is even and

F �2 Sr � {point1} � {point2} for some even integer 2 � r � 3n.

(3) If F has two components, then either

F �2 Sr � Ss or
(
Sr ∨ Ss

) � {point} for some integers 1 � r, s � 3n

or

F �2 P 2(r) � {point} for some even integer 2 � r � n.

(4) If F has one component, then either

F �2 Sr ∨ Ss ∨ St for some integers 1 � r, s, t � 3n

or

F �2 Ss ∨ P 2(r) for some integers 1 � r � n and 1 � s � 3n.

Further, if n is even, then X is always totally non-homologous to zero in XG.

Theorem 2. Let G = Z2 act on a space X of type (a,0) mod 2 with trivial action on H ∗(X;Q) and fixed point set F .
Suppose X is not totally non-homologous to zero in XG, then either F = φ or F �2 Sr , where 1 � r � 3n is an odd
integer.

We shall prove Theorem 1 in Section 3 and Theorem 2 in Section 4. We include examples in the proofs to show
that all the cases are realizable.
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2. Preliminaries

Our methods will be standard and for details we refer to Bredon [1]. As the spaces of concern in this paper are
finite cell complexes, the cohomology used will be the cellular cohomology with coefficients in the field F2 of two
elements unless otherwise stated. Recall that, X �2 P h(n) means that the mod 2 cohomology ring of X is isomorphic
to F2[z]/zh+1, where z is a homogeneous element of degree n. The following result is well known.

Proposition 1. If X is a finite cell complex such that X �2 P h(n), then

n = 1,2,4 for h � 2

and

n = 8 for h = 2.

See [6, Chapter I, 4.5].

The following facts about Z2 actions can be easily deduced.

Proposition 2. Let G = Z2 act on a finite cell complex X with fixed point set F . Then X is totally non-homologous to
zero in XG if and only if

∑

i�0

rk Hi(F ) =
∑

i�0

rk Hi(X).

See [1, Chapter VII, 1.6].

Proposition 3. Let G = Z2 act on a finite cell complex X with fixed point set F . Then
∑

i�0

rk Hi(F ) �
∑

i�0

rk Hi(X).

See [1, Chapter III, 7.9].

The following lemma is crucial for our results.

Lemma 4. Let G = Z2 act on a finite cell complex X with trivial action on the rational cohomology H ∗(X;Q), then

χ(X) = χ(F ).

Proof. By Theorem 7.2 of Bredon [1, Chapter III], we have

πi : Hi(X/G;Q)
∼=→ Hi(X;Q)G for all i � 0,

where π : X → X/G is the orbit map. Since G acts trivially on the cohomology, the fixed point set Hi(X;Q)G =
Hi(X;Q) for all i � 0. This gives Hi(X/G;Q) ∼= Hi(X;Q) for all i � 0 and hence χ(X) = χ(X/G). By Theo-
rem 7.10 of Bredon [1, Chapter III], we have

χ(X) + χ(F ) = 2χ(X/G)

and hence χ(X) = χ(F ). �
Remark. The results quoted above are true for a general class of spaces called finitistic spaces using the Čech co-
homology with coefficients in the field F2 (which is the same as the cellular cohomology on cell complexes). Recall
that, a paracompact Hausdorff space is said to be finitistic if its every open covering has a finite dimensional open re-
finement, where the dimension of a covering is one less than the maximum number of members of the covering which
intersect non-trivially [1, Chapter III]. Clearly a compact space is finitistic. Hence a space X of type (a,0) mod 2 is
finitistic being compact.
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Now we consider a Z2 action on the unit sphere Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1 | ∑n+1
i=1 x2

i = 1} that we shall use
in constructing examples in the following sections. For 0 � r � n, Sr ⊆ Sn, where Sr = {(x1, x2, . . . , xn+1) ∈ Sn |
xr+2 = xr+3 = · · · = xn+1 = 0}. The Z2 action on Sn given by

(x1, x2, . . . , xn+1) 
→ (x1, x2, . . . , xr+1,−xr+2,−xr+3, . . . ,−xn+1)

has Sr as its fixed point set. Given any point x ∈ Sn, we consider {x,−x} as S0 ⊂ Sn. Then the above action on Sn,
for r = 0, has {x,−x} as its fixed point set.

We shall also use the join X � Y of two spaces X and Y , which is defined as the quotient of X × Y × I under the
identifications (x, y1,0) ∼ (x, y2,0) and (x1, y,1) ∼ (x2, y,1), where I is the unit interval. That is, we are collapsing
the subspace X × Y × {0} to X and X × Y × {1} to Y . Note that, if a group G acts on both X and Y with fixed point
sets F1 and F2, respectively, then the induced action of G on the join X � Y has F1 � F2 as its fixed point set.

