
Theoretical Computer Science 278 (2002) 53–89
www.elsevier.com/locate/tcs

A fully abstract denotational semantics for the �-calculus�

Matthew Hennessy
School of Cognitive and Computing Sciences, University of Sussex, Falmer, Brighton BN1 9QH, UK

Abstract

This paper describes the construction of two set-theoretic denotational models for the �-calculus.
The models are obtained as initial solutions to domain equations in a functor category. By asso-
ciating with each syntactic construct of the �-calculus a natural transformation over these models
we obtain two interpretations for the language. We also show that these models are fully abstract
with respect to natural behavioural preorders over terms in the language. By this we mean that
two terms are related behaviourally if and only if their interpretations in the model are related.
The behavioural preorders are the standard versions of may and must testing adapted to the
�-calculus. c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The �-calculus [15, 16] is a process algebra for describing processes which com-
municate by exchanging channel names. These names may be private to a particular
process but such a process may decide to share a name with certain other processes
by exporting it. This ability of processes to share common private channel names is
the main source of the expressive power of the �-calculus, at least in relation to other
value-passing process algebras.
Numerous semantic theories have been proposed for the �-calculus, and it variants,

[4, 16, 21, 24]. However, at least until very recently, all of these theories were be-
haviour based, i.e. an operational semantics is 6rst given to the language and then a
semantic theory is developed by abstracting, using a variety of methods, from certain
aspects of this operational view of processes. Thus, for example, in [21] late and early
bisimulation equivalences are developed for the �-calculus and are characterised using
a proof system for establishing identities between processes. A similar programme is
carried out in [4] for an appropriate adaptation of testing equivalence [7].

� This work was supported by the EU EXPRESS Working Group and the Royal Society. Much of the
research reported here was carried out during a visit to INRIA, Sophia-Antipolis.

E-mail address: matthewh@cogs.susx.ac.uk (M. Hennessy).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00331 -5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82434595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

54 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

The use of private names has made it very diAcult to develop set-theoretic denota-
tional models for the �-calculus. Their behavioural properties have much in common,
at least intuitively, with that of local variables in Algol-like languages and references
in ML-like languages. In papers, such as [8, 20, 22], categorical methods have been
developed for providing denotational models for languages with such constructs, and
recently, in [19, 25], these techniques have been applied to provide set-theoretic deno-
tational models for fragments of the �-calculus, which are fully abstract with respect
to strong bisimulation equivalence. The objective of this present paper is to show that
similar techniques can be employed to provide set-theoretic models for the �-calculus
which generalise those presented in [12] for value-passing process calculi. In particu-
lar, we provide two set-theoretic denotational models for the �-calculus which are fully
abstract with respect to must and may testing, respectively.
The �-calculus consists of a small number of constructors for de6ning processes.

For example n?�x:t describes a process which inputs some name m, from a pre-de6ned
set of names N, along the communication channel named n and behaves according
to the result of applying the abstraction �x:t to the name m. Thus if P is to act as a
model for the �-calculus then to interpret this input construct we require a function
inP of type (N× (N⇒P))⇒P, where N is some appropriate representation of the
set of names N and we assume abstractions are interpreted in (N⇒P). Similarly,
the term n!m:t represents a process which can output the name m on the channel n
and then behaves as t. To interpret this construct we require a function outP of type
(N×N×P)⇒P.
In addition to these input=output constructors there are also binary combinators such

as t ‖ u, to run the processes t and u in parallel, and t + u to choose between t and
u; these require functions ‖P; +P of type (P×P)⇒P. However the most intriguing
constructor is restriction, �(n)t. For example, the process �(n)m!n:t can output along
the channel m, to a parallel process, some new private name k, diIerent from all
others in existence, and this new name k may be used for subsequent communication
between the parallel process and t[k=n]. Since �(n) is a binding operator it needs to be
interpreted as an operator of type (N⇒P)⇒P.
We now discuss brieJy the nature of the model P and how it can support the

interpretation of these constructors. Following the ideas of [25], there are two important
observations which underlie the nature of the model:
(1) The behaviour of a process depends only on the 3nite set of channel names which

it contains, or to be more precise the set of its free channel names, i.e. those
which are not bound by the binding constructors of input and restriction. So for
each 6nite set of names s we will have a model Ps to interpret the behaviour of
process terms which only use the names in s.

(2) Intuitively, the behaviour of a process is preserved by injective renamings of its
(free) names. For example, let p be the simple process n!m:0 + m!n:0 and � the
injective renaming which maps m to k and n to l. Then, intuitively, the behaviour
of p�, i.e. l!k:0 + k!l:0, is determined by that of p; it can be reconstructed from
that of p by means of the injection �. More generally this implies the existence,

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 55

for each injection s ��→ s′, of a translation P� from the space of meanings Ps to
that of Ps′ .

The most convenient framework in which to formalise this uniform family of interpre-
tations {Ps | s⊆3nN} is in terms of functor categories. Let I be the category whose
objects are 6nite subsets of N and whose morphisms are injections s ��→ s′. Let D be
some suitable category of domains. Then DI is the category whose
(1) objects are functors from I to D,
(2) morphisms are natural transformations.
The domain P we use is an object in DI , for a suitable choice of D.
A particular domain Ps, from this uniform family of domains, needs to be suAciently

rich to describe the behaviour of all processes with free names included in s. However,
it should be clear that this description will require the use of names which are not in s.
For example even if the free names of the process p, of the form n?�x:t, are included
in s a complete description of its behaviour will have to include what happens when
it receives along the channel n a name which is not in s. Denotationally, this will
be reJected in the fact that the domain equation characterising P will have an input
component of the form N× (N⇒P). Here N, the representation of the set of names
N is the trivial functor whose action at s returns s itself, and ⇒ is the exponential
operator in the functor category. This is such that the action of (N⇒P) at s describes
not only a function from s to Ps but also a uniform collection of functions from s′ to
Ps′ for each s′ such that s

��→ s′. This is more than suAcient to capture the consequences
of inputting names not in s.
In a similar manner the proper treatment of restriction requires that the description

of Ps includes names not in s. For example to describe the behaviour of the process
�(x)n!x:t, whose free variables are included in s, one needs to describe what happens
when some name y not in s is output on n and this name is subsequently used to
interact with the process t[y=x]. Behaviourally, it does not matter which y not in s we
choose, and denotationally this is reJected in the fact that for any y; y′ =∈ s; Ps∪{y} is
isomorphic to Ps∪{y′}: the isomorphism is given by the pair of morphisms

Pid+y �→y′ : Ps∪{y} → Ps∪{y′} and Pid+y′ �→y : Ps∪{y′} → Ps∪{y}:

Formally, I is a symmetric monoidal category with disjoint union being the tensor,
which we denote by +. We use 1 to denote any singleton set, since all such sets are
isomorphic. To reJect this behaviour the domain equation for P will have an output
component which includes N× s(P) where s is the functor de6ned so that the action
of s(A) at s, for any functor A, gives As+1. Intuitively this component, at s, models
the output along a channel of an arbitrary new name.
Before giving the actual domain equation for P we need to 6rst discuss the category

of domains D used. Since our version of the �-calculus includes recursively de6ned
processes we use algebraic cpos, [9]. In addition the language has operators for internal
and external choice, ⊗ and +, respectively. With respect to the behavioural testing
preorders [10] these operators enjoy many algebraic properties. These are given in

56 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

Section 2 and a domain which satis6es these laws is called a choice domain. For
example with respect to the must preorder ⊕ satis6es the laws of a lower semi-lattice.
Consequently to model this behavioural preorder we work within the category lSLI

where lSL is the category whose objects are domains which are also lower semi-
lattices and whose morphisms are linear continuous functions, i.e. continuous functions
which also preserve the semi-lattice meet operator. lSLI has a natural exponential
operator, ⇒, which has a left-adjoint, a form of tensor product which we denote by ⊗.
In short lSLI is an autonomous category, i.e. a closed symmetric monoidal category.
We use as our domain the initial solution to the equation

P ∼= (A × (N ⊗ F)� × (N ⊗ C)�)⊥

F ∼= N ⇒ P

C ∼= (N ⊗ P) + s(P)

in the category lSLI . Intuitively a non-trivial object in P has three components,
• A, a functor representing the initial nondeterministic behaviour of a process,
• N⊗F, a functor representing the input behaviour, as explained brieJy above,
• N⊗C a functor representing the output behaviour. C, representing the possibilities of
output on a particular channel, has two components, N⊗P representing the standard
output of a name, and s(P) representing the output of an arbitrary new name, as
explained brieJy above.
Since P is an object in lSLI it automatically has an appropriate interpretation for

the internal choice operator ⊕, namely the meet operation. Moreover properties of the
natural transformations used to de6ne P ensure that it is also a choice domain, thereby
providing also an interpretation for the external choice operator +. We show how to
interpret all of the other constructors from our version of the �-calculus in P and prove
that it is fully abstract with respect to the must testing preorder.
Essentially the same equation, only with � and ⊥ is omitted, can be solved in

the category uSLI , where uSL is the category of upper semi-lattices; the internal
choice, ⊕, satis6es the laws of an upper semi-lattice with respect to the may testing
preorder. We also prove that the resulting interpretation is fully abstract with respect
to this behavioural preorder.
We now give an outline of the remainder of the paper. In Section 2 we review

the various mathematical constructions needed to describe the model. The language
and its operational semantics is given in Section 3. It contains the standard �-calculus
constructors for input, output, restriction, parallel and the empty process, although the
syntax used is somewhat diIerent than that in [15, 16]. In addition we allow recursive
de6nitions of processes together with name matching and mismatching; the latter takes
the form of a constructor if b then t else u where b can be any boolean expression
from a very simple language for comparing names. As discussed above we also use
an internal choice operator ⊕, which is de6nable in the more standard versions of
the �-calculus. Finally in place of the CCS choice operator, which normally forms
part of the �-calculus, we use external choice. Modulo the change from CCS choice

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 57

to external choice the operational semantics, in the form of a reduction relation, is
standard, [15]. This section ends with the de6nition of two behavioural preorders �must

and �may over process terms: intuitively p�must q ensures that every test, in the form
of another process, guaranteed by p is also guaranteed by q, while p�may q means
that q is capable of satisfying all those tests which p can satisfy. The de6nitions are
taken directly from the general framework presented in [10].
In the next section, Section 4 we 6rst present the general requirements necessary

for a domain P to provide an interpretation for the language. This is followed by the
description of the interpretation in any such domain. The main point of this section is
to give the de6nition of a particular model, satisfying these requirements, as the initial
solution to the domain equation given above in the category lSLI .
Section 5 contains the main result of the paper. We prove

for all process terms p; q; P<p=6P<q= if and only if p��must q� for every re-
naming � of the set of names N

i.e. the model is fully abstract with respect to the behavioural preorder �must. This
section 6rst gives an overview of the proof of this result, reducing it to three indepen-
dent theorems. These are tackled in three subsequent subsections. The main technical
device is that of an acceptance trace. This consists of a 6nite sequence of actions,
appropriate to the �-calculus, followed either by �, indicating an ability to diverge,
or by a 6nite set of communication potentials, a communication potential taking the
form either n? or n!:
• The 6rst result is an internal full abstraction result for the model. Sets of acceptance
traces can be associated with objects in the domains Ps, the component of P at the
set s, and we prove that equality in the model is determined by these sets.

