
Abstraction and Probabilities

for Hybrid Logics

Michael Huth1

Department of Computing
Imperial College London
London, United Kingdom

Abstract

We suggest and develop mathematical foundations for quantitative versions of hybrid logics by
means of two related themes: a relational abstraction technique for hybrid computation tree logic
and hybrid Kripke structures as an extension of the model-checking framework for computation
tree logic with the ability to name, bind, and retrieve states; and a syntax and semantics for hybrid
probabilistic computation tree logic over hybrid extensions of labelled Markov chains for which the
relational abstraction techniques of hybrid Kripke structures should be transferable.

Keywords: hybrid logic, model checking, probabilistic system, abstraction.

1 Introduction

Hybrid logics (see e.g. http://www.hylo.net enhance basic modal and tem-
poral logics with the ability to bind names to unique states in models. This
extension is an important ability in applications that have to track states or
other objects across space or time. If we think of a hybrid logic as a tem-
poral logic enriched with syntactic clauses for the look-up and binding of
names, it is natural to ask whether established model-checking methodology
can be adapted to, or retained, in this hybrid setting. Apart from the work
by Franceschet & Rijke [10], surprisingly little attention has been given to the
extension of model checking to hybrid temporal logics. We are also not aware

1 Email: M.Huth@doc.imperial.ac.uk

Electronic Notes in Theoretical Computer Science 112 (2005) 61–76

1571-0661 © 2004 Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.01.023

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82434668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.hylo.net
mailto:M.Huth@doc.imperial.ac.uk
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

of any work on hybrid logics over quantitative or probabilistic models. Note
that this paper only discusses propositional temporal logics.

This paper therefore provides a modest first step in this direction by de-
veloping two model-checking themes for a hybrid extension of computation
tree logic [4] : the sound relational abstraction of qualitative models with re-
spect to all properties of a hybrid computation tree logic; and the extension of
probabilistic systems and probabilistic computation tree logic [12] with hybrid
constructs. The connection between these themes is twofold:

(i) probabilities can be seen as a form of abstraction of qualitative informa-
tion, reducing the determinism of a system 2 ; and

(ii) the techniques for relational abstraction of qualitative systems are ex-
pected to be transferable to probabilistic hybrid systems in future work.

2 Hybrid computation tree logic

We define a hybrid version of computation tree logic [4] and its models.

Definition 2.1 (i) A Kripke structure with signature Obs is a tuple M =
(Σ, R ⊆ Σ×Σ, L: Obs → P(Σ)) where Obs is a set of atomic observables.

(ii) A hybrid Kripke structure with signature Obs = AP + Nom is a tuple
M = (Σ, R ⊆ Σ × Σ, L: Obs → P(Σ)), where AP and Nom are disjoint
sets of atomic propositions and nominals, respectively, such that for all
n ∈ Nom the set L(n) contains exactly one element.

(iii) We write (M, i) to denote that state i of M is the initial state of M .

A hybrid Kripke structure consists of a set of states Σ, a state transition
relation R, and a labelling function L where, for each observable o ∈ Obs, L(o)
denotes the set of states in Σ at which o holds; see Figure 1. These models
are not merely Kripke structures due to the constraints on L: all nominals
n ∈ Nom hold at exactly one state of the model, whereas atomic propositions
p ∈ AP may hold at no, exactly one, or more than one state. In this paper,
we present a hybrid extension of computation tree logic for specifications of
properties as this prepares the ground for a hybrid extension of probabilistic
computation tree logic [12], but Theorem 3.6 of this paper adapts to the full
propositional mu-calculus [15].

For a signature Obs = AP + Nom, an adequate fragment of computation
tree logic is

φ ::= ⊥ | o | ¬φ | φ ∧ φ | EXφ | E[φ Uφ] | AF φ(1)

2 At the same time, probabilities may be seen as concretizations of a “zero-one” non-
determinism.

M. Huth / Electronic Notes in Theoretical Computer Science 112 (2005) 61–7662

n1, n3

n2, q p, q

p

s0 s1

s2s3

Fig. 1. A hybrid Kripke structure M with signature Obs = {p, q}+{n1, n2, n3}. A state s is tagged
with o iff s ∈ L(o). In that case, we also write (M, s) |= o.

where o ∈ Obs. The temporal patterns EXφ, E[φ1 Uφ2], and AFφ express “At
some next state φ,” and “On some path φ1 until φ2,” and “For all paths,
eventually φ,” respectively. Every hybrid Kripke structure M is also a Kripke
structure if we “forget” the constraints on the labelling function. So the
satisfaction relation (M, s) |= φ is the familiar one for Kripke structures (e.g.
[7]). As usual, we write φ ∨ ψ for ¬(¬φ ∧ ¬ψ), and φ → ψ for ¬(φ ∧ ¬ψ).
Moving from Kripke structures to hybrid Kripke structures restricts the class
of models and so changes the notions of satisfiability and validity. We discuss
two standard examples from the literature.

Example 2.2 (i) For the computation tree logic formula

EX (n ∧ p) ∧ EX (n ∧ q) → EX (p ∧ q)(2)

we may think of n, p, and q as atomic propositions that can be true at
no, one, or more states. Then we can easily find a state in a Kripke
structure where this formula is false. If we think of n as being a nominal
in a hybrid Kripke structure, the formula is valid. For if the premise is
true, then the unique successor state s named by n (i.e. L(n) = {s})
satisfies p and satisfies q, so there is a successor state satisfying p ∧ q.