3. Proof of Theorem 1

Let X be totally non-homologous to zero in XG. Then by Proposition 2,
∑

i�0

rk Hi(F ) =
∑

i�0

rk Hi(X) = 4.

It follows that F has at most four components.

Case 1. Suppose F has four components, then it is clear that each is acyclic. Let ui denote the reductions of ui mod 2.
If a 	≡ 0 mod 2, then u2

1 = u2 	= 0 and hence Hn(F) 	= 0 [1, Chapter VII, 7.3] showing that F has a non-acyclic
component. Therefore, in this case a ≡ 0 mod 2. By Lemma 4, we have χ(X) = χ(F ) = 4 and hence n must be even.

For a ≡ 0 mod 2, we can take X = Sn ∨ S2n ∨ S3n. Consider the Z2 actions on the spheres Sn, S2n and S3n with
exactly two fixed points each and then take their wedge sum at some fixed points. This gives a Z2 action on X with
the disjoint union of four points as its fixed point set.

Case 2. Suppose that F has three components, then

F �2 Sr � {point1} � {point2} for some integer 1 � r � 3n.

Note that χ(F ) = 2 or 4 according as r is odd or even. As χ(X) = χ(F ), both n and r are even.

For a ≡ 0 mod 2 and even integers r and n such that 2 � r � 3n, we take X = Sn ∨ S2n ∨ S3n. Consider the Z2
actions on the spheres Sn and S2n with exactly two fixed points each and the action on S3n with Sr as its fixed point
set. Taking their wedge sum at some fixed points gives a Z2 action on X with F = Sr � {point1} � {point2}.

For a 	≡ 0 mod 2, we know that X �2 P 2(n) ∨ S3n.
If Y is a space such that H ∗(Y ;F2) = F2[z]/zh+1, where z is of degree n, then by Proposition 1, we have n = 2,

4 or 8 for h = 2. Therefore, we can take Y = CP 2 the complex projective 2-space, HP 2 the quaternionic projective
2-space or OP 2 the Cayley projective plane, according as n = 2, 4 or 8, respectively.

For n = 2, let S5={(z1, z2, z3) ∈ C3 | ∑3
i=1 |zi |2 = 1}. Consider the Z2 action on S5 given by (z1, z2, z3) 
→

(z1, z2,−z3). This action commutes with the usual S1 action on S5 and hence descends to an action on CP 2. As
S3 ⊂ S5 is fixed under the Z2 action on S5, it is easy to see that

S2 � {point}
is the fixed point set of the Z2 action on CP 2.

Similarly, for n = 4, let H be the normed division algebra of quaternions and S11 = {(w1,w2,w3) ∈ H3 |∑3
i=1 |wi |2 = 1} and consider the Z2 action on S11 given by (w1,w2,w3) 
→ (w1,w2,−w3). This action commutes

with the usual S3 action on S11. As above, one can see that

S4 � {point}
is the fixed point set of the induced action of Z2 on HP 2.
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For n = 8, Bredon [1, Chapter VII] has constructed a Z2 action on OP 2 with

S8 � {point}
as its fixed point set.

Now, consider the Z2 action on S3n with exactly two fixed points. Taking X = Y ∨ S3n, where the wedge sum
is taken at the isolated fixed point of Y and a fixed point of S3n, we get a Z2 action on X with the fixed point set
F = Sr � {point1} � {point2} for some even integer 2 � r � 3n.

Case 3. Suppose F has two components, then

F �2 Sr � Ss,
(
Sr ∨ Ss

) � {point} or P 2(r) � {point} for some r and s.

By Lemma 4, χ(X) = χ(F ). If n is odd, χ(F ) = 0 and hence

F �2 Sr � Ss or
(
Sr ∨ Ss

) � {point} for odd integers 1 � r, s � 3n.

And if n is even, χ(F ) = 4 and hence

F �2 Sr � Ss or
(
Sr ∨ Ss

) � {point} for even integers 2 � r, s � 3n

or

F �2 P 2(r) � {point} for some even integer 2 � r � n.

For a ≡ 0 mod 2, let Y = Sn−1 � P 2(n). Consider a free Z2 action on Sn−1 and that action on P 2(n) which has the
fixed point set Sr � {point} for some r (which we constructed in Case 2). Let Z2 act on Sn with its fixed point set Ss

for some s. Take X = Sn ∨ Y , where the wedge sum is taken at the isolated fixed point of Y and some point of Ss .
Then X �2 Sn ∨ S2n ∨ S3n and has a Z2 action with the fixed point set F �2 Sr � Ss .