• Sets of acceptance traces can also be associated behaviourally with process terms
of the language, using the operational semantics. The second result, in Section 5.2,
states that this behavioural set of acceptances coincides with that associated with the
interpretation of the term in the model.

• The 6nal result shows that the behavioural preorder �must is also determined by sets
of acceptance traces, those associated behaviourally with process terms.

The paper ends with a brief section, Section 6, outlining similar results for may testing.
A minor variation on the domain equation is solved in the category uSLI , where
uSL is the category of upper semi-lattices, and an outline of a proof that the resulting
interpretation is fully abstract with respect to �may.
We end this introduction with a brief comparison with other research. As we have

already stated, most of the semantic investigations into the �-calculus has been based on
behavioural theories of processes. Those presented in [15, 16] use suitable adaptations of
bisimulation equivalence, [14], and these are characterised equationally, for subsets of
the �-calculus, in [21]. Similarly in [4, 11], the testing preorders from [7] are adapted
to the �-calculus and equationally characterised. In [4] the standard version of the
language is used while [11] uses essentially the same version as the present paper.
Indeed much of the equational treatment of processes in Section 5.2, in particular

58 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

their reduction to head normal forms, is taken directly from this Technical Report.
However, the model constructed is a term model, de6ned by quotienting process terms
by the provability relation generated by the proof system and using an ideal completion
construction to obtain a domain.
The models constructed in the present paper are set theoretic, in the sense that they

are de6ned using more or less standard domain theoretic constructions, although the
categories in which the domain equations are solved are rather complicated. The tech-
niques used are borrowed directly from [25] where a fully abstract model is constructed
for a version of the �-calculus with replication instead of recursion. The domain used
is the initial solution in the category SFP I of a domain equation which is a sim-
ple variation on the domain equation used in [1] to model CCS with respect to late
strong bisimulation. No explicit de6nition is given for the natural transformations which
interpret language constructs but the use of the category SFP I , and the natural trans-
formation s is well motivated from a monadic view of computation, as expounded in
[18].
A very similar approach is taken in [19] where a very similar model to that in [25] is

constructed for the same subset of the �-calculus with respect to the same equivalence,
strong late bisimulation equivalence. However, here the emphasis is more on exhibiting
a general framework which can be instantiated to yield semantic models for a range of
languages and the use of monads as a structuring mechanism for yielding denotational
semantics. Much use is made of a general meta-language within which the �-calculus
can be interpreted. In particular, the proofs relating the operational and denotational
semantics are expressed in terms of this meta-language.
From papers such as [8, 20, 22], it is clear that functor categories provide very useful

structures within which to interpret complex operational features involving locality. The
present paper, together with [19, 25], serves to emphasise that similar techniques can
also play a very signi6cant role in understanding the semantics of the �-calculus, or
more generally process languages with local names.

2. Mathematical constructions

For domains we use algebraic cpo’s in which every bounded subset has a least
upper bound [9]. A predomain is a domain which may lack a least element, i.e. only
non-empty bounded subsets have a least upper bound. However, we will generally use
domains with structure. Let lSLp be the category whose objects are predomains D
endowed with a continuous binary operator ∧ which satisfy the lower semi-lattice laws:

x ∧ x = x
x ∧ y = y ∧ x
(x ∧ y) ∧ z = x ∧ (y ∧ z)
x ∧ y6x

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 59

and whose morphisms are linear continuous functions, i.e. continuous functions which
preserve ∧. This category has products and coproducts; the product is ordinary Cartesian
product D×E, with ∧ de6ned pointwise; we use 〈f; g〉 to denote the unique morphism
from A to D×E obtained from the morphisms f :A→D; f :A→E. The coproduct
D + E can be de6ned by D� ×E� − {�×�}, where D� is the lower semi-lattice
obtained from D by adjoining a new top element �. We use [f; g] to denote the
unique morphism from the coproduct D + E determined by the morphisms f; g from
D; E, respectively. The lifted domain D⊥, obtained by adjoining new bottom element
to D is also a functor in lSLp; the meet is extended in the trivial manner by making
it strict.
For any set s the set of maps from s to D, where D is an object in lSLp, is

also in lSLp as ∧ and the order can be de6ned pointwise; this object is denoted
by (s→D). In the same way the set of morphisms between two objects, D1⇒D2, is
also in the category. However −⇒D2 is not right-adjoint to D1×− . Nevertheless,
it does have a right-adjoint, which we denote by D1⊗−. This means that lSLp
is naturally an autonomous category, i.e. is a closed symmetric monoidal category.
The tensor product, D1⊗D2, can be constructed by quotienting formal 6nite meets of
objects from the product D1×D2 with respect to equations dictating that ∧ is linear
in both arguments. Every continuous function f from D1×D2 to D which is linear
in both arguments determines a unique morphism f⊗ :D1⊗D2→D which satis6es
f(a; b)=f⊗(a⊗ b). However for notational convenience we continue to use �i; i =
1; 2, as the morphisms from D1⊗D2 to Di determined by the projections from D1×D2
to Di and 〈f; g〉 to denote the morphism into D1⊗D2 determined by the morphisms
f :A→D1; f :A→D2. We will also use D⊗k to denote the product of k copies of
D; D⊗ · · · ⊗D.
Let ŝ denote the free lower-semi-lattice generated by a 6nite set s; this can be

represented as Pne(s), the set of non-empty subsets of s ordered by reverse subset
inclusion. Since for 6nite domains continuity requirements degenerate to monotonicity
requirements this means that ŝ is also the free object in lSLp generated by the 6nite
set s. The product ŝ⊗ · · · ⊗ ŝ, can be represented by Pne(s1× · · · × sk), again ordered
by reverse subset inclusion and set union as ∧. Also for any object D in lSLp; ŝ⊗D
has a simple representation as (s*ne D), the set of non-empty partial functions from
s to D; here the order is de6ned by f6g if
• domain(g)⊆ domain(f),
• for every n∈ domain(g); f(n)6g(n).
and f∧ g is given by

(f ∧ g)x=f(x) ∧ g(x); x ∈ domain(f) ∩ domain(g)
=f(x); x ∈ domain(f)− domain(g)
= g(x); x ∈ domain(g)− domain(f):

Note that this implies domain(f∧ g)= domain(f)∪ domain(g). We will frequently
use the construction (ŝ⊗D)� and therefore introduce the more convenient notation

60 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

(ŝ⊗�D); note that this can also be represented by (s*D) the set of partial, but
possibly empty, functions from s to D, with the ordering and ∧ as de6ned above.
As mentioned in the introduction we will interpret the �-calculus in domains which

have even more structure. Of course, to solve least 6xpoints we require a least element
in our domains and therefore will sometimes use the sub-category lSL where the
objects are domains; as usual we use ()⊥ to denote the functor from lSLp which
adjoins a bottom element to a predomains, with down representing its right adjoint.
Note that in objects from lSL; ∧ is always strict.
The meet operator ∧ will be used to interpret internal choice but we will also require

an interpretation for external choice, +, and the empty process 0. Unfortunately, we
cannot work with distributive lattices as the operator + will not behave, operationally,
as a join operator; p1+p2 is in general unrelated behaviourally to pi. Nevertheless, we
can salvage many of the properties of distributive lattices. A lower choice predomain is
an object in lSLp endowed with an extra continuous binary operator + and a constant
0 which satisfy the laws:

x + x = x

x + y = y + x

(x + y) + z = x + (y + z)

x + 0 = x

x + (y ∧ z) = (x + y) ∧ (x + z)
x ∧ (y + z) = (x ∧ y) + (x ∧ z)
x ∧ y6x + y

i.e. the extra structure is that of a commutative semi-group and both binary operators
distribute over each other. We should point out that the last law given above is derivable
from the others but nevertheless, because of the variation to be considered below, it is
convenient to include it.
The initial object in the category of lower choice predomains (where the morphisms

preserve all the operators), generated by a 6nite discrete set s is the set of acceptance
sets over s; A(s). An acceptance set over s is a 6nite non-empty subset, I, of the
powerset of s which satis6es
• J; K ∈I implies J ∪K ∈I;
• J; K ∈I; J ⊆L⊆K implies L∈I.
Note that this de6nition is a slight generalisation of that used in [10] as we do not
require ∪I to be s. In A(s) + is de6ned pointwise, I+J= {J ∪K | J ∈I; K ∈J},
while I∧J is the smallest acceptance set containing both I and J. However, we
will tend to work in the more general category lSLp because some constructions
will not preserve external choice, although all will preserve internal choice. Instead
we will see that some constructions within lSLp will automatically lead to choice
predomains. For example adjoining a top element to any object of lSLp, constructs
a choice predomain, since + can be de6ned to be ∧ and � can act as the 0.

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 61

These categories have variations, the categories uSLp and uSL, obtained by con-
sidering upper semi-lattices in place of lower semi-lattices; that is the objects are pre-
domains, domains, respectively, endowed with a continuous binary operator ∨ which
satis6es the laws of an upper-semilattice:

x ∨ x = x
x ∨ y = y ∨ x
(x ∨ y) ∨ z = x ∨ (y ∨ z)
x6x ∨ y

In objects from these categories all joins exist, since by de6nition all 6nite joins and all
directed joins exist. An upper choice predomain is de6ned analogously; it is an object
in uSLp with two extra continuous operators + and 0 satisfying the laws given above.
However, in this case much of the algebraic structure degenerates; it is straightforward
to show that in any upper choice domain ∨ and + coincide. Moreover, every upper
choice predomain is automatically an upper choice domain as 0 is a minimal element.
We now turn our attention to the functor categories we require. Let I denote the

category whose objects are 6nite subsets of the set of names N and whose morphisms
are injections. This category has a symmetric monoidal structure; the tensor, which
we denote by + is given by disjoint union and the zero by the empty set. Moreover,
it can be freely generated from one object 1 [19] which may be taken to be any
any singleton set. Let lDp denote the category whose objects are functors from I to
lSLp and whose morphisms are natural transformations. There are, of course, the usual
variations on this, for example lD; uDp; uD, obtained by using lSL; uSLp; uSL,
respectively, in place of lSLp. These are autonomous categories as they inherit much
of the structure of the underlying categories. Products, coproducts and ⊗ are de6ned
pointwise but as usual exponentiation, ⇒, the right-adjoint of ⊗, must be expressed in
terms of natural transformations. The objects in (D⇒E)s, i.e. (D⇒E) acting on the
set s, are dependent families of objects∏

s
i�→ s′
(Ds′ ⇒ Es′)

satisfying certain uniformity constraints, while the morphisms between exponentials are
determined by the requirement for ⇒ to be functorial. Luckily, we will only have a
restricted need for exponentiations.
Let A be the object in lDp whose action on the 6nite set s gives the free (lower)

choice predomain A(s + s), where s + s is the disjoint union of s with itself, and
which acts on the morphism s i�→ s′ to give the obvious continuous function from As to
As′ , de6ned by A(s i�→ s′)A= {i(a) | a∈A}. The need for two copies of s will become
apparent when we explain the construction of our model. The de6nition of the object N,
used to model names, is somewhat simpler: on the set s it gives the free object of lSLp
generated by s, i.e. the set of subsets of s, and on morphisms it simply generalises
injections to sets. To construct our model we will only require exponentials of the

