INTERSECTION THEOREMS FOR SYSTEMS OF FINITE VECTOR SPACES ${ }^{*}$

W.N. HSIEH*
Marhematics Department. Massachusetts Institute of Technology. Cambridge, Mass. 02139, USA

Received 9 June 1973
Revised 23 August 1974

A theorem of Ersos, Ko and Rado states that if S is an n element set and \mathcal{F} is a
 then $17\left(\leqslant \begin{array}{c}n-1 \\ k-1\end{array}\right)$. In this paper we investigate the analogous problem for finite vector spaces.

Let \mathcal{T} be a iamily of \boldsymbol{k}-dimensional subspaces of an n-dimen:ional vector space over a field of q elements such that members of 9 intersect pairwise non-trivially. Employing a method of Katona, we show that for $\left.n \geqslant 2 k,|\mp| \leq\left.(k / n)\right|_{k} ^{n}\right]_{q}$. By a more detailed anelysis, we obtain that for $n \geqslant 2 k+1, \left\lvert\, \nmid \leqslant\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]_{q}\right.$, which is a best possible bound. The argument employed is generalized to the problem of finding a bound on the size of 9 when its members have pairwise intersection dimension no smaller than r. Again best possible results are obtained for $n \geqslant 2 k+2$ and $n \geqslant 2 k+1, q \geqslant 3$. Application of these methods to the analogous subset problem leads to improvements on the Erdös Ko-Rado bounds.

1. Iniroduction

A theoren of Erdos, Ko and Rado [1] states that if S is an n-element set and \mathcal{F} a family of k-element subsets of $\mathcal{S}, k \leqslant \frac{1}{2} n$, such that no two members of \mathcal{F} are disjoint, then $|\mathscr{F}| \leqslant\binom{ n-1}{k-1}$. In this paper we consider the analogous problem for finite vector spaces. By $S(r, k, n, q)$ we denote the set of all families \mathscr{F} of k-dimensional subspaces of an n dimensional vector space V over a finite field F of q elements such that $A, B \in \mathbb{F} \Rightarrow \operatorname{dim}(A \cap B) \geqslant r$. Suppose that $\mathscr{F} \in S(1, k, n, q)$ with $k \leqslant \frac{1}{2} n$, what can we say about $|97|$?

[^0]There are two ways to view the Erdös-Ko Rado theorem:
(1) that $\binom{n-1}{k-1}$ is an upper bound on $|F|$, and
(2) that if δ_{k} is the family of all k-element subsets of S, then $|\mathcal{F}| /\left|\delta_{k}\right| \leqslant k / n$. Thus in the finite vector space case, we may expect that either
(1) $|\mathcal{F}| \leqslant\left[\left[_{k-1}^{n-1}\right]_{q}\right.$, or
(2) $|\mathcal{F}| /\left|\delta_{k}\right| \leqslant k / n$, where $\left[{ }_{n}^{m}\right]_{q}$ denotes the Gaussian coefficient, the number of n-dimensional subspaces of an m-dimensional vector space over a finite field of q elements, and δ_{k} denotes the family of all k-dimensional subspaces of V. The number of k-dimensional subspaces of V containıng a specific one-dimensional subspace is $\left[\begin{array}{l}n-1 \\ n-1\end{array}\right]_{q}$. Thus the inequality in (1) is best possible. Also

$$
\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q} /\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\left(q^{k}-1\right) /\left(q^{n}-1\right) \ll k / n .
$$

Hence (1) suggests a much stronger bound on $|\mathscr{F}|$ than (2).
In Section 2 we derive a few basic facts about the Gaussian coefficients that are needed in our study. In Section 3 we prove that $\left|T_{i} /\left|\delta_{k}\right| \leqslant k / n\right.$ for $n \geqslant 2 k$. We also show that if ∂ is a family of ordered k-tuples with the i th component chosen from $\left\{1, \ldots, q_{i}\right\}, 1 \leqslant q_{1}$ $\leqslant \ldots \leqslant q_{k}$, such that each pair in 9 has at least a component in common, then $|9| \leqslant q_{2} \ldots q_{k}$. In Section 4 we show that $|\mathcal{F}| \leqslant\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]_{q}$ for $n \geqslant 2 k+1$. We conject that $\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]_{q}$ should also be a bound on $|\mathcal{F}|$ for $n=2 k$. In Section 5 we apply a generalization of the method developed in Section 4 to $S(r, k, n, q)$. We show that for $n \geqslant 2 k+2$, or $n \geqslant 2 k+1$, $q \geqslant 3$, any family in $S(r, k, n, q)$ can have size no larger than $\left[\begin{array}{ll}n-r\end{array}\right]_{q}$, a bound that is achieved when the subspaces are chosen to be all those containing some specific r-dirnensional subspace. We also show that if \mathcal{F} is a family of k-element subsets of S with pairwise intersection size no smaller than r, then $\left\lvert\, F_{\mid} \leqslant\binom{ n-r}{k-r}\right.$ provided that $n \geqslant r+(r+1)(k-r+1)(k-r)$. The bound on n is a considerable improvement over a previous result of Erdös, Ko and Rado.

