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Abstract—We consider here the finite difference approximation to the diffusion-convection equation,
from which new explicit formulae are obtamned which are asymmetric These explicit schemes can then
be used to develop a new class of methods called Group Explicit as introduced mn [2]}

Theoretical aspects of the stability, consistency, convergence and truncation errors of this new
class of methods 1s briefly discussed and numenical evidence presented to confirm our recommendations

1 INTRODUCTION

Recently numerical methods involving both explicit and imphicit schemes for the solution of
the diffuston-convection equation, 1 €

o _ U (1
at dx? ox’

have been studied extensively It 1s necessary for this equation to be treated separately from
the ordmnary diffusion equation because of the presence of spatial derivatives of first order

Briefly, the implicit methods, 1 ¢ Crank-Nicolson, etc normally offer unconditionally
stable schemes but require the solution of systems of equations at each time step Meanwhile
the explicit schemes usually suffer from a restrictive stability condition

However, 1t can be shown that by using different combinations and types of approximation
for the terms d’u/9x* and du/dx m (1 1), a class of stable sem-explicit schemes which 1s of
simular structure to the semi-explicit schemes introduced 1n [3-6]

The stmplicity of explicit methods of solution prompts us to seek such a method with
increased stability characteristics and with the capability that the solution can be obtained at
many points concurrently on the ‘‘next generation’’ array/parallel computers The introduction
of this new class of explicit method called the Group Explicit method will enable the exphicit
methods to compete with imphert methods on level terms again

2 ASYMMETRIC EXPLICIT METHODS

We now consider equation (1 1) in the domain (0, 1) X (0, o) with the 1mtial condition,

ux,0) = fx),0=x=1, 2 la)
and boundary conditions,
u(0, 1) = go(#), t > 0,
u(l, 1) = gy(t), 1> 0 (2 10)

As usual, the open-rectangular domain 1s covered by a rectangular grid, with spacing 4x, 4t
in the x, ¢ directions respectively The values of 4x and At are assumed uniform throughout
the region and the gnd points (x, ¢) denoted by x = x, = 1idx, 1 = 0, 1, 2, ,m,m=
l/dxand t =t = jd41,; = 0, 1, 2,

145



146 D J Evansand A R ABDULLAH

Consider now the approximations to the partial derivatives 1n (1 1) at the pomnt (i, ) of
the gnd, then

du
P = (U, ¢ — u, )l dt, (2 2a)

3?2 0 6
225 <—“ £ /4x, (2 2b)
ax2 ax 4172y a'x =12y

where we have used the usual forward difference approximation for du/d¢ and a central dif-
ference approximation for 8%u/dx? = 9/9x(du/dx)

Now Saul’yev[3] replaces the term (du/0x), _,,,, with (du/dx),_ ;2 ,+, and uses the obvious
central difference approximations

du
(—> = (ul+|J - ulJ)/Ax’
ox 1+1/2

and 23

and

du ( )4
- = (U, - U, _
a'x =12 5+1 s o *

When these approximations are substituted into the diffusion convection equation (1 1)
the final result 1s the formula,

krdx krds
1+ {er - > U,vr — L &r — —'2— LSS

krdx krAx
= <.sr + 3 )u,-,l + [l - (8" + 3 )]u,,, 24)

with local truncation error (L T E ) given by,

At\ Pu 4P Fu k u k du  kdxAr du
,=————+———+—— + = (dxy — + -—, (25
Tz 8(Ax> dxot 24 ar ey axar? 6( %) ax3 12 oxot 25
and requires for stability the condition,
1
0<r=— (2 6)

kAx

to be satisfied where r = At/(4x)?

This condition for stability 1s always rather favourable since with the values,1e¢ & = 10,

= 0 1 then kdx = 0 1 which 1s always less restrictive than the condition for the classical
explicit formula

In the same manner, another analogous asymmetric equation can be determined, which
has the form,

krdx krAx
—ler + 5 Uy, |1+ ler+ 5 Uy
krdx krdx
er — u, + Fr—-—z— ey (27
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Fig 2

with the L T E given by,

Aty 8%u 412 | 9%u u k ’u  kdxAr d*u
= (2 + 2k + (xS 28
T = <Ax) axar | 24 [aﬁ axazz] 6“9 % T T2 e @Y