62 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

form (N⇒A) which have a particularly simple form; (N⇒A)s can be represented by
a collection of functions over N.
Let Fs(A) denote the set of all functions f with domain N such that

(1) f(n)∈As∪{n},
(2) for all n; m not in s; f(n)=A(id+m �→n)f(m).
Under the standard pointwise ordering this is a predomain which is isomorphic to the
predomain (N⇒A)s.
We wish to solve a domain equation in lD which involves 6nding the initial solution

to a functor over it. Note that lSL is a cpo-enriched category, i.e. in the terminology
of [9] it is an O-category, and this is inherited pointwise by lD. This means that any
locally continuous functor [9] will have an initial 6xpoint. In our domain equation we
will use the locally continuous functors ×; ⊗ and ⇒ together with the very simple
one s. It acts on a functor A as follows:

(sA)s = A(s+1)

(sA)
(s
i�→ s′) = A(i+1)

where i+ 1 is the obvious morphism in I from s+ 1 to s′ + 1. For any functor A we
use upA to denote the embedding of A into s(A), i.e. upA is the natural transformation
between A and s(A) which at s is given by the morphism Ain from As to A(s+1) where

s in�→ s+ 1 denotes the injection of s into s+ 1.
The functor s satis6es the following useful properties:

s(A�) � (s(A))�

s(A⊥) � (s(A))⊥

s(A× B) � s(A)× s(B)

s(A+ B) � s(A) + s(B)

s(N ⊗ A) � (N ⊗ s(A)) + s(A)

s(N ⇒ A) � s(N)⇒ s(A)

Notation. In general, we use a : A→B to denote the fact that, in the category under
consideration, a is a morphism from the object A to the object B. In the particular
case of the underlying category I we use A a�→ B and sometimes when working in a
functor category we will use a : A →̇B to emphasise that the morphisms are natural
transformations. We will always use (A⇒B) to indicate the exponential in a category,
i.e. the object consisting of all morphisms from A to B.

3. The language

Our language is a slight extension of the standard �-calculus [15, 16], with somewhat
modi6ed syntax. Let V be a set of process variables, ranged over by X; Y; : : : ; and N

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 63

x;X1 : : : Xi : : : Xn � Xi : P : : :)* : : : � t : P
: : : *) : : : � t : P

+ � 0 : P + + n � t : P
+ � �(n)t : P

+ + n � f : F
+ + n � n?f : P

+ + n+ x � t : P
+ + n+ x � n!x:t : P

+ � t : P + � u : P
+ � t op u : P op = ‖; +; ⊕

+ � t : P+ � u : P
+ � if b then t else u : P
+ + x � t : P
+ � �x:t : F

+ + X � t : P
+ � recX:t : P

Fig. 1. Free variables in terms.

a countable set of names ranged over by x; y; n; m; : : : : Then the syntax of terms is
given by

t ∈ Exp ::= 0 | n?f | n!x:t | �(n)t
|t‖t | t + t | t ⊕ t
|if b then t else t|X |recX:t

f ∈ Abs ::= �x:t
b ∈ Bool ::= x = y | ¬b | b ∧ b | b ∨ b

There are two binding operators for names, �x:−; �(n)−, and one for process variables,
recX.−. Terms may have free occurrences of both and these are determined by the
simple inference system given in Fig. 1. The judgements are of the form + � t : A
where + is a list of names and process variables, which may occur free in t. The
type of terms may be P, for processes or F for abstractions. As is standard we use
notation such as + + n to indicate the list obtained from + by adding n, assuming
that n does not already appear in +. We assume standard notions of free and bound
variables=names and)-equivalence. A name substitution is a function over N and we
assume the standard de6nition of the application of a substitution � to a term t to give
the new term t�; this renames bound names as required in order to avoid the capture
of substituted names. A term p is closed if it contains no free occurrence of process
variables, i.e. x �p : P. We will often refer to these as process terms, ranged over by
p; q; : : : : For such terms we let fv(p) denote the set of names occurring freely in p,
i.e. the names n such that x �p :P implies n occurs in x.
The operational semantics of the language is given as a reduction relation .→ between

closed terms. The de6nition of .→ uses two auxiliary relations, n?m→ , representing the

ability to input the name m on channel n and n!m→ representing the ability to output m

64 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

Axioms:

n?� x:p n?m→ p[m=x] n!m:p n!m→ p

p⊕ q .→p p⊕ q .→ q

recX:t .→ t[recX:t=X]

Communication rule:

p n?m→ p′; q n!m→ q′
p ‖ q .→p′ ‖ q′

p n!m→ p′; q n?m→ q′
p ‖ q .→p′ ‖ q′

Context rules:

p
/→p′

p ‖ q /→p′ ‖ q
q
/→ q′

p ‖ q /→p ‖ q′
p .→p′

p+ q .→p′ + q
q)→p′
p+ q)→p′

) = n?m; n!m

p
/→p′

�(x)p
/→ �(x)p′

x not in /

<b= = true; p /→p′
if b then p else q

/→p′
<b= = false; q /→ q′

if b then p else q
/→ q′

p ≡ p′; p′ /→ q′; q′ ≡ q
p .→ q

Structural equivalence:

(�(x)p) ‖ q ≡ �(x)(p ‖ q) provided x =∈ fv(q)
p ≡ q provided p ≡) q

(p ‖ q) ‖ r ≡ p ‖ (q ‖ r)
p ‖ q ≡ q ‖p

Fig. 2. Operational semantics.

along n. In the terminology of [15, 16] these are the free input and free output actions of
processes. In Fig. 2 / ranges over these three possible types of action .; n?m; and n!m;
in later technical developments we will also use the so-called bound output actions.
As usual the operational semantics is expressed using a structural congruence, which

is de6ned in the third part of Fig. 2. The operational semantics is then given as
the least one satisfying the axioms and rules, also given in this 6gure. Note that

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 65

)-equivalence is included in the structural congruence and therefore operationally we
work modulo)-equivalence. In the rule for the if then else statement we also assume
some evaluation mechanism for boolean expressions, which in view of their simplicity,
should be obvious.
As an example of an application of the reduction rules consider the process term

p = (�(y)n!y:r + n!x:r′) ‖ n?(�z:z!y:0 + z!x:0)

Up to)-equivalence there are two possible reductions from p, the 6rst to r′‖(x!y:0 +
x!x:0) by the transmission of the name x, and the second to �(w)r[w=y] ‖ (w!y:0+w!x:0)
where w is some new name.
We refer the reader to papers such as [17, 23] for evidence of the expressive power

of this language. Here we con6ne our attention to de6ning two behavioural preorders
over process terms and in later sections we build fully abstract denotational models for
these preorders.
The behavioural preorders are based directly on the ideas of testing as developed

for example in [7, 10]. A process p is tested (to conform to some behavioural require-
ment) by running it in parallel with another process e, presumably designed with the
behavioural requirement in mind. This test is deemed a success if the experimenter, e,
reaches a speci6ed state. To model this success state we introduce a new name !, not
occurring in N and we say e is in the success state if it can emit an output along !,
we indicate this by the notation e !→.

De�nition 1. Let p must be e if for every maximal computation

e ‖p = c0 .→ c1 .→· · · .→ ck .→· · ·

there is some n such that cn
!→

Then p�must q if for every test e; p must e implies q must e.
This preorder is based on the idea of a process guaranteeing certain behaviour.

There is a weaker preorder which captures the idea of processes being capable of
certain behaviour: p�may q if for every test e; p may e implies q may e; where q may
e means that there is some maximal computation from e ‖ q which reaches a state cn
such that cn

!→.
In the next section we build a model which provides a denotational semantics which

is fully abstract with respect to �must and in Section 6 we show how this can be
modi6ed so as to provide a semantics which is fully abstract with respect to �may.
We end this section by noting that both of these preorders are natural generalisations

of Morris style contextual preorders [3, 13]. We have restricted the possible testing
contexts to be of the simple form e ‖[]. We conjecture that the model can also be used
to provide a denotational semantics which is fully abstract with respect to a notion of
testing where more general contexts are allowed, although it is essential that the action
for reporting the success ! be new, i.e. an action which cannot be performed by the

66 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

process being tested. A result along these lines, for may testing, is given at the end of
Section 6.

4. The interpretation

We interpret the language in the category lDp. To do so we use an object in the
sub-category lD; which we call P; together with an appropriate morphism, i.e. a natural
transformation, for each combinator in the language. In the standard way [6] we can
then associate with each typing judgement x �p :P a morphism from N⊗x to P in the
category lDp; here N⊗x represents the product of copies of N; one for each element in
x. Because of the nature of these products these morphisms have a simple representation
in terms of environments. For any 6nite subset s of N let ENVs be the set of mappings
from N to s. For �; �′ ∈ENVs let � =x �′ if �(y)= �′(y) for every name y in the
vector x. Then the set of morphisms from (N⊗x)s to Ps; in the category lSLp; is in
one–one correspondence with the set of mappings from ENVs to Ps which preserve
=x. In other words, our semantics is equivalent to a family of interpretations

< = s :ENVs → Ps

Moreover, naturality ensures that this is a uniform family of interpretations; the family
of domains {Ps | s⊆N} comes equipped with translation morphisms (P�) :Ps→Ps′ ;
for each injection s ��→ s′ and these translation morphisms also relate the interpretation
of terms in the diIerent domains:

<p= s′(� ◦ �) = (P�)(<p= s�):
In order to give this interpretation we require, in addition to the object P;
• ⊕P; a morphism from P ⊗ P to P, to interpret internal choice. P will be a lower
semi-lattice and ⊕P be the meet operation ∧⊗.

• +P, a morphism from P⊗P to P, to interpret external choice. The lower semi-
lattice P will be constructed in such a way that it is also a choice domain and will
therefore come equipped with a natural candidate for +P, namely the extra binary
operator +⊗.

• 0P, an object in P to interpret the language construct 0. Again we will have a natural
candidate since P will be a choice domain.

• ‖P, a morphism from P⊗P to P to model the parallel construct.
• �P, a morphism from (N⇒P) to P to interpret the construct �(n)t.
• Abstractions will be interpreted in (N⇒P) and therefore to interpret the language
construct n ?f we need a morphism inP from N⊗ (N⇒P) to P.

• In order to interpret the output construct n!x:t we require a morphism outP from
N⊗N⊗P to P.
Because of the presence of recursive terms the de6nition of the semantics will also

apply to open terms. So, in fact, we interpret the general type judgement + � t : P as
a morphism from <+= to P where the object <+= is determined by the structure of +.