(ii) Using nominals, one also gets a richer correspondence theory between for-
mula and properties of the transition relation. The formula n → ¬EXn,
interpreted over nominals and Kripke frames 3 only, expresses that the
transition relation R is irreflexive; it is known that this property cannot
be expressed within modal logic over Kripke frames.

The analysis of hybrid models benefits from enhancing computation tree
logic with standard hybrid operators, which we present here for a branching-

3 A Kripke frame F = (Σ, R) is like a Kripke structure M = (Σ, R, L) except that we are
not in control of choosing the labelling function L, so (Σ, R) |= φ iff for all L, (Σ, R, L) |= φ.

M. Huth / Electronic Notes in Theoretical Computer Science 112 (2005) 61–76 63

time logic CTL. Let CTL(@) be the extension of computation tree logic with
the satisfaction operator @

φ ::= ⊥ | o | ¬φ | @n φ | φ ∧ φ | EXφ | E[φ Uφ] | AFφ(3)

where o ∈ Obs and n ∈ Nom. The intended meaning of @n φ is to “jump” to
the unique state s′ ∈ L(n) and evaluate φ in that state:

(M, s) |= @n φ iff (M, s′) |= φ for L(n) = {s′} .(4)

Note that (M, s) |= @n φ either holds in all states of M or in none. This
operator is self-dual: @n φ and ¬@n ¬φ are semantically equivalent over hybrid
Kripke structures.

In a hybrid Kripke structure, the labelling function L binds all nominals
to a unique state. Viewing nominals as parameters, we can bind them to
unique states for the evaluation of formulas. Consider CTL(↓) which adds to
computation tree logic the operator ↓n.φ, whose semantics requires tagging |=
with the labelling function L of the underlying hybrid Kripke structure. For
computation tree logic or CTL(@), the evaluation of (M, s) |=L φ does not
change L. For CTL(↓) the labelling function L changes for the evaluation of
clauses of the form ↓n.φ.

Definition 2.3 Let L[n �→ s] be the labelling function with L[n �→ s](o) =
L(o) for all o ∈ Obs with o 	= n and L[n �→ s](n) = {s}. Then we set

(M, s) |=L ↓n.φ iff (M, s) |=L[n �→s] φ .(5)

We conclude that model checks for CTL(↓) over the hybrid model M are
checks (M, s) |=L φ with the initial labelling function of M , but where the
evaluation of checks for sub-formulas of the form ↓n.ψ updates L statically.

In hybrid logic, the binder ↓n.φ allows one to express that a state s belongs
to a cycle (a property not expressible in temporal logic) by checking

(M, s) |=L ↓n.E[¬⊥ Un] .(6)

If we think of the labelling algorithm for model checking as an abstract ma-
chine, then @n φ corresponds to a lookup of “location” n with a continuation
that jumps to that located state and evaluates φ at that location, whereas
↓n.φ stores the current location at n and continues with the evaluation of φ
at the current state.

Finally, consider CTL(∃) which adds a binder for locations that seems
contrary to the locality principle inherent in Kripke’s satisfaction relation |= :

(M, s) |=L ∃n.φ iff for some s′ ∈ Σ: (M, s) |=L[n �→s′] φ .(7)

The lack of locality of this operator means that no purely bottom-up labelling
algorithm for model checking is available. For example, the check (M, s) |=
∃n.@n E[¬⊥ Un] holds iff the model M contains some cycle, not necessarily

M. Huth / Electronic Notes in Theoretical Computer Science 112 (2005) 61–7664

through s; similar problems emerge in a bottom-up evaluation of ↓n.φ. In the
sequel, we write CTL(@, ↓) etc for extensions of CTL with all listed operators.

Example 2.4 In the hybrid Kripke structure in Figure 1, the check (M, s0) |=L

@n2 EX¬p holds since (M, s3) |=L EX¬p. The check (M, s0) |=L ↓n2.¬EX n2

holds since (M, s0) |=L[n2 �→s0] ¬EX n2, which holds as (s0, s0) 	∈ R. The check
(M, s0) |=L ∃n1.@n1 ¬p ∧ EX p holds as, e.g., (M, s0) |=L[n1 �→s3] @n1 ¬p ∧ EX p.

3 Relational abstraction of hybrid models

The state-explosion problem of model checking, that the size of the state space
of a model is typically exponential in the number of atomic propositions, poses
a significant challenge to the application of model checking to realistic and
scalable problems [7]. This is exacerbated by the fact that the addition of the
operators ↓ or ∃ to computation tree logic make the model checking problem
PSPACE-complete, although the addition of nominals and @ alone does not
change the linear complexity of checks in the size of the model [10].

Abstraction is seen as a key technique for mitigating the effect of state-
space explosions. Its standard approach [6] abstracts a model via a “safe
simulation” such that formulas of linear-time temporal logic or the universal
fragment of computation tree logic (“for all paths”) which are true in the
abstract model are also true in the concrete one. Counter-examples of the
abstract model, however, often are spurious in that they do not reflect genuine
bugs in the concrete model.

Three-valued model checking [8,2] abstracts concrete models by a “mix”
of safe and live simulations such that verifications (“the property holds”) and
refutations (“the property does not hold”) of properties on the abstract model
apply to the concrete one as well, for temporal logics with unrestricted use of
path quantifiers or negation. The price being paid here is that model checks
may have a third result value “unknown” which does not reveal anything
about the abstract 4 or concrete model. But we gain the ability to freely
combine such path quantifiers, e.g. as in the verification of a safety property
on an abstraction (obtained by the “addition” of paths) by appeal to fairness
assumptions (obtained by the “removal” of paths).