For stability 1t requires the condition,
2er(kdx + 1) = 0, 29

to be satisfied, which 1s fulfilled by all values of r > 0 (Fig 2)

Due to the opposite signs of the truncation errors 1 (2 5) and (2 8), the following alternating
direction exphicit (ADE) algorithms which are similar to those suggested 1n [4] can be obtained
by

(1) Use of Equation (2 4) 1n a nght-to-left direction (UNE)

(2) Use of Equation (2 7) n a left-to-nght direction (UPOS)

(3) Use of Equation (2 4) at the jth time-level 1n a right-to-left direction and alternatively
use of Equation (2 7) at the (; + 1)th time-level 1n a left-to-right direction (ALDC)

(4) Use of Equation (2 4) as 1n (1) and Equation (2 7) as 1n (2) at each time-level and
then average the results (UAV)

Recently, an interesting new variation of the use of the asymmetric Equations (2 4) and
(2 7) was mvestigated by the authors and reported in [2] The central theme of the 1dea 1s not
to restrict the use of Equations (2 4) and (2 7) solely along the x Iines in the LR and RL
directions but to apply them to groups of 2 points successively along each hine in the manner
as 1llustrated 1n Fig 3, where the symbol O denotes the use of Equation (2 4) and [] denotes
the use of Equation (2 7)

The coupled use of Equations (2 4) and (2 7) atthe points (z,j + Dand G + 1,5 + 1)
results 1n a (2 X 2) set of implicit fimte difference equations which can be easily converted
to explicit form as developed 1n the next section

3 GE FORMULATION AND ALGORITHMS

Consider now any two points (i1, y + 1) and (z + 1, 7 + 1) and use Equation (2 4) at
pomt (1, ;7 + 1) and use Equation (2 7) at pomnt (r + 1,7 + 1) to give,
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J+1

i-1 i 1+l 142

Fig 3

krdx krdx
1 + e&r — 2 u11+1 - é&r — _2—— uH—lH—l
- krdx krdx
= £r+—2——u,_l,+ I — ler + 3 u, 31

U +1

krA krda
= [l — (sr - rzx):lu,ﬂj + (8r - %)u,”,, 32

respectively Equations (3 1) and (3 2) will then form a small system of 2 X 2 linear equations,
1e

krdx krdx
—ler + —/—ju, . + |1 + {er +

krdx krdx
1 + {er — 5 —ler — 3 ‘iu,,,,l:l
< krAx) < krAx) Uieiy+
—\er + 1+ {er+
2
krd + krdx
r u,_
1_(8r+ r2x> " s R
= l—(ar-— rx) [u,, ]+ krdx 33
0 2 Uiy, er — U s,
2
Since,
-
|+ krdx (8r + krdx .,
;- —
& 2 2
krdx krdx
—ler + I + |er +
2 2
- krd
l+(£r+ rx) 8r_krAx
1 2 2
= krAx krdx
1 + 2er | g + 1+(8r— )
&r > 2
L

then (3 3) can be explicitly represented by,
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krdx\’ krdx krdx
1 - {er + tr — 1 — ter = ——
2 2 2
krdx\~
| — tear —
2

)
ul+1j+| —
|
= —— krAx krdx
(1 + 2er) e+ 1 — {er +

i krdx krAx) < krAx>2
er + 1 + ler + u,_y, + \er — Uiy,
% | %y 2 2 2
U, | + krdx\, krdx krdx (3 4)
er + 3 u,_y, +ler — T I + e — 5 Uz,

i

In the case where there 1s any ungrouped point near either boundary, we use Equation
27N, 1e

1

Moo = krdx
+ +
[1 <8r > ):|
krd kra krAx
X {(sr - r2x>uo,+| + [1 - (ar - r2x>]u|/ + (” T >“21} K)

for the left ungrouped point and Equation (2 4), 1 ¢

1

=iy = krdx
_+. -—
[‘ (” 2 )]
krd krd
X {(sr - r2x>umj+] + [l - (sr + r2x>]um_“ + (sr + kr;x)um_u}’ (3 6)

for the nght ungrouped pont

To derive the algonthms which form the class of group exphcit methods, we use the
implicit form (3 3) Also we assume that the space interval x 1s divided 1nto an even number
of sub-intervals which implies that the value of (m — 1) 1s odd With the notations,