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 67

If it has the form x; X then it has the form N⊗x ⊗P⊗X . Therefore, when t is a closed
term this will be a morphism from N⊗x to P, as promised above. The de6nition of
<+ � t : P= is by induction on the inference of this judgement. For convenience we will
use �) to denote the projection from <+= unto the) component;) may be a name or
a process variable:
• <x;X1 : : : Xi : : : Xn �Xi : P== �Xi .
• < : : : *) : : : � t : P== < : : :)* : : : � t : P= ◦ 〈�x1 ; : : : �*; �); : : : ; �Xn〉.
• <+ � 0 : P== !<+= ◦ 0P.
• <+ + n� n?f : P== inP ◦ 〈�n; <+ + n�f : F =〉.
• <+ + n+ x � n!x:t : P== outP ◦ 〈�n; �x; <+ + n+ x � t : P=〉.
• For op= ‖;+;⊕; <+ � t op u : P==Pop ◦ 〈<+ � t : P=; <+ � u : P=〉.
• <+ � if b : t then u else P== if ◦ 〈<+ � b=; <+ � t : P=; <+ � u : P=〉.
Here we assume the obvious semantic interpretation of booleans, <+ � b= in (<+=→
Bool), where Bool is the functor whose action at every s gives the set of booleans
{true; false}. Then if also acts pointwise; at every s it selects the second argument
if the 6rst is true and the third otherwise.

• <+ � �x:t : F == �N(<+ + x � t : P=).
Note <+ + x � t : P= is a morphism in (<+=⊗N)→P and since ⊗ is left adjoint to
⇒ we have the mapping �N from (<+=⊗N)→P to <+=→ (N⇒P).

• <+ � �(n)t : P== �P ◦ �N(<+ + n� t : P=).
• <+ � rec X:t : P==Y ◦ �P(<+ + X � t : P=):
Here <++X � t : P= is a morphism in (<+=⊗P)→P and using the adjunction between
⊗ and ⇒ once more there is a mapping �P from (<+=⊗P)→P to <+=→ (P⇒P).
The 6xpoint operator used here, Y, is a morphism from (P⇒P) to P.
To complete our description of the interpretation we must exhibit the speci6c choice

domain P, an object in lD, together with the required morphisms. P is essentially a
functorial version of the Acceptance Tree model of [12], adapted to the �-calculus.
We let P be the initial solution to the equation

P∼= (A × (N ⊗� F)× (N ⊗� C))⊥

F∼=N ⇒ P

C∼= (N ⊗ P) + s(P)

In order to explain the intuition behind this equation let us consider the action of this
functor on an arbitrary object of I , a 6nite subset s of N: Ps is either the bottom
element ⊥ or has three components:
• As, as acceptance set over s+ s, representing the initial non-deterministic behaviour
of a process. We require two copies of s in order to record both the input and
output potentials of processes. To emphasise this use of s + s we let n?; n! denote
inl(n); inr(n), respectively, when applied to s+ s.

• (N⊗� F)s, a 6nite partial function from s to Fs, representing the potential input be-
haviour of a process on some 6nite set of input channels. The objects in Fs represent
the functional behaviour of the process on receipt of an input. F is isomorphic to

68 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

(N⇒P) and so, as outlined in Section 2, Fs is isomorphic to Fs(P). This encodes
the subsequent behaviour of the process on receipt of any name in s and on receipt
of an arbitrary name not in s.

• (N⊗� C)s another partial function from s to Cs, representing the potential output
behaviour along a 6nite number of output channels. The output behaviour associated
with each channel, in Cs, is of two kinds:
◦ (N⊗P)s, a 6nite non-empty function from s to Ps, representing a 6nite set of
pairs, each pair consisting of a name to be output along the channel and an
element of Ps encoding the subsequent behaviour of the process.

◦ s(P)s; i.e. P(s+1), representing the subsequent behaviour of the process after out-
puting an arbitrary new name not in s along the channel.

For convenience, whenever appropriate, we will elide the isomorphism pair unfold and
fold between P and (A × (N⊗� F) × (N⊗� C))⊥. First note that since P is in the
category lD it is a lower semi-lattice, thus providing an interpretation for ⊕. Moreover
it is also a lower choice domain since
• A is a lower choice domain,
• both N⊗� F and N⊗� C are lower semi-lattices with zeros for ∧, namely �, and
therefore are also lower choice domains,

• lower choice domains are closed under product,
• the lifting of a choice domain can be made into a choice domain by extending the
operator + in the obvious strict manner.

We therefore have the required interpretation for the language operators 0 and +.
To de6ne the natural transformation inP : N⊗ (N⇒P) :→P we must de6ne for each
s a morphism (inP)s from (N⊗ (N⇒P))s, i.e. s *ne (N⇒P)s, to Ps. This is de6ned
as follows:

(inP)sg = ∧{({{n?}} × (n �→ gn)× ∅)⊥ | n ∈ domain(g)}:
Intuitively, (inP)s is determined by its action on the functions with singleton domains.
So for example when applied to the function (n �→f) it constructs the object ({n?} ×
(n �→f)× ∅)⊥.
The output natural transformation outP is de6ned in a similar manner. (outP)s is the

morphism from (N ⊗N ⊗ P)s, i.e. (s× s*ne Ps), to Ps de6ned by

(outP)s g = ∧{({{n!}} × ∅ × (n �→ (m �→ g(n; m))))⊥ | (n; m) ∈ domain(g)}:
The de6nitions of the remaining two morphisms, ‖P and �P are somewhat compli-
cated. The de6nition of the 6rst is not of great interest as it is determined by the
requirement that the interleaving law in Fig. 5 be satis6ed. It is therefore relegated
to Appendix A. However the entire structure of P, and its construction in the functor
category, is motivated by the search for an adequate de6nition of �P. This is given in
terms of an auxiliary natural transformation new : s(P) →̇P. Given new we can de6ne
the morphism �P, i.e. a natural transformation from (N⇒P) to P, using a coercion
natural transformation between (N⇒P) and s(P). Let c : (N⇒P) →̇ s(P) be given by
the family of morphisms cs from (N⇒P)s, i.e. Fs(P), to (s(P))s, i.e. P(s+1), de6ned

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 69

by cs f=f(y) for any y =∈ s. Note that this de6nition does not depend on the particular
value of y chosen. Then the required natural transformation �P : (N⇒P) →̇P is given
by new ◦ c.
To de6ne the natural transformation new from s(P) to P we make use of the

properties of s given in Section 2. Using these one can easily show that s(P) is iso-
morphic to

(s(A)× (s(N ⊗ F))� × (s(N ⊗ C))�)⊥:

Therefore the de6nition of new will take the form (new1 × new2 × new3)⊥ where
• new1 : s(A)→ A,
• new2 : (s(N ⊗ F))� →N ⊗� F,
• new3 : s(N ⊗ C))� →N ⊗� C.
In fact, new will be used in the de6nition of newi and therefore we will take new to
be the least morphism to satisfy its de6nition. We de6ne each of its components in
turn:
• Intuitively, the action of new1 at the set s is to pointwise restrict subsets of P(s+1)
to subsets of P(s). Formally, (new1)s is de6ned by (new1)s(I)= {J\s | J ∈ I}
where J\s= {n?; n!∈ J | n∈ s}.

• To de6ne new2 we use the isomorphism

s(N ⊗ F) � (N ⊗ s(F)) + s(F):

If newf is a natural transformation from s(F) to F then [idN ⊗ newf; �x:�] can
be taken to be a natural transformation from s(N ⊗ F) to N ⊗� F and new2 will
be de6ned as its trivial extension. So to complete the de6nition we must specify
newf. Since F is isomorphic to N⇒P, by de6nition, and we have the isomorphism
s(N⇒P) � (s(N)⇒ s(P)) we can de6ne newf to be (upN ⇒ new).

• new3 is de6ned in a similar manner as the trivial extension of [idN ⊗ newc; �x:�]
where newc is a natural transformation from s(C) to C. s(C) is isomorphic to (N⊗
s(P)) + (s(P) + s(s(P))) and therefore new3 can be de6ned to be (idN ⊗ new) +
[id s(P); s(new) ◦ switchP], where switchP is the natural transformation over s(s(P))
which at s is given by the morphism P(id s + switch), and switch : 1 + 1→ 1 + 1 is
the morphism in I which switches its arguments.

This completes our description of the interpretation of the �-calculus.
We have associated with each term p such that + � p : P a natural transformation

between <+= and P. As explained at the beginning of this section this gives, for each
process term p, a family of interpretations <p=s which can be viewed as mappings from
ENVs to Ps. Speci6cally if x1 : : : xk � p : P then for � ∈ ENVs we let <p=s� denote the
element in Ps given by <p=s(�(x1)⊗ · · · ⊗ �(xk)). With this notation the interpretation
satis6es the well-known Substitution Lemma:

Lemma 4.1. <p�=s� = <p=s(� ◦ �):

70 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

5. Full abstraction

In this section we give the relationship between the operational and denotational
semantics. Recall from the previous section that the denotational semantics gives rise
to a family of interpretations,

< =s : ENVs → Ps;

one for each 6nite subset s of N. Also each � ∈ ENVs can act as a substitution over
processes. With this notation in mind the main result of this paper can be stated as:

Theorem 5.1. For all process terms p; q and for every � ∈ ENVs; p� �must q� if and
only if <p=s�6<q=s�.

This immediately gives

Corollary 5.2. For all process terms p; q; <p=6<q= if and only if p� �must q� for
every environment �.

We 6rst give an outline of the structure of the proof of this result. This is followed
by three subsections which contain the details. The essential ingredient of the proof is
the notion of acceptance traces. Let AccTr be the least set such that
• �∈ AccTr,
• J ∈ AccTr if J is a 6nite subset of Ind = {n?; n! | n∈N},
• a ∈ AccTr implies:

◦ n?x.a∈ AccTr,
◦ n!x.a∈ AccTr,
◦ �(x)n!x.a∈ AccTr.

Informally, these can be viewed as terms in the language (with the added constant �);
viewed in this manner �(x) acts as a binding operator on acceptance traces and we
will only consider them up to)-conversion. Note however that n?x is NOT a binding
operator; in the terminology of [15, 16] it represents a free input action.
Acceptance traces are ordered as follows:

• �! a for every acceptance trace a,
• J!K if J ⊆K ,
• a! b implies:

◦ n?x.a! n?x.b,
◦ n!x.a! n!x.b,
◦ �(x)a! �(y)b[y=x] for every y =∈fv(�(x)b).

This ordering is lifted to sets of acceptance traces by

A!B if for every b ∈ B there exists some a ∈ A such that a! b:
Sets of acceptance traces can be associated with elements of the domains Ps and,
behaviourally, with process terms of the language. We 6rst consider the latter and

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 71

to do so we need some notation. The operational semantics is given in terms of a
reduction relation .→ between process terms. Here we need to describe the potential
actions a term can perform. There are three kinds of potential actions;

(1) an input action n?x→, as described in Section 3,
(2) an output action n!x→, also as described in Section 3,
(3) a bound output action

�(z)n!z→ .
We use Act, ranged over by), to denote this set of potential actions. The bound output
action may be de6ned by

p
�(z)n!z−→ q; if p ‖ n ? �y:y!y:0 .→ �(z)(q ‖ z!z:0); where z =∈ fv(p):

These are extended to sequences over Act by
• p 7⇒ q if p .→∗q,
• p):s⇒ q if p .→∗)→ s⇒ q.
We write p⇑ if p diverges, i.e. there is an in6nite sequence of derivations

p .→p1 .→· · · .→pk .→· · ·
and p ⇓ if it converges, i.e. there is no such sequence. Finally, let S(p) denote the
subset of the set of indications, Ind, de6ned by

{n? |p n?x⇒ for some x} ∪ {n! |p n!x⇒ or p
�(x)n!x⇒ for some x}:

With this notation we can now de6ne the behavioural acceptance traces associated with
a process term:
• p |=b � if p⇑;
• p |=b J if p⇓ and J = S(q) for some q such that p 7⇒ q;
• p |=b):a if p⇓ and q |=b) for some q such that p)⇒ q.
Let AccTrb(p) denote the set of behavioural acceptance traces of p, {a |p |=b a}.
These sets characterise the behavioural preorder �must:

Theorem 5.3. p �must q if and only if AccTrb(p)! AccTrb(q).