2. The Gaussian coefficients

Just as the binomial coefficient $\binom{n}{k}$ counts the number of k-element subsets of an n-element set, the Gaussian coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ counts the number of k-dimensional subspaces of an n-dimensional vector space V over a finite field of q elements. It is not difficult to derive a formula
for $\left[{ }_{k}^{n}\right]_{q}$. Enumerate all ordered bases of k-dimensional subspaces of V as follows: The first vector x_{1} can be chosen in $q^{n}-1$ ways. There are q vectors dependent upon x_{1}, so the next vector x_{2} can be chosen in $q^{n}-q$ ways, etc. Thus there are $\left(q^{n}-1\right)\left(q^{n}-q\right) \ldots\left(q^{n}-q^{k-1}\right)$ linearly ordered sets of k linearly independent vectors in V. But each k-dimensional subspace has, by the same argument, $\left(\begin{array}{ll}q^{k} & 1\end{array}\right)\left(\begin{array}{l}q^{k}-q\end{array}\right)$ $\ldots\left(q^{k}-q^{k-1}\right)$ ordered basis. Thus

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \ldots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \ldots\left(q^{k}-q^{k-1}\right)}
$$

Note that as $q \rightarrow 1,\left[\begin{array}{l}n \\ k\end{array}\right]_{q} \rightarrow\binom{n}{k}$, and thus we can expect that the Gaussian coefficients to share many of the properties of the binomial coefficients. Also note that

$$
\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q} /\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\left(q^{k}-1\right) /\left(q^{n}-1\right) .
$$

Thus for $q>1$, this proportion is much smaller than k / n. Hence (1) gives a much stronger bound on $|\mathcal{F}|$ than (2).

To simplify the notation, we shall omit the subscript q and write just $\left[\begin{array}{l}n \\ k\end{array}\right]$ to denote the Gaussian coefficient.

Let V be the dual space of linear functions on V. For $A \subset V$, let $A^{0} \subset \bar{V}$ be the annihilator of A, i.e., $A^{0}=\{f \in \bar{V}: f(A)=0\}$. If A is a k-dimensional subspace of V, A^{0} is an $(n \cdots k)$-dimensional subspace of $\stackrel{\rightharpoonup}{V}$.

Remark 2.1. $\left[\begin{array}{l}n \\ k\end{array}\right]=\left[\begin{array}{l}n-k\end{array}\right]$.
Proof. $A \subset V \Leftrightarrow A^{0} \supset V^{0}=(0)$. Thus $\left[\begin{array}{l}n \\ k\end{array}\right]=$ the number of k-dimensional subspaces of $V=$ the number of $(n-k)$-dimensional subspaces of $\bar{V}=\left[{ }_{n-k}^{n}\right]$.

Remark 2.2. The number of k-dimensional subspaces of V containing a particular r-dimensional subspace A of V is $\left[\begin{array}{c}n-r \\ k-r\end{array}\right]$.

Proof. $B \supset A \Leftrightarrow B^{0} \subset A^{0}$. Thus the number of k-dimensional subspaces of V containing $A=$ the number of $(n-k)$-dimensional subspaces of \bar{V} contained in $A^{0}=\left[\begin{array}{c}n-r \\ n-k\end{array}\right]=\left[\begin{array}{c}n-r \\ k-r\end{array}\right]$.

Thus, if $\left[\begin{array}{c}n-r \\ k-r\end{array}\right]$ is a bound on $|\mathscr{F}|$ for $\mathcal{F} \in S(r, k, n, q)$, then it is a best possitle bound.