Even Number of intervals

| | | ‘ungro‘uped.
—_— r—‘lst group %im-2)+4~— point S

J group

[~

ER (Group Explicit with Right ungrouped point) method
! I ! 3 ] i

Fig 4
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and 37N

the following algorithms can be established

(1) Group explicit with right-ungrouped point (GER) Use Equation (3 3) for the first
(m — 2) pomts and Equation (3 6) for the last unknown powmnt (Fig 4) This will give the
system,

(1 + rGl)!}+l = ([ - rGZ)E] + le (3 8)
where,
Co,  -a i ! [
1 l’ | |
! )
T % | 0 ‘
il St
G, = i \\| _ '__
0 ! I §
! -
A R
{
! | i a
e I ) { .l..
. ! \ ! =
- ¥
Ial o, 0
|
Lo a
|
IR
G, = _'L.___T.-~|-a._._-&-
’ (S 1
| i
0
' (ad®] a
. | . 2 2
L . -
bl, = [rawuy,, 0, 0, rogity, ]
and
T —
E} - [ulp u2]9 s um—]/]

(2) Group explicit with left-ungrouped point (GEL) Use Equation (3 5) for the first
unknown point from the left of the boundary and Equation (3 3) for the remaining (m ~ 2)/
2 pairs of pownts (Fig 5) This will result 1n the system,

(d + rGu,.y = U = rGoy, + by, G 1D
with Q;, = [razu()ﬂ.h 0, , 0, raluml]
| | l ‘ | | | i |
ungrouped 1 |
— 4 pont -- 1st group - } %(m-2) group

GEL (Group Exphicit with Left ungrouped point) method '
I 1 1 v I

Fig 5
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(3) Alternating group explicut (S)AGE Use Equation (3 8) ¢
and Equation (3 11) at the (; + 2)th time level, (Fig 6), 1€

{(1 + rGu,, =~ rGu, + by, }
(I + rGusr = 0 — rGuey + byjuys 312

(4) Alternating group exphcit (D)AGE In this algonthm the group explicit formulae are
incorporated alternately within the four time-levels with the direction reversed at the third time
levet (Fig 7) This will give the equations,

(I + rGlu,., = I — rGyu, + b,

(d + rGuy, = (I — rGuy + by, 3 13)
 + rG2)£/+3 = - rGl)E;+2 + 221+2,

u + rGI)E]+4 = - er)u_,+3 + QIJH

These are only a few of the examples of the algorithms which can be estabhished from
the ongmal formulae (3 4)—(3 6) There are a few more algonthms which the authors have
omutted for brevity

The estimate of the truncation errors of all the schemes mentioned 1s given 1 [1] and can
be shown to be of order 0(4t + (4x)* + At/4x) However, the (S)AGE and (D)AGE schemes
are of the order (4¢/4x)*) with the consistency condition (41/4x) — 0 for 4t — 0, Ax— 0
apphicable

The stability analystis of this class of methods can be obtained by using the matrix method
[1] It was proved that the GER and GEL schemes are stable provided

and for the (S)AGE and (D)AGE schemes they are unconditionally stable for all r > 0 provided
Ax = 2¢/k

1
kdx

g — —

2

r=

’ 2

D A GE (Double Alternating Grm;ﬂ Explicit) method |

Fig 7
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k=1.0,£=1 0,At=0.005
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(4x=0.1,7=0.5,t=0.5