The proof of this theorem is given in Section 5.3.
In a similar manner we can associate with each element d of the domain Ps a set

of acceptance traces AccTrsem(d); the details are postponed until Section 5.1 because
the structure of Ps needs to be elaborated.
The following theorem is often called an internal full abstraction result as it gives

an alternative characterisation of identity in the model.

Theorem 5.4. For every d; e ∈ Ps; d6e if and only if AccTrsem(d)! AccTrsem(e).

The proof of this theorem will be given in the Section 5.1.
The third major result relates the behavioural acceptance traces of a process term

with the acceptance traces of its denotation. In general these will not be identical.

72 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

For example it turns out that the only sets of indications in AccTrb(n!x:0+m!y:0) are
{n!} and {m!} but, from the de6nition of AccTrsem to be given in the next subsection,
{n!; m!} is also in AccTrsem(<n!x:0 +m!y:0=s)id , where s = {n; m}. However, the sets
of behavioural acceptance traces and denotational acceptance traces associated with
process terms will coincide up to the kernel of ! . For two such sets A; B let A ∼= B if
A! B and B! A, i.e. for every a∈ A there is some b∈ B such that b! a and conversely
for every b∈ B there is some a ∈ A such that a! b.

Theorem 5.5. Suppose x1 : : : xk � p : P. Then for every s such that xi ∈ s; AccTrb(p)
∼= AccTrsem(<p=sid) where id ∈ENVs is any environment which is the identity on s.

Section 5.2 is devoted to the proof of this theorem.
With these three results we can now give the proof of Theorem 5.1:
Let x be such that x � p : P; x � q :P and let s be such that xi ∈ s for every i.

Then

p��must q�⇔ AccTrb(p�)!AccTrb(q�) by Theorem 5:3

⇔ AccTrsem(<p�=sid)!AccTrsem(<q�=sid) by Theorem 5:5

⇔ <p�=sid6<q�=sid by Theorem 5:4

⇔ <p=s�6<q=s�

The last line is an application of the Substitution Lemma: <p�=sid = <p=s(id ◦ �):

5.1. Internal full abstraction

In this section we give the details of the internal full abstraction result for the model
P. In order to associate acceptance traces with elements of the domains Ps we 6rst
need to develop some notation for describing their various components.
As outlined in Section 2 for any functor H the predomain (N⊗� H)s can be repre-

sented as (s * Hs). Moreover if � :H
·→K then the action of the natural transformation

(id ⊗� �) :N ⊗� H ·→N ⊗� K at s is given, in terms of this representation, by the
morphism (N ⊗� H)s : (s * H)→ (s * K), which can be described by �h:�s ◦ h.
A representation for the domain (N⇒H)s was also brieJy touched upon in

Section 2. This takes the form of the collection of functionsFs(H) with domainN. We
can also describe the actions of natural transformations in terms of these representations.
If � :H ·→K then the action of the natural transformation (id⇒ �) : (N⇒H) ·→(N⇒K)
at s is given by the morphism (id⇒ �)s :Fs(H)→Fs(K), described by �f:�n:(�s∪{n}◦
f(n)).
The predomain C is isomorphic to (N ⊗ P) + s(P) and it is also convenient to

develop a concrete representation for the predomains Cs. We know that (N ⊗ H)s
can be represented by (s *ne Hs) and s(H)s is determined by an element of Hs∪{y}
for an arbitrary y not in s. Combining both of these we obtain a representation of
((N ⊗H) + s(H))s as a partial function with domain N. Let PFs(H) be the set of

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 73

all non-empty partial functions f with domain a subset of N which satis6es
• f(n)∈Hs∪{n},
• domain(f)− s is either ∅ or N− s,
• for all n; m∈ domain(f)− s; f(n)=H(id+m �→n)f(m).
Functions in PFs(H) can be ordered in the standard fashion, for partial functions:
f6g if
• domain(g)6domain(f),
• for all n∈ domain(g); f(n)6g(n).
Under this ordering PFs(H) is a predomain isomorphic to ((N⊗H) + s(H))s. More-
over, the actions of natural transformations can also be described in terms of this
representation. Let � :H ·→K. Then the action of the natural transformation

(id⊗ � + s(�)) : (N ⊗H + s(H)) ·→(N ⊗ K + s(K))

at s is given by the morphism (id ⊗ � + s(�))s :PFs(H)→PFs(K) described by
�f:�n∈ domain(f):(�s∪{n} ◦f)n.
These representations will be useful in reasoning about elements of P. In particular,

they can be used to develop a convenient notation for elements of Ps. Let d be an
element of Ps which is diIerent from ⊥. Then, modulo the isomorphisms unfold and
fold,
(1) let Is(d) denote (�1 ◦down)d; Is(d) is an acceptance set over s + s. Using the

convention that inl(n); inr(n) represent n?; n!, respectively, this can be taken to be
an acceptance set over Ind.

(2) let d? denote (�2 ◦ down)d; using the representation given above d? is an element
of (s * Fs).

(3) let d! denote (�3 ◦down)d which also can be taken to be an element of (s * Cs).
With this notation we can now associate acceptance traces with elements of Ps. For
any d∈Ps let
(1) d |=s R if unfold(d)=⊥,
(2) if unfold(d) %=⊥:

• d |=s J if J ∈ AccTrsem(d),
• d |=s n?x.a if d? n x |=s∪{x} a,
• for x∈ s, d |=s n!x.a if d! n x |=s a,
• d |=s �(y)n!y.a if for some z =∈ s, d! n z |=s∪{z} a[z=y].

The uniformity of the family of domains Ps means that satis6ability of acceptance
traces can be transferred from one to the other. Any s ��→ s′ can also be viewed as a
substitution over names; it leaves untouched all those which do not appear in its domain
s. So, viewing acceptance traces as simple terms, this means that these injections can
also be applied to acceptance traces. With this notation we have

Proposition 5.6. If s ��→ s′ then d |=s a implies P�(d) |=s′ a�.

Proof. By induction on the structure of a, by analysing the action of P� on the repre-
sentations of the components of P given above.

74 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

The most signi6cant properties of these acceptance traces are given in the following
lemma:

Lemma 5.7. (1) d |=s n?x.a if and only if d?nx |=s∪{x} a;
(2) for x∈ s; d |=s n!x.a if and only if d!nx |=s a;
(3) d |=s �(y)n!y.a if and only if for every m =∈ s; d!nm |=s∪{m} a[m=y].

Proof. The 6rst two statements follow directly from the de6nitions. The third follows
from the previous proposition, using the uniformity of the functions in PFs(P); in
particular the fact that f(n)=P(s+m �→n)f(m).

Let AccTrsem(d) denote the set of semantic acceptance traces of the element d,
{a |d |=s a}.

Proposition 5.8. For all d; e∈Ps; d6e implies AccTrsem(d)! AccTrsem(e).

Proof. It is straightforward to show by induction on a that ∀s ∀d; e∈Ps, d6e, e |=s a
implies d |=s a′ for some a′ ! a.

The converse however is less straightforward as it depends on the fact that P is
the initial solution to its de6ning equation. We refer the reader to [9] for the general
underlying theory but here we simply state the relevant characteristics of P. We de6ne
three families of natural transformations:

pidk : P ·→P

�dk : F ·→F

cidk : C ·→C

as follows:
(1) aid0 =⊥, i.e. for A=P; F; C aid0 is the natural transformation whose action at

every s is given by the constant morphism �x:⊥,
(2) �dk+1 = (id⇒ pidk),
(3) cidk+1 = (id⊗ pidk) + s(pidk),
(4) pidk+1 = (id× (id⊗� �dk+1)× (id⊗� cidk+1))⊥.
We state without proof:

Theorem 5.9. For A=P;C;F; ∨k(aidk)= idA.

With this characterisation of the domains we can now prove

Proposition 5.10. For all d; e∈Ps; AccTrsem(d)! AccTrsem(e) implies d6e.

Proof. From the previous theorem it is suAcient to show that for all k; pidks (d)6
pidks (e). The case k =0 is trivial and we prove the case k + 1 under the assumption
that it is true for k.

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 75

We may assume d %=⊥ and since AccTr(e)! AccTr(d) this also means that e %=⊥.
Using the representations developed above this means that down(pidk+1s (d)) and down
(pidk+1s (e)) may be taken to be

Is(d)× (�dk+1s ◦ d?)× (cidk+1s ◦ d!) and Is(e)× (�dk+1s ◦ e?)× (cidk+1s ◦ e!)
respectively. Now AccTrsem(e)! AccTrsem(d) means that ∪Is(e)⊆∪Is(d) and there-
fore Is(e)⊆Is(d), since the latter are acceptance sets. It remains to prove

�dk+1s ◦ d?6�dk+1s ◦ e?
cidk+1s ◦ d!6cidk+1s ◦ e!

As an example we prove the latter. Both cidk+1s ◦d! and cidk+1s ◦e! are partial functions,
using the representations above, and so we 6rst must demonstrate that the domain of
cidk+1s ◦e! is contained in that of cidk+1s ◦d!. However, this follows immediately from the
fact that AccTrsem(e)! AccTrsem(d) since n∈ domain(e!) if and only if e |=s n!x.a
for some x; a.
So suppose n∈ domain(e!). We must show that

(cidk+1s ◦ d!)n6(cidk+1s ◦ e!)n
as objects in Cs, i.e PFs(P). Using the representation of the action of functors de-
scribed above (cidk+1s ◦ d!)n, (cidk+1s ◦ e!)n work out to be

�m ∈ domain(d!n):pidk(d!nm) and �m ∈ domain(e!n):pidk(e!nm)
respectively. So we must prove
• domain(e!n)⊆ domain(d!n).

For any m∈ s, m∈ domain(e!n) if and only if e |=s n!m.a for some a. For any
m =∈ s, m∈ domain(e!n) if and only if e |=s �(z)n!z.a for some a. Therefore, the
required property follows from AccTr(e)! AccTr(d).

• for every m∈ domain(e!n); pidk(d!nm)6pidk(d!nm).
First suppose m∈ s. Then using part 2 of Lemma 5.7 we have that AccTrsem(e)!

AccTrsem(d) implies AccTrsem(e!nm)! AccTrsem(d!nm). So we can apply induction
to obtain the required result.
If m =∈ s then, using the third part of the same lemma, we have AccTrsem(e!nm)!

AccTrsem(d!nm), since e |=s �(z)n!z.a if and only if e!nm |=s∪{m} a[m=z], and once
more it follows by induction that pidk(d!nm)6pidk(d!nm).