If we take the wedge sum at some point of Sr and some point of Ss , then X has a Z2 action with the fixed point set
F �2 (Sr ∨ Ss) � { point}.

Further, if we consider a free Z2 action on Sn−1, the trivial action on P 2(n) and the action on Sn with exactly two
fixed points, then X = Sn ∨ Y , where the wedge is taken at some point of P 2(n) and some fixed point of Sn, has a Z2
action with the fixed point set F �2 P 2(n) � {point}.

For a 	≡ 0 mod 2, take X = P 2(n) ∨ S3n. Consider the Z2 action on P 2(n) with Sr � {point} as its fixed point set
and the action on S3n with Ss as its fixed point set. By taking the wedge sum at suitable points, we get a Z2 action
on X with F �2 Sr � Ss or (Sr ∨ Ss) � {point}. Similarly, suitable actions on P 2(n) and S3n gives an action on X

with F �2 P 2(r) � {point}.

Case 4. Suppose F has one component, then either

F �2 Sr ∨ Ss ∨ St for some integers 1 � r, s, t � 3n

or

F �2 Ss ∨ P 2(r) for some integers 1 � r � n and 1 � s � 3n.

As χ(F ) = χ(X), for F �2 Sr ∨ Ss ∨ St we must have either r , s and t all are even or exactly one of them is even.
Similarly, for F �2 Ss ∨ P 2(r) we must have either s and r both even or both odd.

For a ≡ 0 mod 2, take X = Sn ∨ S2n ∨ S3n. Consider the Z2 actions on Sn, S2n and S3n with Sr , Ss and St

respectively as their fixed point sets. This gives an action on X with Sr ∨ Ss ∨ St as its fixed point set, where the
wedge is taken at some fixed points on the subspheres.

If we take X = Sn ∨ Y , where Y = Sn−1 � P 2(n) and consider the Z2 action on Sn with Ss as its fixed point set for
some s and the action on Y with P 2(r) as its fixed point set for some r , then we get a Z2 action on X with its fixed
point set F �2 Ss ∨ P 2(r).

For a 	≡ 0 mod 2, taking a suitable Z2 action on X = P 2(n)∨S3n gives F �2 Ss ∨P 2(r) for some integers r and s.
Note that in this case the fixed point set cannot be a wedge of three spheres.
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Finally, suppose that n is even and X is not totally non-homologous to zero in XG. Then by Proposition 2,
∑

i�0

rk Hi(F ) 	=
∑

i�0

rk Hi(X) = 4.

And by Proposition 3,
∑

i�0

rk Hi(F ) � 3.

This gives χ(F ) = −1, 0, 1, 2 or 3. But, χ(F ) = χ(X) = 4, a contradiction. This completes the proof of the theo-
rem. �
4. Proof of Theorem 2

Let X be not totally non-homologous to zero in XG. Then n is odd and hence χ(X) = 0. By Lemma 4, we have
χ(F ) = 0.

As above
∑

i�0 rk Hi(F ) � 3.
Observe that

if
∑

i�0

rk Hi(F ) = 1, then χ(F ) = 1

and

if
∑

i�0

rk Hi(F ) = 3, then χ(F ) = 1,−1 or 3.

Therefore, these cases do not arise. Further,

if
∑

i�0

rk Hi(F ) = 0, then F = φ

and

if
∑

i�0

rk Hi(F ) = 2, then χ(F ) = 0 or 2.

But, χ(F ) = 0 and hence F �2 Sr for some odd integer 1 � r � 3n.
Recall that, when n is odd a ≡ 0 mod 2 (see [9]). Let h : S3 → S2 be the Hopf map and Y be the union of mapping

cylinders of the sphere bundle maps

S2 × Sn h×1←− S3 × Sn projection−−−−→ S3.

Then H ∗(Y ;Z) = H ∗(S2 × Sn+2;Z) and Y is a manifold (see [5]). Let Z2 act freely on Sn and trivially on both S2

and S3, then it act on Y with the fixed point set homeomorphic to S3. Remove a fixed point from Y to obtain a space
Z �2 S2 ∨ Sn+2 with a Z2 action and contractible fixed point set. With Z2 acting trivially on Sn−3, consider the
induced action on the join W = Sn−3 � Z which is homotopically equivalent to Sn ∨ S2n. This action on W has a
contractible fixed point set. For a given odd integer 1 � r � 3n, consider the Z2 action on S3n with Sr as the fixed
point set. Then the wedge sum of W and S3n at some fixed points is a space X �2 Sn ∨ S2n ∨ S3n and has a Z2 action
with its fixed point set F �2 Sr . It is clear that every Z2 action on X = Sn ∨ S2n ∨ S3n has a non-empty fixed point
set. �
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