In this section we work with a hybrid Kripke structure M = (Σ, R, L) with
signature Obs = AP+Nom, a set of designated abstract states Σ̂, and a relation
ρ ⊆ Σ× Σ̂ where sρt specifies that state t abstracts s (and, equivalently, that
s is a concrete instance of t). We wish to define a hybrid model M̂ = (Σ̂, R̂, L̂)

4 In Bruns & Godefroid’s generalized model checking [3] “unknown” reveals that some
concretizations of the abstraction do, and some don’t, satisfy the property.

M. Huth / Electronic Notes in Theoretical Computer Science 112 (2005) 61–76 65

such that ρ is, by construction, a witness to the fact that M̂ abstracts M . For
that, we assume that ρ is left-total and right-total (respectively):

∀s ∈ Σ∃t ∈ Σ̂: sρt(8)

∀t ∈ Σ̂∃s ∈ Σ: sρt

A practically relevant example is Σ̂ being the set of classes of some partition
on Σ, and sρt stating s ∈ t. Such partitions could be induced by a finite set of
formulas (e.g. boolean guards from program code) on the concrete state space.
The abstract structure M̂ should satisfy that all verifications, (M̂, t) |= φ, and
all refutations, (M̂, t) |= ¬φ, of φ in the abstract model apply in the abstracted
model (M, s) as well:

∀φ ∈ CTL(@, ↓, ∃) ∀(s, t) ∈ Σ × Σ̂: sρt & (M̂, t) |= φ ⇒ (M, s) |= φ .(9)

The abstraction introduced by the relation ρ relaxes the constraints of hybrid
logic and presents them in a 3-valued version.

Definition 3.1 A 3-valued hybrid Kripke structure with signature Obs =
AP+Nom is a tuple M = (Σ, Ra , Rc, La , Lc) where (Σ, Ra , La) and (Σ, Rc , Lc)
are Kripke structures with signature Obs subject to the following constraints:

(i) Ra ⊆ Rc;

(ii) for all o ∈ Obs, La(o) ⊆ Lc(o); and

(iii) for all n ∈ Nom, La(n) contains at most one element; if so La(n) =
Lc(n).

The intuition about Ra and La , already expressed for labelled transition sys-
tems by Larsen & Thomsen in [17], is that they represent “must”-information
(“definite,” “necessarily so” etc), whereas Rc \ Ra and Lc(o) \ La(o) denote
“may”-information (“possibly,” “could be so” etc). If La(n) is non-empty, we
force La(n) = Lc(n) since no element of Lc(n) \ La(n) can have a refinement
different from the one for s ∈ La(n), in the sense of Definition 3.4 below.

This interpretation of “may”- and “must”-information confirms that we
can view a hybrid Kripke structure M = (Σ, R, L) as the 3-valued hybrid
Kripke structure (Σ, R, R, L, L). Therefore, we may define abstractions on 3-
valued hybrid Kripke structure in general, allowing for an incremental abstract-
and-refine methodology of 3-valued model checking as in [11].

Definition 3.2 For a 3-valued hybrid Kripke structure A = (Σ, Ra , Rc, La , Lc)
with signature Obs = AP + Nom, a set Σ̂, and a left-total and right-total rela-
tion ρ ⊆ Σ × Σ̂ we define a tuple Â = (Σ̂, R̂a , R̂c, L̂a , L̂c):

• (t, t′) ∈ R̂a iff for all sρt there is some s′ρt′ with (s, s′) ∈ Ra ;

• (t, t′) ∈ R̂c iff for some (s, s′) ∈ Rc we have sρt and s′ρt′;

M. Huth / Electronic Notes in Theoretical Computer Science 112 (2005) 61–7666

x

p q y, z

p, q

s1 s2 s3

s4

s0

Fig. 2. A shape graph. Nodes are cells in a heap. The set of nominals consists of those program
identifiers x, y, and z that do point to a cell in the heap. As no identifier can point to more than
one cell at a time we have a hybrid heap model.

• t ∈ L̂a(o) iff for all sρt we have s ∈ La(o); and

• t ∈ L̂c(o) iff for some sρt we have s ∈ Lc(o).

Example 3.3 The 3-valued hybrid Kripke structure Â of Figure 3 is obtained
in this manner from the hybrid Kripke structure A in Figure 2. To see this,
we set

ρ = {(s0, t0), (s1, t1), (s2, t2), (s3, t2), (s4, t2)} .

Then ρ is left-total and right-total. In Â, the two transitions (s0, s1) and
(s1, s2) are modelled as solid lines since ti is only related to si for i = 1, 2; for
the same reason, their labels x and p are preserved as “must”-information in
t0 and t1, respectively. There is a dashed line from t2 to t1 because (i) there is
a transition (s3, s1), s3ρt2, and s1ρt1; and (ii) s2ρt2 but there is no transition
out of s2 to some s with sρt1. Similarly, we account for the dashed transition
from t2 back to itself. No labels at t2 are “must”-information and all but x
are “may”-information. For example, for y this is so since s3 satisfies y but
s4 doesn’t and both are related to t2 via ρ.

This example suggests that hybrid models and logics can express shape graphs
[19]. Note the definitions of L̂a and L̂c for nominals: If A is a hybrid Kripke
structure, then L̂a(n) = {t} iff {s ∈ Σ | sρt} = La(n); and L̂c(n) contains
all those t for which soρt where s0 ∈ Lc(n). So if we want to verify φ on
an abstraction and N ⊆ Nom is the set of nominals occurring under an even
number of negations in φ, then sn ∈ L(n) has to be abstracted as a singleton
for each n ∈ N . This won’t corrupt the reduction of the size of the state space
as N will be very small compared to Σ, e.g. 7 versus 107.