Combining these two propositions we get Theorem 5.4:

Theorem 5.11 (Internal full abstraction). For every d; e∈Ps; d6e if and only if
AccTrsem(d)! AccTrsem(e).

We should point out that the sets of acceptance traces generated behaviourally by
processes are more restricted than those generated semantically by elements in the mod-
els Ps; they are in some intuitive sense more coherent. For example if, for some process

76 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

p, n!m∈ J for some J ∈ AccTrb(p) then we also have that n!m.a is in AccTrb(p)
for some acceptance trace a. This is not in general true of AccTrsem(d) for d∈Ps as
we have not placed any coherency constriants on the three components of the domain
P. This means that there are primes in Ps which are not denotable by terms in our
language but luckily their presence do not impinge on full abstractness.

5.2. Relating behavioural and denotational acceptance traces

The central technical device in this section is that of head normal form (hnf). We
show that, using equations which are sound for both the behavioural preorder and
the order induced by the denotational model on process terms, every convergent term
can be reduced to a hnf. The structure of these hnf ’s are such that it is relatively
straightforward to relate their behavioural and denotational acceptance traces.
The set of basic inequations are given in Fig. 3, where for convenience we add

a new constant to the language, �, to denote recX. X . These include the de6ning
equations for choice domains together with many standard equations associated with
the �-calculus. A typical example of the latter is

�(n)m?�y: X = m?�y:�(n)X if n %= y; n %= m
Others are more commonly associated with testing style equivalences and typical ex-
amples of these include:

n?�x:X + n?�x:Y = n?�x:X ⊕ n?�x:Y
n!x:X + n!x′:Y = n!x:X ⊕ n!x′:Y

Some care must be taken when applying these to process terms. In particular, they can
not be applied under input pre6xes as the inference rule

p6q
n?�x:p6n?�x:q

is not in general sound for �must. For example, let p; q denote

m?�z:x!w:0 + x!w:m?�z:0; (m?�z:0) ‖ (x!w:0)
respectively. Then p�must q but n?�x:p %�must n?�x:q because n?�x:q can perform the
action n?m followed by a communication to be transformed into 0 whereas n?�x:p
does not have this possibility. So n?�x:p must satisfy the test n !m:m?�x:! whereas
n?�x:q may fail it. This rule is sound for the denotational semantics, i.e. <p=6<q=
implies <n?�x:p=6<n?�x:q=. However, we are trying to relate the behaviour of a process
term p, as captured by AccTrb(p), with a particular component of its denotation <p=,
namely <p= sid, and the rule becomes unsound when applied to this component of the
denotation.
The proof system we use for manipulating terms is given in Fig. 5 and the only

diIerence from the standard equational proof system is the more complicated input rule;
to infer n?�x:p6n?�x:q we must establish p[z=x]6q[z=x] for every name z (although

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 77

X ⊕ X = X
X ⊕ Y = Y + X

(X ⊕ Y)⊕ Z = X ⊕ (Y ⊕ Z)
X ⊕ Y 6 X
X + X = X
X + Y = Y + X

(X + Y) + Z = X + (Y + Z)
X + 0 = X

X + (Y ⊕ Z) = (X + Y)⊕ (X + Z)
X ⊕ (Y + Z) = (X ⊕ Y) + (X ⊕ Z)

X ⊕ Y 6 X + Y
n?�x:X + n?�x:Y = n?�x:(X ⊕ Y)
n!x:X + n!x:Y = n!x:(X ⊕ Y)

n?�x:X + n?�x:Y = n?�x:X ⊕ n?�x:Y
n!x:X + n!x′:Y = n!x:X ⊕ n!x′:Y
�(n)(X + Y) = �(n)X + �(n)Y
�(n)(X ⊕ Y) = �(n)X ⊕ �(n)Y
�(n)n?X = 0
�(n)n!x:X = 0
�(n)m?�y:X = m?�y:�(n)X if n %= y; n %= m
�(n)m!y:X = m!y:�(n)X if n %= y; n %= m
�(n)�(m)X = �(m)�(n)X
(X ⊕ Y) ‖Z = (X ‖Z)⊕ (Y ‖Z)

X ‖Y = Y ‖X
X + � 6 X ⊕ �

X ‖ (Y + �) = �
� 6 X

�(n)� = �
recX:t = t[recX:t=X]

Fig. 3. Equations.

it will well known [21] that it is possible to restrict this to a 6nite number). We write
�p6q if we can derive p6q in the proof system using the basic equations and the
interleaving law in Fig. 4. It is straightforward to establish

Proposition 5.12. �p6q implies
(1) p! q;
(2) <p= sid6<q= sid for any id∈ENVs which is the identity on s.

Note that in general �p6q does not mean <p= s�6<q= s� for every �. In particular
the interleaving law is not sound when interpreted in this manner. For example let p; q

78 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

Let p; q denote
∑{preipi | i∈ I};

∑{prejqj | j∈ J}, where each prek has the form
n ! x or n?�y, and assume that every bound variable is diIerent from the free variables
in p; q. Then

p ‖ q =
{
ext(p; q) if comms(p; q) = false

(ext(p; q) + int(p; q))⊕ int(p; q) otherwise
where

ext(p; q) =
∑{prei · (pi ‖ q; i ∈ I}+

∑{prej · (p ‖ qj); j ∈ J}

int(p; q) = ◦∑{ri; j ; comm(i; j)}

where comms(p; q) is true if there is some i; j such that comm(i; j) and comm(i; j)
holds when
(1) prei is n ! x and prej is n?�y:; then ri; j is pi ‖ (qj[x=y])
(2) prei is �(x) n ! x and prejis n?�y:; then ri; j is (w) (pi[w=x] ‖ qj[w=y]) where w

is not free in �(x) pi or in �(y)qj
(3) prei is n?�y: and prej is n ! x : then ri; j is pi[x=y] ‖ qj
(4) prei is n?�y: and prej is �(x) n ! ; then ri; j is (w) (pi[w=y]) ‖ qj[w=x]) where w

is not free in �(y)pi or in �(x) qj

Fig. 4. Interleaving law.

be the processes de6ned above,

m?�z:x!w:0 + x!w:m?�z:0; (m?�z:0) ‖ (x!w:0)
and let �(m)= �(n)= k. Then �p6q but <p= s�� <q= s�.
We now explain the syntax of hnfs.

De�nition 2. Let I be an acceptance set over Ind. For each c∈∪I let pc be a
process term given as follows:
• If c is n? then pc has the form n?pn? where pn? is some abstraction term.
• c has the form n ! then pc has the form

n!y1:p(n!y1) + · · ·+ n!yk :p(n!yk) {+�(y)n!y:p(�;y)}
where p(n!yi); p(�;y) are arbitrary process terms, yi; y are distinct names and {+ · · ·}
indicates an optional term.

Then

◦ ∑
J∈I

{∑
c∈J

{pc}
}

is a hnf.

Proposition 5.13. If p ⇓ then there exists a hnf ; hnf (p) such that �p= hnf (p).

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 79

I
p6p

p6q; q6r
p6r

II
pi6qi

op(p1 : : : pn)6op(q1 : : : qn)

op = +;⊕‖ �(n)XS

Eq
p6q

for every instance of an inequation

)
p ≡) q
p = q

Input
p[z=x]6q[z=x] for all names z

n?�x:p6n?�x:q

If
p6q

if b then p else p′6if b then q else q′
<b== true

if b then X else Y =X

p′6q′

if b then p else p′6if b then q else q′
<b==false

if b then X else Y =Y

Fig. 5. The proof system.

Proof. It is virtually identical to that of Proposition 4:3 of [12] and is therefore omitted.
The new operator �(n) is accommodated by the third group of equations in Fig. 3; if
h is a hnf then these can be used to reduce �(n) h to a hnf. The only new ingredient
in the proof is to ensure that in the subterms hn! there is at most one summand of the
form �(x) n ! x:q. If during the reduction procedure two such summands are generated
then they can be replaced by one using the equations as follows:

�(x) n!x:q+ �(y) n!y:q′ = �(z) n!z:(q[z=x]) + �(z) n!z:(q′[z=y])

by)-conversion; where z is new

= �(z) (n!z:q[z=x] + n!z:q′[z=y])

= �(z) n!z:(q[z=x]⊕ q′[z=y])

Hnfs play a crucial role in

Lemma 5.14. If x �p :P; s contains all xi and id is any environment in ENVs which
is the identity on s then p ⇓ if and only if <p= sid %=⊥:

Proof (Outline). First suppose p ⇓. In this case we know that p has a hnf h with the
same denotation and an examination of the de6nitions of +P; ⊕P shows that <h= sid is
diIerent from ⊥.

80 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

The converse depends on the remark that for any recursion free process term d, if
d ⇑ then <d= s⊥=⊥. This is proved as follows: one can show by structural induction
on d that d ⇑ implies �d=� and since <�==⊥ and the proof system is sound for the
interpretation < = sid this means <d=id=⊥.
Now suppose <p= sid %=⊥. Let pn; n¿0; be the in6nite sequence of recursion free

terms obtained by unrolling occurrences of sub-terms of the form recX:t. Then standard
techniques from denotational semantics can be used to show that <p== ∨n <pn= which
in turn means that for some k<pk = sid is diIerent from ⊥. From the above remark we
therefore have that pk ⇓. Now pk6p can be derived in the proof system and since
this is sound with respect to ! it follows that p ⇓.

The syntactic structure of hnf ’s ensure that we can determine the various components
of their denotations. This is the topic of the next three lemmas where we assume h is a
hnf of the form described in De6nition 2 above, such that x � h :P and xi ∈ s for every
xi in x; we also use I(h) to denote the acceptance set I used in the de6nition. For
any �∈ENVs; <h=s�∈Ps and we will see how the components of <h=s� are determined
by the syntax of h. For simplicity we assume that � is an injection.

Lemma 5.15. AccTrsem(<h=s�)= �(I(h)).

Proof. An examination of the de6nition of +P and ⊕P as it applies to hnf ’s.

As an object in Ps, <h=s� is diIerent from ⊥ and therefore using the notation de-
veloped in Section 5.1 (<h=s�)? can be considered as an element in s*Fs. For any
m?∈ ∪I(h); hm? is an abstraction term and therefore <hm?=s�∈Fs. If �(m)= n then

Lemma 5.16. (<h=s�)?n= <hm?=s�.

Proof. Again a simple examination of the interpretation of hnf ’s.

In a similar manner (<h=s�)! can be considered as an element of s*Cs and (<h=s�)!n,
a function in PFs(Ps), can be de6ned using hm!. Suppose this has the form

m!y1:h1 + · · ·+ m!yk :hk + �(y)m!y:hy:
Let decm!(h)∈PF(Ps) be de6ned by

decm!(h)z =

{
<hi= s�; z = �(yi)

<hy= s∪{z}�[z=y]; z =∈ s
Again an examination of the interpretation of hnf ’s shows that

Lemma 5.17. (<h=s�)!n=decm!(h).

These lemmas make straightforward the proof of the main theorem of this section:

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 81

Theorem 5.18 (Theorem 5.5). Suppose x1 : : : xk � p :P. Then for every s such that
xi ∈ s; AccTrb(p)∼= AccTrsem(<p=sid) where id∈ENVs is any environment which is the
identity on s.