3. The Katona method

Katona [5] has presented a rather simple proof of the Erdös-KoRado theorem. By employing his technique, we can prove (2).

If $a_{1}, \ldots, a_{t} \in V$, we shall use $\left[a_{1}, \ldots, a_{t}\right]$ to denote the subspace of V spanned by a_{1}, \ldots, a_{t}. Also we use δ_{k} to denote the family of all k dimensional subspaces of V.

Theorem 3.1. If $k \leqslant \frac{1}{2} n, \mathcal{F} \in S(1, k, n, q)$, then $|\mathcal{F}| /\left|\delta_{k}\right| \leqslant k / n$.
Proof. Take a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ of V. Let $V_{i}=\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$, where $i_{j} \equiv(i-1) k+j(\bmod n)$ for $i=1, \ldots, n . V_{i}$ is a k-dimensional subspace of V with basic vectors chosen from $\left\{x_{1}, \ldots, x_{n}\right\}$. Roughly speaking, the n / k consecutive V_{i} 's intersect only trivially at the o. gin. Thus every V_{i} non-trivially intersects at most k other V_{j} 's. Hence if $1 \leqslant i_{1}<\ldots<i_{d} \leqslant n$, and $V_{i_{1}}, \ldots, V_{i_{d}}$ intersect pairwise non-trivially, then $d \leqslant k$. (The detail of the argument in Katona's paper can be carried over here in a straightforward fashion.)

Let $\mathscr{K}=\left\{\left(\bar{V}_{1}, \ldots, \bar{V}_{n}\right)\right.$, where $\bar{V}_{i}=\left[y_{i_{1}}, \ldots, y_{i_{k}}\right\},\left(y_{1}, \ldots, y_{n}\right)$ an ordered basis of $\left.V, i_{j} \equiv(i-1) k+j(\bmod n)\right\}$, i.e. $\mathscr{A}=\{F$: the n-tuple of k dimensional subspaces obtained from $\left(V_{1}, \ldots, V_{n}\right)$ by ruapping (x_{1}, \ldots, x_{n}) onto any ordered basis $\left(y_{1}, \ldots, y_{n}\right)$ of V with $\left.x_{i} \rightarrow y_{i}\right\}$.

From the above, each $\bar{F} \in \mathscr{K}$ can contain at most $k \bar{V}$'s in \mathcal{F}. Each fixed $\overline{\boldsymbol{V}} \in \mathscr{F}$ can be contained in at most

$$
n \cdot\left(q^{k}-1\right) \ldots\left(q^{k}-q^{k-1}\right) \cdot\left(q^{n}-q^{k}\right)\left(q^{n}-q^{k+1}\right) \ldots\left(q^{n} q^{n-1}\right)
$$

F's, because there are $\left(q^{k}-1\right) \ldots\left(q^{k}-q^{k-1}\right)\left(q^{n}-q^{k}\right) \ldots\left(q^{n}-q^{n-1}\right)$ weys of transforming a fixed V_{i} onto \bar{V}. Thus

$$
\begin{aligned}
&\left(q^{n}-1\right) \ldots\left(q^{n}-q^{n-1}\right) \cdot k \geqslant|F| \cdot n \cdot\left(q^{k}-1\right) \ldots\left(q^{k} \cdot q^{k-1}\right) \\
& \cdot\left(q^{n}-q^{k}\right) \ldots\left(q^{n}-q^{n-1}\right),
\end{aligned}
$$

i.e., $|\mathcal{F}| \leqslant(k / n)\left[\begin{array}{l}n \\ k\end{array}\right]=(k / n)\left|\delta_{k}\right|$.

Employing the same technique, we can also prove the following theorem for ordered k-tuples.

Theorem 3.2. Suppose that \bigcirc is a family of ordered k-tuples with the ith component chosen from $\left\{1, \ldots, q_{i}\right\}, 1 \leqslant q_{1} \leqslant \ldots \leqslant q_{k}$, such that each pair in \bigcirc has at least a component in common, then $|\rho| \leqslant q_{2} \ldots q_{k}$.
Proof. Let $B_{i}=\stackrel{k \text { copies }}{(i, \ldots, i), i=1, \ldots, q_{1}}$. Note that if $i \neq j$, then B_{i}, B_{j} have no common components.