Before we can show that the abstraction Â of A in Definition 3.2 se-
cures (9) we need to present the satisfaction relation |= for a 3-valued hybrid

M. Huth / Electronic Notes in Theoretical Computer Science 112 (2005) 61–76 67

x

p

t1

t0

t2

p?, q?

y?, z?

Fig. 3. A 3-valued hybrid Kripke structure that is an abstraction of the hybrid Kripke structure
from Figure 2. Solid lines and observables o comprise Ra and La(o), respectively. Dashed lines
and observables o? comprise Rc \ Ra and Lc(o) \ La(o), respectively.

Kripke structure M in two modes, “a” (asserted) and “c” (consistent), where
(M, s)|=a and (M, s)|=c denote “φ must hold at state s in M” and “φ may
hold at state s in M ,” respectively. If M = (Σ, R, L) is a hybrid Kripke struc-
ture, then (Σ, R, R, L, L) is a 3-valued hybrid Kripke structure such that |=a

and |=c are equal and so define |= formally for M . We also define abstraction
and refinement formally.

Definition 3.4 Let A = (Σ, Ra , Rc, La , Lc) and Â = (Σ̂, R̂a , R̂c , L̂a , L̂c) be
two 3-valued hybrid Kripke structures with signature Obs = AP + Nom.

(i) A relation Q ⊆ Σ × Σ̂ is a refinement iff (s, t) ∈ Q implies
(a) for all (t, t′) ∈ R̂a , there is some (s, s′) ∈ Ra with (s′, t′) ∈ Q;
(b) for all (s, s′) ∈ Rc, there is some (t, t′) ∈ R̂c with (s′, t′) ∈ Q;
(c) for all o ∈ Obs, t ∈ L̂a(o) implies s ∈ La(o); and
(d) for all o ∈ Obs, s ∈ Lc(o) implies t ∈ L̂c(o).

(ii) We say that (Â, t) abstracts (is refined by) (A, s) iff there is a refinement
Q with (s, t) ∈ Q.

(iii) For s ∈ Σ and n ∈ Nom, the labelling L[n�→as] is the pair of labelling
functions (L[n�→as]a , L[n�→as]c), which equals (La , Lc) except at n, where
L[n�→as]a(n) = L[n�→as]c(n) = {s}; the labelling L[n�→cs] is the pair of
labelling functions (L[n�→cs]a , L[n�→cs]c), which equals (La , Lc) except at
n, where L[n�→cs]c(n) = Lc(n) ∪ {s} and L[n�→as]a(n) = {}.

(iv) We define |=a
L and |=c

L for 3-valued hybrid Kripke structures, where m ∈
{a, c}, ¬a = c, and ¬c = a:
• (A, s) 	|=m

L ⊥;
• (A, s) |=m

L o iff s ∈ Lm(o);
• (A, s) |=m

L ¬φ iff (A, s) 	|=¬m
L φ;

• (A, s) |=m
L @n φ iff there is some s′ ∈ Lm(n) with (A, s′) |=m

L φ;

M. Huth / Electronic Notes in Theoretical Computer Science 112 (2005) 61–7668

• (A, s) |=m
L ↓n.φ iff (A, s) |=m

L[n �→ms] φ;
• (A, s) |=m

L ∃n.φ iff there is some s′ with (A, s) |=m
L[n �→ms′] φ;

• (A, s) |=m
L φ1 ∧ φ2 iff ((A, s) |=m

L φ1 and (A, s) |=m
L φ2);

• (A, s) |=m
L EXφ iff there is some (s, s′) ∈ Rm such that (A, s′) |=m

L φ;
• (A, s) |=m

L E[φ1 Uφ2] iff there is some 0 ≤ j with s = s0 such that for all
k ∈ {0, 1, . . . , j − 1} we have (sk, sk+1) ∈ Rm and (A, sk) |=m

L φ1, and
(A, sj) |=m

L φ2; and
• (A, s) |=m

L AFφ iff there is no infinite sequence (si)i≥0 with s = s0 such
that, for all k ≥ 0, (sk, sk+1) ∈ R¬m and (A, sk) 	|=m

L φ.

Remark 3.5 The ability to jump to arbitrary states in which to continue the
evaluation of model checks means that (9) cannot be secured by just showing
that the abstract state t indeed abstracts the concrete one s. Sound abstraction
becomes a global property in that we need left-total and right-total refinement
relations, which are thankfully closed under composition and subsume all state
space partitions.

The effect of L̂[n�→at] in Â is a “must”-bind of n to t; and the effect of L[n�→cs]
is a “may”-bind of n to s. Both actions constrain the un-abstracted “may-”
and “must-”bindings of n in A conservatively.

Theorem 3.6 (i) Let A = (Σ, Ra , Rc, La , Lc) and Â = (Σ̂, R̂a , R̂c , L̂a , L̂c)
be two 3-valued hybrid Kripke structures with signature Obs = AP +Nom
and let Q ⊆ Σ × Σ̂ be a left-total and right-total refinement such that
(s, t) ∈ Q. For all formulas φ ∈ CTL(@, ↓, ∃) we have that (Â, t) |=a

L̂
φ

implies (A, s) |=a
L φ; and (A, s) |=c

L φ implies (Â, t) |=c
L̂

φ.