Proof. We prove by structural induction on a that
(1) p |=b a implies <p=sid |=s a′ for some a′ such that a′!a.
(2) <p=sid |=s a implies p |=b a′ for some a′ such that a′!a:
If a=�; J then this follows from Lemmas 5.14 and 5.15, respectively. We consider

two other cases, when a has the form n?y.b, �(m) n!m.b; respectively, and in both
we may assume that p is a hnf ’:
(1) Suppose p |=b n?y.b. Let pn? have the form �x:t. This means that t[y=x] |=b b.

Applying induction we have

<t[y=x]= s∪{y}id |=s∪{y} b′

for some b′ such that b′!b. By the Substitution Lemma this means

<t= s∪{y}(id[x �→ y]) |=s∪{y} b′:

However if we calculate (<p=sid)?n, as an element of F(Ps), using Lemma 5.16,
we obtain the function

�k ∈ N:<t= s∪{k}(id[x �→ k])
and so by de6nition <p=sid |=s n?y.b′.
All of these steps are reversible and therefore the converse also holds.

(2) Suppose <p=sid |=s �(m)n!m.b and for convenience let us assume that m∈ s. Using
Lemma 5.17 this means that for all z =∈ s

decn!(p)z |=s∪{z} b[z=m]

In particular, choosing z to be m we have

<py= s∪{m}(id[y �→ m]) |=s∪{m} b:

Using the Substitution Lemma this means

<py[m=y]= s∪{m}id |=s∪{m} b:

By induction there exists some b′!b such that py[m=y] |=b b′ and since
p py[m=y] it follows that p |= �(m)n!m. b′.
Again these steps are reversible and thus the converse also holds.

We have used the proof system developed here only to reduce process terms to head
normal forms. However, it is also possible to show that it is complete with respect to
the model, for recursion free terms. Speci6cally we can show, for any recursion free
process term d and any process term q, that � d6q if and only <d=sid6<q=sid, where
s is any set including the free names occurring in d; q.

82 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

5.3. Behavioural characterisation

The behavioural characterisation of process terms using acceptance traces depends
on a detailed analysis of the behavioural semantics. This was originally given in terms
of a reduction relation whose de6nition uses a structural equivalence and consequently
it is often not straightforward to derive its properties. However, the following can be
proved by proof induction on the de6nition of .→:

Lemma 5.19. p .→ q implies p� .→ q� for every substitution �.

The following lemma will assist with the behavioural analysis.

Lemma 5.20. p‖q .→ r if and only if one of the following:
(1) r≡p′‖q where p .→p′;
(2) r≡p‖q′ where q .→ q′;
(3) r≡p′‖q′ where p n?y→ p′ and q n!y→ q′; or q n?y→ q′ and p n!y→p′;
(4) r≡ (�(z)p′‖q′) for some z =∈fv(p; q) and

p x?z−→p′; q �(z)n!z−→ q′

or q x?z−→ q′; p �(z)n!z−→ p′:

For each acceptance trace a we design a speci6c test t(a) with the property that

∀a′ ! a p %|=b a′ implies p must t(a):
The de6nition of the these tests actually requires two extra parameters, one a 6nite set
of names, the other a 6nite subset of Ind:
(1) a=�:

t(a)JX = 1:! (an abbreviation for !⊕ !)
(2) a=K :

t(a)JX =
∑{n!y:! | n! ∈ J}+∑{n?�y:! | n? ∈ J}

(3) a= n?y.b:

t(a)JX = 1:!+ n!y:t(b
J
X∪{y})

(4) a= n!y.b:

t(a)JX =1:!+n?�z: if z=y then t(b
J
X) else !; where z =∈ fv(t(bJX∪{y}; y))

(5) a= �(y)n!y.b:

t(a)JX = 1:!+ n?�z: if z ∈ X then w else t(bJX∪{y});

where z =∈ fv(t(b)JX∪{y}; y))

and z ∈X is an abbreviation for z= x1 ∨ · · · ∨ xk .

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 83

We leave the reader to show that these tests satisfy the following properties:

Lemma 5.21. For every a

(1) p must t(a)JX implies that p must t(a)
J ′
X for every J ′ ⊇ J;

(2) for every injective substitution �; (t(a)JX)�= t(a�)
J�
X�:

The choice of the parameters to these tests, X and J , will depend on the free names
occurring in the process term under consideration, and the set of indications associated
with the acceptance trace being examined. The latter is de6ned by
• Ind(Omega)= ∅,
• Ind(K)=K ,
• Ind():b)= Ind(b).

Proposition 5.22. If fv(p)⊆X then (∀a′ such that a′!a; p %|=b a′) if and only if
there exists some J such that J ∩ Ind(a)= ∅ and p must t(aJX).

Proof. For convenience let us write p
√
to indicate that for every computation

p = p0
.→p1 .→ : : : .→pk .→ : : :

there is some k such that pk
!→. Then p must e if and only (p ‖ e)√. We also let

Ls(a) denote the set {a′ | a! a′}.
The proof is by induction on a. We examine four cases:

• a=�: p |=b a′ for no a′ ∈Ls(a) if and only if p⇓ if and only if (p ‖ 1:!)√ if and
only if p must t(a) JX for all J .

• a=K : First suppose that p |=b a′ for no a′ ∈Ls(a). This means p %|=b �, i.e. p⇓,
and also that whenever p .→∗ q then there is some indication iq in S(q)−K . The
required J is {iq |p .→∗ q}.
Conversely suppose p ‖ t(a) JX for some J such that J ∩A(a)= ∅. This means that

◦ p⇓, i.e. p %|=b �
◦ for any q such that p .→∗ q; S(q) ∩ J %= ∅; this in turn means that p |= K′ for no
K ′ ⊆ J
Combining these we obtain that p |=b a′ for no a′ ∈Ls(a).

• a= n?y.b: First suppose that p %|=b a′ for every a′ ∈Ls(a). Again we know that

p⇓. Let Dn?y be the 6nite set {p′ |p
n?y⇒ p′}. For each p′ ∈Dn?y we know that if

b′ ! b then p′ %|=b b′ and therefore by induction some 6nite set Jp′ exists such that
(p′ ‖ t(b′)Jp′X∪{y})

√
. The required J is then ∪{Jp′ |p′ ∈Dn?y}. Note that when Dn?y is

empty J is also empty.
Conversely suppose that (p ‖ t(a) JX)

√
for some J . Suppose a′ ! a. We must show

that p %|=b a′. This is straightforward if a′ is � since (p ‖ t(a) JX)
√
guarantees that

p⇓. So we can assume that a′ has the form n?y.b′ where b′ ! b. In this case it

is suAcient to show that p′ %|=b b′ whenever p n?y⇒ p′. However this is guaranteed by
induction since (p ‖ t(a) JX) .→∗ p′ ‖ t(b′) JX∪{y}

84 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

• a= �(y)n?y.b: First suppose that p %|=b a′ whenever a′ ! a. If p
�(z)n!z−−−→p′ for no

z; p then the required J is the empty set.

So suppose p
�(z)n!z−−−→p′ where z =∈fv(a). Then p′ %|=b b′ for every b′ such that

b′[y=z]. For if p′ |=b b′ for such a b′ then p |=b � (z)n!z.b′ which contradicts the
hypothesis since � (z)n!z.b′ ! � (y)n!y.b.
So we can apply induction to 6nd some J such that (p′ ‖ t(b) JX∪{z})

√
. We show

that (p ‖ t(b)J [y=z]X)
√
for this choice of J .

The only signi6cant move from this term is a communication via a bound output
to �(m)p′[m=y] ‖ ((t(bJ [y=z]X∪{y})[m=y]). Using the 6rst part of Lemma 5.21 this is the

same as �(m)p′[m=y] ‖ t(b[m=z])J [m=z]X∪{m}). Further Lemma 5.19 can be used to show
that q

√
implies (q�)

√
whenever � is an injective substitution since (q�)�−1 is the

same as q, up to)-conversion. Since [m=z] is an injective substitution it follows from
(p′ ‖ t(b) JX∪{z})

√
that (p′ ‖ t(b) JX∪{z})[m=z]

√
, i.e. (p′[m=y] ‖ t(b[m=z])J [m=z]X∪{m})

√
and

therefore (�(m)p′[m=y] ‖ t(b[m=z])J [m=z]X∪{m})
√
.

The converse is very similar and is left to the reader.

Corollary 5.23. p�must q implies AccTrb(p)! AccTrb(q).

Proposition 5.24. If AccTrb(p)! AccTrb(q) then p�must q.

Proof. The proof has the same structure in [10, Lemma 4.4.13], but the details are
more complicated because of the diIerent forms of communication allowed in the
�-calculus. Suppose p! q and p must e. We must show q must e by proving that for
every computation

e ‖ q = r0 .→· · · .→ rk .→· · · (*)

there exists some i such that ri
!→.

First suppose that this computation is 6nite, i.e. rk %
.→ for some k. Each ri has the

form �(v i)ri where the individual names in v i arise because of the possible exchange of
private names between the two processes. By concentrating on the interaction between
the two processes, and using Lemma 5.20 this computation can be decomposed into
two derivations giving the individual contributions from e; q, respectively:

e = e0
Ta1⇒· · · ej · · ·

Tak⇒ em
and

q = q0
a1⇒· · · qj · · ·

ak⇒ qm
These are such that for each j there is some i such that ri= ej ‖ qj and the pair ai; Tai
take one of the forms
• n?x; n!x,
• n!x; n?x,

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 85

• n?x; �(x)n!x,
• �(x)n!x; n?x
for some x. Moreover, we can assume that in the last two cases the particular bound

name x is chosen so that it is does not occur in fv(p). Further, because rk %
.→ we also

know that S(qm)∩ S(em)= ∅, where TS = {n? | n!∈ S}∪{n! | n?∈ S}. For convenience let
s denote the sequence of actions ai, S the set of indications S(qm) and a the acceptance
trace sS. Since p! q this means that p |=b b for some b! a.
There are now two cases to consider:

(1) b has the form sT. By de6nition p s⇒p′ for some p′ such that p′ % .→ and S(p′)⊆T
⊆ S. This computation, from p to p′ can be zipped together with e Ts⇒ em to form
a computation

e ‖ .→· · · .→ em‖p′

The relevant features of this computation are 6rstly that em ‖p′ %
.→ and secondly it

only uses ei which occur in the original computation (∗). It follows from p must e
that ei

!→ for some i.
(2) b has the form s′� where s′ is some subsequence of s. The approach of the

previous case also works here using the computation p s
′

⇒p′ where p ⇑.
We have not touched on the case when computation (∗) is in6nite. However, this can
be treated in exactly the same manner as in Lemma 4:4:13 from [10]; we simply need
to know that, up to)-conversion, the computation tree from any process term, with
respect to the reduction relation .→, is 6nite branching.

Combining these two propositions gives the behavioural alternative characterisation,
Theorem 5.3:

Theorem 5.25. p�must q if and only if p! q.