Let $F=\left(B_{1}, \ldots, B_{q_{1}}\right)$, and $F_{p_{1} \ldots p_{k}}=\left(C_{1}, \ldots . C_{q_{1}}\right)$, where p_{i} is a permutation of $\left(1,2, \ldots, q_{i}\right)$ and $C_{i}=\left(p_{1}(i), \ldots, p_{k}(i)\right)=p_{1} \ldots p_{k}\left(B_{i}\right)$. Thus there can be at most one $C_{i} \in \mathcal{O}$ in $F_{p_{1} \ldots p_{k}}$. Counting in two different ways the pairs $\left(F_{p_{1} \ldots p_{k}}, A\right), A \in \mathcal{O}$, we obtain

$$
q_{1}!\ldots q_{k}!\geqslant 1 \rho \mid \cdot q_{1} \cdot\left(q_{1}-1\right)!\left(q_{2}-1\right)!\ldots\left(q_{k}-1\right)!
$$

i.e., $|9| \leqslant q_{2} \ldots q_{k}$.

4. The main result

So far we do not have a complete proof for (1). We do obtain the desired bound for $n \geqslant 2 k+1$. Our method, however, does not seem to apply to the case $n=2 k$. We feel that $\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]$ should also be a bound in this case, and probably a different approach has to be considered to handle it.

Let δ be a family of subspaces of V. For $x \in V$, we shall use δ_{x} to denote the family of subspaces in δ containing x. For $A \subset V, \delta_{A}$ is defined in a similar fashion.

Lemma 4.1. Suppose that $s \geqslant t+k$, then

$$
\left[\begin{array}{l}
s \\
t
\end{array}\right]>(q-1) q^{s-t-k}\left[\begin{array}{c}
k \\
1
\end{array}\right]\left[\begin{array}{c}
s-1 \\
t-1
\end{array}\right],
$$

and, in general.

$$
\left[\begin{array}{l}
s \\
t
\end{array}\right]>(q-1)^{p} q^{(s-t-k) p}\left[\begin{array}{l}
k \\
1
\end{array}\right] p\left[\begin{array}{c}
s-p \\
t-p
\end{array}\right] \quad \text { for } 1 \leqslant p \leqslant t
$$

Proof.

$$
\begin{aligned}
{\left[\begin{array}{l}
s \\
!
\end{array}\right] /\left(\left[\begin{array}{l}
s-1 \\
t-1
\end{array}\right]\left[\begin{array}{l}
k \\
1
\end{array}\right]\right) } & =\frac{\left(q^{s}-1\right)\left(q^{-1}\right)}{\left(q^{t}-1\right)\left(q^{k}-1\right)} \\
& =(q-1)\left(q^{s-t-k}+\frac{q^{s-t-k}\left(q^{i}+q^{k}-1\right)-1}{\left(q^{t}-1\right)\left(q^{k}-1\right)}\right) \\
& >(q-1) q^{s-t-k}
\end{aligned}
$$

$s-t \geqslant k \Rightarrow(s-p)-(t-p) \geqslant k$, so the general case follows by induction.
Lemma 4.2. Suppose that $n \geqslant 2 k+1$, and $\mathcal{F} \in S(1, k, n, q)$. If

$$
\left|F_{x}\right|^{\prime}\left[\begin{array}{l}
k \\
1
\end{array}\right]^{p}\left[\begin{array}{ll}
n-1-p \\
k-1-p
\end{array}\right]
$$

for all $0 \neq x \in V$, then either

$$
|F|<\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right] \text { or }\left|F_{A}\right| \leqslant\left[\begin{array}{l}
k \\
1
\end{array}\right]^{p-1}\left[\begin{array}{c}
n-1-p \\
k-1-p
\end{array}\right]
$$

for all 2 -dim $A \subset V$, where $1 \leqslant p \leqslant k-1$.
Proof. The assertion is trivial for $p=1$. Thus assume $p \geqslant 2$. By Lemma 4.1,

$$
n \geqslant 2 k+1, q \geqslant 2 \Rightarrow\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right]>q^{p}\left[\begin{array}{c}
k \\
1
\end{array}\right]^{p}\left[\begin{array}{c}
n-1-p \\
k-1-p
\end{array}\right] .
$$

Thus

$$
\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right]>\left[\begin{array}{c}
s \\
1
\end{array}\right]\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{c}
n-1-p \\
k-1-p
\end{array}\right] \quad \text { for } 1 \leqslant s \leqslant p .
$$