x
O 0.1 0.2 0.2l o4
3 =3 -3 -3
CNU 1.7x10 “|3.2x10 "}4.5%10 ~|5.4x10
Eqm.2 4 | 1.9%10 %)3.5x107% 4. 7x207%] 5. 21074
2qn.2 7(upos) |3.3x107%6.1x10™4 8. 1x107%] 9. 1x107
ALDC -4 -
Eqm.2 4 &2 7 |1-1X107[2.4x20 3.6m10~% 4.6x1079
AVERAGE -4 -4 "
P2t o2 7 |0-7x10 ¢ 13x07 1. 7x107¢ 2. 0m107¢
(D)AGE 0.2210™*|0.6x107%|0.5%107%] 0. 8x1074
EXACT SODUTTOM | 5.06043 |0.12736 |0.20136 |0.28345 ]
0.5 0.6 07 0.8 0.9
6.1x1072 | 6.2x1073 | s.8%107% | 4.7%2072 | 2.8x1072
5120074 | 4.4x207 | 3.3x207 | 2.0x107¢ | 082074
9.1x10™% | 8.2x107% | 6.5%107% | ¢.ax107% | 2.2¢107%
r = -
s.2x108 | 5.3%107% | 4.8x207% | 3.8x107% | 2.152074
-4 - - - -
2 0107 | 1.9x107% | 1.6%107% | 1.2%107% | 0.7x207%
1 2 - -
0 3x10 0.8x10 0.9%10 4 c>.6><1o'4 0.6%10 4
0.37447 {0.47539 |0.58724 |o0.71114 |o0.84830
Table |
k=1 0, e=1.0, At=0 OL, Ax=0 1, r=1.0, t=1 O
Method x 0.1 0.2 0.3 0.4
o 1.5x10™> | 2.9%1072 { 4.1x1072 | 4.9x107>
-5 =3 5 5
Eqn.3.1 (UNB) |2.4%10 ° | 4.Sx10 - | 6.3x10 " | 7.7x10
Eqn.3.4(UpoS) | 3.3%107° |6.2x107 | 8.5%107° | 10.3%107°
ALDC -5 -5 x -5 -5
P 3.1 s 3.4 |3-2K10 |6.2¢10 8.8x10 ~ | 10.8x10
AVERAGE -5 %167 | 7.4x10~> -5
B3l s 3.4 |2-810° |5.3x0 .ax10 - | 9.0x10
(D) AGE 2.7x10° | 5.2%10°% | 7.2x107° | 8.82207°
EXACT SOLUTION | 0.06120 |0.12684 |0.20360 |0.28621
0.5 0.6 07 o8 0.9
s.5x1072 | 5,707 | 5 3x1072] 4 3x107% | 2 ex107°
g.6x10~° | 8.9x10> | 8 4x107% | 7.0207% | 4.3x107°
1. 3x10°5 | 11, 4x107% [10 4x107 | 8.4x107% | 5.00207°
121107 {12 3x10"° f11.5%107° | 9.3x207° | 5 sx107>
99107 |10.1x1073| 9.4x1073 | 7.7x107% | 4.6x107°
98 10° |10 ox10~>| 9 ax107%{ 7 6x107° | 4 6x107°
0.37752 | 0.47843 | 0.58996 | 0.71322 |o 84945

Table 2
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4 NUMERICAL EXAMPLE
In this example the equation (1 1) together with the mnitial condition f(x) = 0 and boundary

conditions gq(r) = 0 and g,(r) = 1 1s used as a model problem This probiem can be shown
by the method of separation of varables to have the exact solution,

kxle 1 x -1 nn X .

u(x, t) = %T,_-_l + z ( ) p 5 ekix— 12 sm(nnx) el +ik 14elt (4 1)
=1 (nm)? + (-—
2¢

The solution of some of the numerical schemes presented earlier have been compared with this
exact solution 1n terms of their absolute errors A comparison 1s also made with the Crank—
Nicolson upwinding (CNU) scheme The results are given 1n Tables 1 and 2 and graphically
m Fig 8

From the tables and graph 1t can be seen that the results for this class of methods are much
more accurate than the CNU method For r = 0 5 the (D)AGE scheme appears to be better
than any other scheme

S CONCLUSIONS

The explicit schemes (2 4) and (2 7) obtained from the generalised approximation are both
very easy and economical to implement As they are unconditionally stable 1n a practical sense
and also accurate, therefore they are strongly recommended

The GE schemes derived are also comparably accurate and strongly stable Forr = 20,
the GE schemes ((D)AGE 1n particular) are to be recommended against the CNU schemes

One point worth noting here 1s that this class of methods which 1s made up of approxi-
mations to du/3dy by both forward and backward differences at different time levels 1s always
superior than the CNU schemes where du/dx 1s always approximated by the backward differ-
ence

The scheme discussed in this chapter can be easily extended and adapted for multi-
dimensional problems

Finally, we can establish that since the method 1s explicit and highly stable, 1t can be
recommended as an alternative competiive method for solving the diffusion-convection
equation

SOLUTION U

100

90 °CNU

OEXACT
80— +GE CLASS
xALDC

70 -
60~
50—
40—
304
20—

10

ottt
00 20 40 60 80 100

€x01,k=10,7:10,t=10, At=001, 3x=01

Fig 8
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