(ii) Let A be a 3-valued hybrid Kripke structure and Â defined from A as in
Definition 3.2 for a left-total and right-total ρ. Then Â is a 3-valued hy-
brid Kripke structure and for all sρt, (Â, t) abstracts (A, s). In particular,
item (1) applies.

Proof. Item (2) follows from item (1) by construction. We prove item (1) by
structural induction on φ. We focus on the clauses o, @n φ, ↓n.φ, and ∃n.φ as
the proofs for the remaining clauses are standard (see e.g. [8,2,14]).

• Consider o.
· Let (Â, t) |=a

L̂
o. Then t ∈ L̂a(o). From (s, t) ∈ Q we infer s ∈ La(o)

which implies (A, s) |=a
L o.

· Let (A, s) |=c
L o. Then s ∈ Lc(o). From (s, t) ∈ Q we infer t ∈ L̂c(o)

which implies (Â, t) |=c
L̂

o.

• Consider @n φ.
· Let (Â, t) |=a

L̂
@n φ. Then there is some t′ with t′ ∈ L̂a(n) and (Â, t′) |=a

L̂
φ.

M. Huth / Electronic Notes in Theoretical Computer Science 112 (2005) 61–76 69

Since Q is right-total, there is some s′ with (s′, t′) ∈ Q and so t′ ∈ L̂a(n)
implies s′ ∈ La(n). By induction, (s′, t′) ∈ Q and (Â, t′) |=a

L̂
φ imply

(A, s′) |=a
L φ. But then s′ ∈ La(n) implies (A, s) |=a

L @n φ.
· Let (A, s) |=c

L @n φ. Then there is some s′ with s′ ∈ Lc(n) and (A, s′) |=c
L

φ. Since Q is left-total, there is some t′ with (s′, t′) ∈ Q and so s′ ∈ Lc(n)
implies t′ ∈ L̂c(n). By induction, (s′, t′) ∈ Q and (A, s′) |=c

L φ imply
(Â, t′) |=c

L̂
φ. But then t′ ∈ L̂c(n) implies (Â, t) |=c

L̂
@n φ.

• Consider ↓n.φ.
· Let (Â, t) |=a

L̂
↓n.φ. Then (Â, t) |=a

L̂[n �→a t]
φ. If we replace L̂ with L̂[n�→at]

and L with L[n�→as] in Â and A (respectively), then the assumptions
of item (1) still hold. By induction, (Â, t) |=a

L̂[n �→a t]
φ therefore implies

(A, s) |=a
L[n �→as] φ and so (A, s) |=a

L ↓n.φ.

· Let (A, s) |=c
L ↓n.φ. Then (A, s) |=c

L[n �→cs] φ. If we replace L̂ with L̂[n�→ct]

and L with L[n�→cs] in Â and A (respectively), then the assumptions
of item (1) still hold. By induction, (A, s) |=c

L[n �→cs] φ therefore implies

(Â, t) |=c
L̂[n �→ct]

φ and so (Â, t) |=c
L̂
↓n.φ.

• Consider ∃n.φ.
· Let (Â, t) |=a

L̂
∃n.φ. Then there is some t′ with (Â, t) |=a

L̂[n �→a t′] φ. Since

Q is right-total, there is some s′ with (s′, t′) ∈ Q. If we replace L̂ with
L̂[n�→at′] and L with L[n�→as′] in Â and A (respectively), then the as-
sumptions of item (1) still hold. By induction, (Â, t) |=a

L̂[n �→a t′] φ therefore

implies (A, s) |=a
L[n �→as′] φ and so (A, s) |=a

L ∃n.φ.

· Let (A, s) |=c
L ∃n.φ. Then there is some s′ with (A, s) |=c

L[n �→cs′] φ. Since Q

is left-total, there is some t′ with (s′, t′) ∈ Q. If we replace L̂ with L̂[n�→ct′]
and L with L[n�→cs′] in Â and A (respectively), then the assumptions of
item (1) still hold. By induction, (A, s) |=c

L[n �→cs′] φ therefore implies

(Â, t) |=c
L̂[n �→ct′] φ and so (Â, t) |=c

L ∃n.φ.

Example 3.7 Let us re-consider the hybrid Kripke structure A of Figure 2
and its abstraction Â of Figure 3.

(i) We have (Â, t2) |=a
L̂

@x E[x ∨ p U¬x] since we have (Â, t0) |=a
L̂
E[x ∨ p U¬x],

where the latter is witnessed by the R̂a-path t0 → t1 → t2. Since s4ρt2,
Theorem 3.6 entails that (A, s4) |=L @x E[x ∨ p U¬x].

(ii) Finally, we have (Â, t2) |=c
L̂
E[y U¬p] since t2 ∈ L̂c(p) \ L̂a(p), but don’t

have (A, s4) |=c
L E[y U¬p] despite the fact that s4ρt2. The direction of

transfer of model-checking results is therefore mode-dependent as stated
in Theorem 3.6.

M. Huth / Electronic Notes in Theoretical Computer Science 112 (2005) 61–7670

4 Hybrid labelled Markov chains

Hybrid logics enrich temporal logics and their models with the ability to name
and therefore track states in a model. For Kripke structures and computation
tree logic, this enrichment requires a multiplicity constraint on the labelling
function (which had to be relaxed in abstraction-based model checking) and
the addition of standard hybrid operators to computation tree logic. In moving
from qualitative hybrid logics to quantitative and probabilistic ones, several
questions emerge:

(i) How do or should hybrid operators generalize to a quantitative or prob-
abilistic setting?