Take a 2 dimensional subspace $[x, y] \subset V$. If $A \in \mathcal{F} \Rightarrow A \cap[x, y] \neq 0$, then

$$
|F 7| \leqslant \sum_{\substack{z \subset \mid x, y] \\
z 1-\operatorname{dim}}}\left|\mathcal{F}_{z}\right| \leqslant\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{l}
k \\
1
\end{array}\right]^{p}\left[\begin{array}{c}
n-1-p \\
k-1-p
\end{array}\right]<\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right] .
$$

Thus we can suppose there is some $A_{1} \in \mathcal{F}$ such that $A_{1} \cap[x, y]=(0)$. Take $0 \neq z_{1} \in A_{1}$. If $A \in \mathscr{F} \Rightarrow A \cap\left[x, y, z_{1}\right] \neq(0)$, then

$$
|9| \leqslant\left[\begin{array}{l}
3 \\
1
\end{array}\right]\left[\begin{array}{l}
k \\
1
\end{array}\right] p\left[\begin{array}{cc}
n-1 & -p \\
k-1 & -p
\end{array}\right]<\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] .
$$

Thus we can suppose that there is some $A_{2} \in \mathscr{F}$ such that $A_{2} \cap\left[x, y, z_{1}\right]$ $=(0)$. Hence $\left|\mathscr{F}_{x, y, z}\right| \leqslant\left[\begin{array}{l}k\end{array}\right]\left[\begin{array}{l}n-4 \\ k-4\end{array}\right]$, and so $\left|\mathscr{F}_{x, y}\right| \leqslant\left[{ }_{1}^{k}\right]^{2}\left[\left[_{k-4}^{n-4}\right]\right.$.

Suppose that for $1 \leqslant j \leqslant i, 0 \neq z_{j} \in A_{i}$ and $\left[x, y, z_{1}, \ldots, z_{j}\right] \cap A_{j+1}=$ (0). Take $0 \neq z_{i+1} \in A_{i+1}$. If $A \in \mathcal{F} \Rightarrow A \cap\left[x, y, z_{1}, \ldots, z_{i+1}\right] \neq(0)$, then

$$
|\mathcal{F}| \leqslant\left[\begin{array}{c}
i+3 \\
1
\end{array}\right]\left[\begin{array}{c}
k \\
1
\end{array}\right]^{p}\left[\begin{array}{cc}
n & 1-p \\
k-1 & -p
\end{array}\right]<\left[\begin{array}{ll}
n-1 \\
k-1
\end{array}\right] .
$$

Thus we can suppose that there is some $A_{i+2} \in \mathcal{F}$ such that $A_{i+2} \cap\left[x, y, z_{1}, \ldots, z_{i+1}\right]=(0)$. Hence

$$
\left\lvert\, \mathcal{F}_{x, y, z_{1}, \ldots, z_{i+1}} 1 \leqslant\left[\begin{array}{c}
k \\
1
\end{array}\right]\left[\begin{array}{cc}
n-i-4 \\
k-i & 4
\end{array}\right]\right.,
$$

and so inductively we obtain

$$
\left|\mathcal{F}_{x, y}\right| \leqslant\left[\begin{array}{l}
k \\
1
\end{array}\right]^{i+2}\left[\begin{array}{c}
n-i-4 \\
k-i-4
\end{array}\right] .
$$

Thus for $1 \leqslant i \leqslant p$, either $|\mathcal{F}|<\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]$ or $\left|F_{x, y}\right| \leqslant\left[\begin{array}{l}k \\ 1\end{array}\right]^{i-1}\left[\begin{array}{c}n-1-i \\ k-1-i\end{array}\right]$. Hence either $|\mathcal{F}|<\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]$ or $\left|\mathcal{F}_{x, y}\right| \leqslant\left[\begin{array}{l}k \\ 1\end{array}\right]^{p-1}\left[\begin{array}{c}x, 1-p \\ k-1-p\end{array}\right]$.

Lemma 4.3. Suppose thai $n \geqslant 2 k+1$, and $\mathfrak{F} \in S(1, k, n, q)$. If $\left|\mathcal{F}_{x}\right| \leqslant\left[\begin{array}{l}k\end{array}\right]^{k-1}$ for all $x \in V$. then $|\mathscr{F}|<\left[\left.\begin{array}{l}n-1 \\ k-1\end{array} \right\rvert\,\right.$.