6. The may case

In this section we brieJy outline another Interpretation and show that it is fully ab-
stract with respect to the behavioural preorder �may. We can make a slight modi6cation
to the equation in Section 4,

P∼=A × (N ⊗⊥ F)× (N ⊗⊥ C)

F∼=N ⇒ P

C∼= (N ⊗ P) + s(P)

but here we solve it in the category uD, i.e. the category whose objects are functors
from I to uSL, the category of upper semi-lattices. Note that the only diIerence is
that we have replaced � with ⊥ and dropped the use of the lifting functor ()⊥; the
latter is necessary because every upper choice predomain is automatically a domain and

86 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

therefore there is no need to add a least element. Moreover, because of the degeneracy
of much of the algebraic structure of upper choice domains there is some redundancy
in this equation and it can be considerably simpli6ed.
Here A denotes the function which at s gives the free upper choice predomain over
s + s. This is easily shown to be the set of subsets of s + s ordered by set inclusion.
One can also show that in the category uD the action of the functor (N⊗⊥ A) at s,
for any A, is described by the set of partial functions from s to As, s * As, this time
ordered in the more usual fashion: f6g if domain(f)⊆domain(g) and f(n)6g(n)
for every n∈domain(f). Thus instead of using P as described above, we could use
the simpler equation

Q∼= (N ⊗⊥ F)× (N ⊗⊥ C)

F∼=N ⇒ Q

C∼= (N ⊗Q) + s(Q)

Note that Q is not isomorphic to P, as objects in uD. But Q can be embedded in P
and is suAciently rich to support the interpretation of all terms in the language.
To interpret the language in this new domain P we proceed exactly as in Section 4;

we require an interpretation for each of the language constructs. However, these also
can be borrowed directly from Section 4 by making very slight modi6cations. In this
way, we have a new interpretation <+ � t :P=u for each typing judgement and conse-
quently for each process term a family of interpretations <p=us from ENVs to Ps.

Theorem 6.1. <p=us �6<q=us � if and only if p��may q�.

This has the immediate corollary:

Corollary 6.2. For all process terms p; q; <p=u6<q=u if and only if p��may q� for
every environment �.

The proof of the theorem is very similar to that of Theorem 5.1, although consider-
ably simpler, and here we merely outline the necessary steps.
Let Seq be the subset of AccTr consisting of all those elements of the form s�.

The method of associating process terms with these sequences, both behaviourally
and denotationally, is slightly diIerent than that used in Section 5. Behaviourally, the
change is in the clause:

p |=b � for everyp

and the denotational change is similar:

d |=s � for every d ∈ Ps:

The proof of the behavioural alternative characterisation, Theorem 5.3, can be mimiced
to give:

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 87

Proposition 6.3. p�may q if and only if Seqb(p)⊆ Seqb(q).

The internal full abstraction result, Theorem 5.3, can also be repeated:

Proposition 6.4. For all d; e∈Ps; d6e if and only if Seq sem(d)6Seq sem(e).

The 6nal ingredient is the result corresponding to Theorem 5.5:

Proposition 6.5. If x �p :P; xi ∈ s for every i and id∈ENVs is the identity on s then
Seqb(p)= Seq(<p=us id).

These three results can be combined, as in Section 5, to give a proof for
Theorem 6.1.
We end this section and the paper with a brief look at how these models can be

used to characterise more general contextual forms of testing. As an illustration we use
may testing; corresponding theorems for the must case are still open.
Let us write p ⇓may if p .→ q∗ for some q which can perform some communication,

i.e. q
n?m−−−→ or q

n!m−−−→ for some n; m.

De�nition 3. Let p�mayconv q if C[p] ⇓may implies C[q] ⇓may for every context C[].

This is the form of testing used in, for example [5], and is a natural generalisation
of that used for the �-calculus in [2].

Theorem 6.3. Theorem 6.6 p�mayconv q if and only if <p=6<q=.

Proof (Outline). First suppose <p=6<q= and C[p] ⇓may. Then by the construction of
the model <C[p]=6<C[q]=. Let s be a suAciently large set of names which includes
all those free in both C[p] and C[q]. Then we have <C[p]=sid6C[q]sid and from
Proposition 6.5 this means Seqb(C[p])⊆ Seqb(C[q]). In general r ⇓may if and only if
Seq(r) is not {7}, and therefore it follows that C[q] ⇓may.
Conversely suppose that for all contexts C[]; C[p] ⇓may implies C[q] ⇓may. We must

show <p=6<q=. For this it is suAcient to show that <p= s�6<q= s� for every s and for
every environment �. From the full abstraction result for may testing it is suAcient
in turn to show that for every process e that p� may e implies q� may e. However
it is easy to simulate may testing in terms of testing for ⇓may in arbitrary contexts
and substitutions can be simulated using input pre6xing. For example the eIect of the
substitution of x for y in r can be obtained by the context �(n)(n?�y:p‖n!x:0).

Appendix A. De�nition of parallel

The natural transformation ‖P :P ⊗ P :→P is de6ned to be par⊗, where par :
(P × P) :→P is a natural transformation which is linear in both its arguments, and

88 M. Hennessy / Theoretical Computer Science 278 (2002) 53–89

is de6ned, in analogy with the interleaving law, in terms of two auxiliary natural
transformations, ext; int, by

(+P ◦ 〈ext × int〉) ∧ int

These natural transformations are in turn de6ned in terms of par and therefore in fact
we take par to be the least 6xpoint of its de6nition.
To de6ne ext; int we need to develop some notation. For any . :P × P :→P let
.F : (N ⇒ P)×P :→(N ⇒ P) be the natural transformation de6ned by letting (.F)s : (N
⇒ P)s × Ps → (N ⇒ P)s be the morphism

(.F)s(f; d) = �x ∈ N:.s∪{x}(f(x); d):

We can also de6ne a natural transformations .C :C×P :→C by letting (.C)s(f; d) be
the element in C de6ned by �x∈domain(f):.s∪{x}(f(x); d). Any natural transforma-
tion . : (A× B) :→C can be extended in an obvious way to a natural transformation in
(N ⊗� A × B) :→N ⊗� C and let us use the non-standard notation N ⊗� . for this
extension.
Then the natural transformation ext: (P×P) :→P is given by (parA × parF × parC)⊥

where
• parA is +A ◦ 〈�1 ◦ down ◦ �1 × �1 ◦ down ◦ �2〉,
• parF is

((N ⊗� parF) ◦ 〈�2 ◦ down ◦ �1 × �2〉) ∧ ((N ⊗� parF) ◦ 〈�2 ◦ down ◦ �2 × �1〉)
• parC is

((N ⊗� parC) ◦ 〈�3 ◦ down ◦ �1 × �2〉) ∧ ((N ⊗� parC) ◦ 〈�3 ◦ down ◦ �2 × �1〉)
Intuitively, exts(d; e) describes the element of Ps obtained by interleaving the possible
actions of the elements d; e of Ps without taking into consideration possible commu-
nications between them.
These communications are the concern of the second natural transformation int. For

any . : (P×P) :→P let .FC : (F×C) :→P be de6ned by letting (.FC)s : (Fs×Cs)→ Ps
be the morphism de6ned by

(.FC)s(f; g) =
∑{.s∪{n}(f(n); g(n)) | n ∈ domain(g)}

This is now generalised to a natural transformation

.NFC : (N ⊗� F)× (N ⊗� C;) :→P�

by the de6nition

(.NFC)s(g1; g2) =

{∑{(.FC)s(g1n; g2n) | n ∈ s′}; s′ %= ∅
�; s′ = ∅

where s′=domain(g1) ∩ domain(g2). Note that the codomain of this natural transfor-
mation needs to be P� rather than P.

M. Hennessy / Theoretical Computer Science 278 (2002) 53–89 89

Finally, the natural transformation int: (P× P) :→P� is de6ned by

(.NFC ◦ 〈�2 ◦ �1 × �3 ◦ �2〉) ∧ (.NFC ◦ 〈�2 ◦ �2 × �3 ◦ �1〉)

Acknowledgements

The author would like to thank Cosimo Laneve, Dusko Pavlovic, Davide Sangiori
and anonymous referees for useful comments on earlier drafts of this paper.

References

[1] S. Abramsky, A domain equation for bisimulation, Inform. and Comput. 92 (1991) 161–218.
[2] S. Abramsky, C. Ong, Full abstraction in the lazy lambda calculus, Inform. and Comput. 105 (1989)

159–267.
[3] H. Barendregt, The Lambda Calculus Studies in Logic, vol. 103, North-Holland, Amsterdam, 1984.
[4] M. Boreale, R. DeNicola, Testing for mobile processes, Inform. and Comput. 120 (1995) 279–303.
[5] G. Boudol, A lambda calculus for (strict) parallel functions, Inform. and Comput. 108 (1994) 51–127.
[6] R. Crole, Categories for Types, Cambridge University Press, Cambridge, 1993.
[7] R. DeNicola, M. Hennessy, Testing equivalences for processes, Theoret. Comput. Sci. 24 (1984) 83–113.
[8] F.J. Oles, Type algebras, functor categories and block structure, in: M. Nivat, J. Reynolds (Eds.),

Algebraic Methods in Semantics, Cambridge University Press, Cambridge, 1985, pp. 543–573.
[9] C. Gunter, Semantics of Programming Languages, MIT Press, Cambridge, MA, 1992.
[10] M. Hennessy, An Algebraic Theory of Processes, MIT Press, Cambridge, MA, 1988.
[11] M. Hennessy, A Model for the � Calculus, Tech. Report 8=91, University of Sussex, 1991.
[12] M. Hennessy, A. Ingolfsdottir, A theory of communicating processes with value-passing, Inform. and

Comput. 107 (2) (1993) 202–236.
[13] D.J. Howe, Equality in lazy computation systems. Proc. 4th IEEE Symp. on Logic in Computer Science,

1989 pp. 198–203.
[14] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood CliIs, NJ, 1989.
[15] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, Part i, Inform. and Comput. 100 (1)

(1992) 1–40.
[16] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, Part ii, Inform. and Comput. 100 (1)

(1992) 41–77.
[17] R. Milner, The polyadic �-calculus: a tutorial, Proc. Internat. Summer School on Logic and Algebra of

Speci6cation, Marktoberdorf, 1991.
[18] E. Moggi, Notions of computation and monad, Inform. and Comput. 93 (1991) 55–92.
[19] E. Moggi, M.P. Fiore, D. Sangiorgi, A fully-abstract model for the �-calculus Proc. LICS’96, 1996.
[20] P.W. O’Hearn, R.D. Tennant, Semantics of local variables. Applications of Categories in Computer

Science London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge,
1992 pp. 217–238.

[21] J. Parrow, D. Sangiorgi, Algebraic theories for name-passing calculi, Inform. and Comput. 120 (1995)
174–197.

[22] A.M. Pitts, I. Stark, On the observable properties of higher order functions that dynamically create local
names, or: what’s new, Proc. Mathematical Foundations of Computer Science, Springer, Berlin, 1993,
pp. 122–141.

[23] D. Sangiorgi, Expressing mobility in process algebras: 6rst-order and higher-order paradigms, Ph.D.
Thesis, Edinburgh University, Scotland, 1992.

[24] D. Sangiorgi, A theory of bisimulation for the �-calculus, Proc. CONCUR’93, Lecture Notes in
Computer Science, vol. 715 in 1993.

[25] I. Stark, A fully-abstract domain model for the �-calculus, Proc. LICS’96, 1996.