(ii) Is the use of model-checking back-ends and their data-structures (e.g.
MTBBDs [5,1] and Kronecker Representation [18,9]) affected by the ad-
dition of hybrid operators, and if so how?

(iii) Do relational abstraction techniques for qualitative hybrid models trans-
fer smoothly to the quantitative or probabilistic setting?

(iv) What is the complexity for model checking hybrid extensions of labelled
Markov chains over hybrid extensions of probabilistic computation tree
logic? It is worse than the one for the non-hybrid setting?

In this paper, we focus on the first question and only in the setting of finite-
state labelled Markov chains and probabilistic computation tree logic without
“bounded Until,” e.g. as used in [1].

Definition 4.1 (i) A (finite-state) labelled Markov chain with signature Obs
is a tuple M = (Σ, R: Σ × Σ → [0, 1], L: Obs → P(Σ)) where Σ is finite;
Obs is a set of atomic observables; for all s ∈ Σ,

∑
s′∈Σ R(s, s′) = 1; and

Σ and L have the same interpretation as for Kripke structures.

(ii) A hybrid (finite-state) labelled Markov chain with signature Obs = AP +
Nom is a tuple M = (Σ, R: Σ×Σ → [0, 1], L: (AP → P(Σ))+(Nom×Σ →
[0, 1])) where (Σ, R, L|AP) is a finite-state labelled Markov chain 5 ; AP and
Nom are disjoint sets of atomic propositions and nominals, respectively;
and for all n ∈ Nom,

∑
s∈Σ L(n, s) = 1.

In a hybrid labelled Markov chain, the labelling function L has a sum type:
as in the case of labelled Markov chains, L(a) denotes those states of Σ in
which atomic observable a ∈ AP holds; whereas λs.L(n, s) is the probability
distribution of the nominal n in the state space Σ; see Figure 4 for a version of
the hybrid Kripke structure from Figure 1 as a hybrid labelled Markov chain.

5 We write L|AP to denote the restriction of L to type AP → P(Σ).

M. Huth / Electronic Notes in Theoretical Computer Science 112 (2005) 61–76 71

s0 s1

s2s3

0.5

0.5

0.64

0.99

0.01

n3 = 0.13

n1 = 0.55

n2 = 0.93

n1 = 0.45

n3 = 0.87

n2 = 0.07

0.36

q p, q

p

Fig. 4. A hybrid labelled Markov chain with signature Obs = {p, q} + {n1, n2, n3}. Probabili-
ties of nominals are depicted next to the respective states. For example, L(n3, s0) = 0.87 and
L(n3, s3) = 0.

We treat nominals probabilistically as the function λs.L(n, s) is a probabil-
ity distribution over the set of states for each nominal n ∈ Nom. Such a type
is of interest as it models probabilistic uncertainty of an observable agent’s
whereabouts. But it also allows us to retain the original intent of hybrid log-
ics by choosing λs.L(n, s) to be a point distribution δs′ which assigns 1 to s′

and 0 to all other states. Alternatively, one could choose other quantitative
measures (risks, costs etc) so that

∑
s∈Σ L(n, s) is no longer 1. The unifying

point of such choices is that information about nominals is often uncertain or
incomplete.

Now we discuss a suitable hybrid probabilistic temporal logic. The probabilis-
tic computation tree logic (without “bounded Until”)

φ ::= ⊥ | a | ¬φ | φ ∧ φ | [Xφ]�p | [φ U φ]�p(10)

is due to Hansson & Jonsson [12] where a ∈ AP, p ∈ [0, 1], and � ∈ {≥, >}.
Below we extend the familiar semantics of probabilistic computation tree logic
over labelled Markov chains to our hybrid setting. This interpretation suggests
probabilistic variants of the hybrid operators @n φ, ↓n.φ, and ∃n.φ :

Should the check (M, s) |=L @�p
n .φ hold if

∑{L(n, s′) | (M, s′) |=L φ} �
p? Such an interpretation is similar to the one for [Xφ]�p, expect that the
state “transition” probabilities are governed by the probability distribution
λs.L(n, s) instead of the probability distribution λs′.R(s, s′), and is there-
fore computable with standard techniques from symbolic model checking of
Markov chains, e.g. as implemented in the PRISM model checker [16]. Yet
this interpretation is at odds with the role of conditional probabilities: Since
L(n, s′) is the probability of n’s being at state s′, we wish to sum up all such
weights for which the continuation check is true at s′ under the assumption

M. Huth / Electronic Notes in Theoretical Computer Science 112 (2005) 61–7672

that “nominal n resides at state s′,” so we have to set

(M, s) |=L @�p
n .φ iff

∑
{L(n, s′) | (M, s′) |=L[n �→δs′] φ} � p .(11)

Unlike in the qualitative case, checks of @�p
n φ statically change the labelling

function for the check of sub-formulas. Although this requires adaptations of
existing algorithms for probabilistic model checking, the good news is that the
continuation resolves the labelling information for n to a qualitative observable
as found in a labelled Markov chain.