Proof. For $0 \leqslant i \leqslant k-3$.

$$
\begin{aligned}
& \frac{q^{n-1}-q^{i}}{q^{k-1}-q^{i}}=q^{n-k}+\frac{q^{n-k+i} q^{i}}{q^{k-1}-q^{i}}>q^{n-k} \geqslant q^{k+1}, \\
& \frac{q^{n-1}-q^{k-2}}{q^{k-1}-q^{k-2}} \geqslant \frac{q^{k+2}-1}{q-1} \geqslant q^{2}\left[\begin{array}{l}
k \\
1
\end{array}\right] .
\end{aligned}
$$

Thus

But then $\left|\mathcal{F}_{x}\right| \leqslant\left[\begin{array}{l}k \\ 1\end{array}\right]^{k-1}$ for all $x \in V \Rightarrow|F| \leqslant\left[\begin{array}{l}k \\ 1\end{array}\right]^{k}<\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]$.

Theorem 4.4. /f $n \geqslant 2 k+1$, and $\mathcal{F} \in S(1, k, n, q)$, then $|\mathcal{F}| \leqslant\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]$. In fact, if $\cap \mathfrak{F}=(0)$, then $|\mathcal{F}|<\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]$.

Proof. if $\left\{x \mid \subset \cap \mathscr{F}\right.$ for some $0 \neq x \in V$, then $|\mathscr{F}| \leqslant\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]$ by Remark 2.2. Thus we can suppose that $\cap \%=(0)$.

Let $x_{1} \neq 0$ be such that $\left|\mathcal{F}_{x_{1}}\right|=\max _{x \in V}\left|\mathcal{F}_{x}\right|$.
By our assumption, there is some $A_{1} \in \mathscr{F}$ such that $x_{1} \notin A_{1}$. Thus $\left.\left|\mathcal{F}_{x_{1}}\right| \leqslant\left[\begin{array}{l}k\end{array}\right] i_{k-2}^{n-2}\right]$. By Lemma 4.3, we can suppose that $k \geqslant 3$.

Suppose that there are two independent vectors $z_{1}, z_{2} \in A_{1}$ such that $A \in \mathcal{F} \Rightarrow A \cap\left[x_{1}, z_{i}\right] \neq(0)$ for $i=1,2$. If $u_{i} \in\left[x_{1}, z_{i}\right] \sim\left[x_{1}\right]$, then u_{i} 's are independent. Thus

$$
\begin{aligned}
|\mathcal{F}| & \leqslant\left|F_{x_{i}}\right|+\sum_{u_{i} \subset\left[x_{1}, z_{i} \mid\right.} \sum_{u_{i}-\operatorname{dim}}\left|\mathcal{F}_{u_{1} \mid}\right| \\
& \leqslant\left[\begin{array}{c}
k \\
1
\end{array}\right]\left[\begin{array}{c}
n-2 \\
k-2
\end{array}\right]+\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]-1\right)^{2}\left[\begin{array}{c}
n-2 \\
k-2
\end{array}\right]<\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right] .
\end{aligned}
$$

Thus we can suppose that there is at mosi one $z \in A_{1}$ such that $A \in \mathscr{F} \Rightarrow A \Gamma\left[\left\{x_{i}, z\right] \neq(0)\right.$. Suppose that $z \in A_{1}$ is such Take $x \in A_{1} \sim[z]$. then there is some $A \in \mathscr{G}$ such that $A \cap\left[\sim_{1}, x\right]=(0)$, and hence $\left|F_{x_{1}, x}\right| \leqslant\left[\begin{array}{l}k\end{array}\right]\left[\left[_{k-3}^{n-3}\right]\right.$. Thus

$$
\left|\mathcal{F}_{x_{1}}\right| \leqslant\left|\mathcal{F}_{x_{1}, 2}\right|+\sum_{\substack{x \subset A_{1} \sim[z] \\
x 1-\operatorname{dim}}}\left|\mathcal{F}_{x_{1}, x}\right| \leqslant\left[\begin{array}{c}
n-2 \\
k-2
\end{array}\right]+\left[\begin{array}{l}
k \\
1
\end{array}\right]^{2}\left[\begin{array}{l}
n-3 \\
k-3
\end{array}\right] .
$$