The qualitative check (M, s) |=L ↓n.φ holds iff (M, s) |=L[n �→δs] φ holds.
Given that, we may as well assign probability distributions other than point
distributions to the continuation of a probabilistic check:

(M, s) |=L ↓(n, δ).φ iff (M, s) |=L[n �→δ] φ .(12)

The qualitative check (M, s) |=L ∃n.φ holds iff for some s′ ∈ Σ the check
(M, s) |=L[n �→δs′] φ holds. If we set ∆′ = {δs′ | s′ ∈ Σ}, this is an instance of a
general probabilistic check

(M, s) |=L ∃(n, ∆′).φ iff for some δ ∈ ∆′: (M, s) |=L[n �→δ] φ .(13)

For this operator ∃(n, ∆′) we may have to restrict the range of ∆′ in order to
make it computable or even feasibly so. We judge such extensions of proba-
bilistic computation tree logic to be of potentially great use. For example, the
idea of using probability distributions to model the presence of agents suggests
applications in security.

This generality of probabilistic hybrid operators may not honor the original
intent of hybrid temporal patterns. For example,

(M, s) |=L ↓(n, δ).[¬⊥U (n ∧ ψ)]≥.9999(14)

checks whether the node named by n is on a probabilistic cycle (on which
ψ is true at least once) with probability at least .9999 only if the probability
distribution δ does not smear the location of such a node, i.e. only if δ is of the
form δs′ for some s′ ∈ Σ. Using point distributions, probabilistic hybrid logics
are therefore able to express a kind of probabilistic recurrence of probabilistic
trace sets.

5 Hybrid Probabilistic Computation Tree Logic

We summarize our discussion into a proposal for a hybrid probabilistic com-
putation tree logic:

Definition 5.1 Let Obs = AP+Nom be a signature for hybrid labelled Markov
chains and ∆ a class of discrete probability distributions subsuming all point
distributions. Then hybrid probabilistic computation tree logic, without “bounded
Until,” over Obs and ∆ is defined by

M. Huth / Electronic Notes in Theoretical Computer Science 112 (2005) 61–76 73

φ ::=⊥ | a | ¬φ | φ ∧ φ | [Xφ]�p | [φ U φ]�p(15)

n�p | @�p
n .φ | ↓(n, δ).φ | ∃(n, ∆′).φ

where a ∈ AP, n ∈ Nom, p ∈ [0, 1], � ∈ {≥, >}, δ ∈ ∆, and ∆′ ⊆ ∆.

The qualitative operators ↓n.φ and ∃n.φ are derived in that (M, s) |=L ↓n.φ
is interpreted as (M, s) |=L ↓(n, δs).φ; and (M, s) |=L ∃n.φ as (M, s) |=L

∃(n, {δs | s ∈ Σ}).φ.

Let M = (Σ, R, L) be a hybrid finite-state labelled Markov chain with
signature Obs. We define (M, s) |=L φ for all φ of hybrid probabilistic compu-
tation tree logic. Given s ∈ Σ, let Path(s) be the set of infinite paths in M
beginning in s, where transitions s → s′ occur iff R(s, s′) > 0. Given φ, φ1,
and φ2 of hybrid probabilistic computation tree logic and some π ∈ Path(s)
we define

• π |=L X φ iff (M, s′) |=L φ, where π = s → s′ → . . .;

• π |=L φ1 U φ2 iff there is some k ≥ 0 such that the first k − 1 states si of π
satisfy (M, si) |=L φ1 and the kth state sk satisfies (M, sk) |=L φ2.

So we define |=L over certain path formulas and all state formulas of hybrid
probabilistic computation tree logic by mutual induction, as done for prob-
abilistic computation tree logic [12]. The semantics for ⊥, a, negation, and
conjunction is defined as for Kripke structures. The semantics for the path
formulas and hybrid operators is

• (M, s) |=L [Xφ]�p iff the probability of the set of those π ∈ Path(s) with
π |=L X φ is � p;

• (M, s) |=L [φ1 U φ2]�p iff the probability of the set of those π ∈ Path(s) with
π |=L φ1 U φ2 is � p;

• (M, s) |=L n�p iff L(n, s) � p;

• (M, s) |=L @�p
n .φ iff

∑{L(n, s′) | (M, s′) |=L[n �→δs′] φ} � p;

• (M, s) |=L ↓(n, δ).φ iff (M, s) |=L[n �→δ] φ; and

• (M, s) |=L ∃(n, ∆′).φ iff for some δ ∈ ∆′, we have (M, s) |=L[n �→δ] φ.

Note that |=L is well defined for all hybrid finite-state labelled Markov chains
since all path formulas over predicates (the sets of states for which a partic-
ular formula of hybrid probabilistic computation tree logic is true) give rise
to measurable path sets [20] through the standard construction of measures
on sequence spaces. The semantics for path formulas given above is as for
probabilistic computation tree logic.

Example 5.2 To illustrate our semantics of hybrid probabilistic computation
tree logic, we check (M, s3) |=L @>0.1

n3
[¬⊥U n3]≥0.01. For that, we need to de-

M. Huth / Electronic Notes in Theoretical Computer Science 112 (2005) 61–7674

termine for which s with L(n3, s) > 0 we have (M, s) |=L[s �→δs] [¬⊥U n3]≥0.01;
and then sum up all those L(n3, s) and check whether that sum is > 0.1. Only
s0 and s2 are relevant here.

• At state s0 in M with labelling function L[n3 �→ δs0] the probability that s0

is on a cycle is 0.01 · 0.64 · 0.5 · (∑∞
i=0(0.64 · 0.5)i) = 0.00948529 . . . which is

not ≥ 0.01 and so (M, s0) |=L[s �→δs0] [¬⊥U n3]≥0.01 does not hold, meaning
that L(s0, n3) = 0.87 does not contribute to that sum.

• At state s2 in M with labelling function L[n3 �→ δs2] the probability that s2

is on a cycle is 0.64 · 0.5 + 0.64 · 0.5 · 0.01 = 0.3232 which is ≥ 0.01 and so
(M, s2) |=L[s �→δs2] [¬⊥U n3]≥0.01 holds, meaning that L(s2, n3) = 0.13 is the
only contributor to that sum.

Since 0.13 > 0.1, we conclude that (M, s3) |=L @>0.1
n3

[¬⊥U n3]≥0.01 holds.

6 Conclusions

We presented propositional hybrid logics as established enhancements of propo-
sitional temporal logics with the ability to name and re-bind specific states.
We then provided a sound relational abstraction technique for hybrid Kripke
structures and a hybrid version of computation tree logic. We further moti-
vated and discussed a definition of hybrid labelled Markov chains and a syntax
and semantics of probabilistic computation tree logic in this hybrid setting.
Our abstraction techniques for hybrid Kripke structures should be transfer-
able to hybrid labelled Markov chains and quantitative hybrid models, perhaps
along the lines of [13].

Acknowledgments

Our exposition of hybrid logics was heavily inspired by the introductory article
at http://www.hylo.net/ and comments made by Chris Hankin, Sebastian
Nanz, and Herbert Wiklicky. We thank the anonymous referees, Joost-Pieter
Katoen, and Prakash Panangaden for constructive comments that helped
shape the final version of this paper.

References

[1] C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan. Symbolic
Model Checking for Probabilistic Processes. In Proc. ICALP’97, volume 1256 of Lecture Notes
in Computer Science, pages 430–440, 1997.

[2] G. Bruns and P. Godefroid. Model Checking Partial State Spaces with 3-Valued Temporal
Logics. In Proc. of the 11th Conference on Computer Aided Verification, volume 1633 of Lecture
Notes in Computer Science, pages 274–287. Springer Verlag, July 1999.

M. Huth / Electronic Notes in Theoretical Computer Science 112 (2005) 61–76 75

http://www.hylo.net/

[3] G. Bruns and P. Godefroid. Generalized Model Checking: Reasoning about Partial State
Spaces. In Proc. of CONCUR’2000 (11th International Conference on Concurrency Theory),
volume 1877 of Lecture Notes in Computer Science, pages 168–182. Springer Verlag, August
2000.

[4] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time
temporal logic. In D. Kozen, editor, Logic of Programs Workshop, number 131 in LNCS.
Springer Verlag, 1981.

[5] E. M. Clarke, M. Fujita, and X. Zhao. Representations of discrete functions, chapter Multi-
terminal binary decision diagrams and hybrid decision diagrams, pages 93–108. Kluwer
academic publishers, 1996.

[6] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, January 2000.

[8] D. Dams. Abstract interpretation and partition refinement for model checking. PhD thesis,
Technische Universiteit Eindhoven, The Netherlands, 1996.

[9] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic Model
Checking of Probablistic Processes using MTBBDs and the Kronecker Representation. In Tools
and Algorithms for the Construction and Analysis of Systems: 6th International Conference,
TACAS 2000, volume 1785 of Lecture Notes in Computer Science, pages 395–410, Berlin,
Germany, March/April 2000. Springer Verlag.

[10] M. Franceschet and M. de Rijke. Model Checking for Hybrid Logics. In Proc. of the Workshop
on Methods for Modalities, 2003.

[11] P. Godefroid and R. Jagadeesan. Automatic Abstraction Using Generalized Model Checking.
In E. Brinksma and K. G. Larsen, editors, Proc. 14th Int’l Conference on Computer Aided
Verification (CAV 2002), volume 2404 of Lecture Notes in Computer Science, pages 137–150,
Copenhagen, Denmark, July 2002. Springer Verlag.

[12] H. A. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing, 6(5):512–535, 1994.

[13] M. Huth. Possibilistic and Probabilistic Abstraction-Based Model Checking. In H. Hermanns
and R. Segala, editors, Process Algebra and Probabilistic Methods, Performance Modeling and
Verification, Second Joint International Workshop PAPM-PROBMIV 2002, volume 2399 of
Lecture Notes in Computer Science, pages 115–134, Copenhagen, Denmark, July 25-26 2002.
Springer.

[14] M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: a foundation for
three-valued program analysis. In Sands D., editor, Proc. of the European Symposium on
Programming (ESOP’2001), pages 155–169. Springer Verlag, April 2001.

[15] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science, 27:333–
354, 1983.

[16] M. Kwiatkowska. Model Checking for Probability and Time: From Theory to Practice. Invited
paper in Proc. LICS’03, pages 351-360, IEEE Computer Society Press, 2003.

[17] K. G. Larsen and B. Thomsen. A Modal Process Logic. In Proc. of LICS’88, pages 203–210.
IEEE Computer Society Press, 1988.

[18] B. Plateau. On the Stochastic Structure of Parallelism and Synchronization Models for
Distributed Algorithms. In Proc. of the 1985 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 147–154, Austin, Texas, May 1985. ACM Press.

[19] M. Sagiv, T. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic. In Proc.
of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 105–118, January 20-22, San Antonio, Texas 1999.

[20] M. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proc.
26th IEEE Symp. on Foundations of Computer Science, pages 327–338, Portland, Oregon,
October 1985.

M. Huth / Electronic Notes in Theoretical Computer Science 112 (2005) 61–7676

	Introduction
	Hybrid computation tree logic
	Relational abstraction of hybrid models
	Hybrid labelled Markov chains
	Hybrid Probabilistic Computation Tree Logic
	Conclusions
	References