But then

$$
\begin{aligned}
& |F| \leqslant \sum_{\substack{n \in[x, 2] \\
x 1-\operatorname{dim}}} \left\lvert\, F_{x}!\leqslant\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left(\left[\begin{array}{l}
n-2 \\
k-2
\end{array}\right]+\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{l}
k-3 \\
k-3
\end{array}\right]\right)\right. \\
& \leqslant \frac{1}{q}\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{l}
n-2 \\
k-2
\end{array}\right]+\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{c}
k \\
1
\end{array}\right] 2\left[\begin{array}{c}
n-3 \\
k-3
\end{array}\right]<\frac{1+\left[\begin{array}{l}
2 \\
1
\end{array}\right]}{q^{2}}\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right] \leqslant\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right] .
\end{aligned}
$$

Thus we can suppose that for all $x \in A_{1}$, there is some $A \in \mathscr{F}$ such that $A \cap\left[x_{1}, x\right]=(0)$, and herce $\left|F_{x_{1}, x}\right| \leqslant\left[\left[_{1}^{k}\right]\left[\begin{array}{l}n-3 \\ k-3\end{array}\right]\right.$. Thus $\left|\mathcal{F}_{x_{1}}\right| \leqslant\left[\begin{array}{l}k \\ 1\end{array}\right]^{2}\left[\begin{array}{l}n-3\end{array}\right]$ By Lemma 4.3, we can suppose that $k \geqslant 4$.

Take a non-zero vector y_{1} in A_{1}. There is seme $A_{2} \in \mathscr{F}$ such that $A_{2} \cap\left[x_{1}, y_{1}\right]=(0)$. Suppose that there are three independent vectors z_{1}, z_{2}, z_{3} in A_{2} such that $A \in \mathscr{F} \Rightarrow\left[x_{1}, y_{1}, z_{i} \cap A \neq(0)\right.$ for all $A \in \mathcal{F}$ for $i=1,2,3$. If $u_{i} \in\left[x_{1}, y_{1}, z_{i}\right] \sim\left[x_{1}, y_{1}\right], i=1,2,3$, then the u_{i} 's are
independent. Thus

$$
\begin{aligned}
|\mathcal{F}| & \leqslant \sum_{\substack{x \in\left[x_{1}, y_{1}\right] \\
x \|-\operatorname{sim}}}\left|F_{x}\right|+\sum_{\substack{u_{i} \in\left[x_{1}, y_{1}, z_{i}\right] \sim\left[x_{1}, y_{1}\right] \\
u_{i} 1-\operatorname{dim}}}\left|\mathcal{F}_{u_{1}, u_{2}, u_{3}}\right| \\
& \leqslant\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{l}
k \\
1
\end{array}\right]^{2}\left[\begin{array}{l}
n-3 \\
k-3
\end{array}\right]+\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right]-\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)^{3}\left[\begin{array}{c}
n-3 \\
k-3
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{l}
k \\
1
\end{array}\right]^{2}\left[\begin{array}{c}
n-3 \\
k-3
\end{array}\right]+q^{6}\left[\begin{array}{c}
n-3 \\
k-3
\end{array}\right] \\
& <\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]+1\right)\left[\begin{array}{c}
k \\
1
\end{array}\right]^{2}\left[\begin{array}{c}
n-3 \\
k-3
\end{array}\right]<\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right] .
\end{aligned}
$$

Thus we can suppose that there exist at most two such z 's, and so

$$
\left.\left|F_{x_{1}, y_{1}}\right| \leqslant\left[\begin{array}{l}
k \\
1
\end{array}\right]^{2} \begin{array}{r}
n-4 \\
k-4
\end{array}\right]+\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{l}
n-3 \\
k-3
\end{array}\right] .
$$

But then

$$
\left|\mathcal{F}_{x_{1}}\right| \leqslant\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{l}
n-4 \\
k-4
\end{array}\right]+\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{c}
n-3 \\
k-3
\end{array}\right] .
$$

By Lemma 4.2, $\left|\mathscr{F}_{x, y}\right| \leqslant\left[\begin{array}{l}k \\ 1\end{array}\right]\left[\begin{array}{l}n-3 \\ k-3\end{array}\right]$ for all $2-\operatorname{dim}[x, y] \subset V$. Suppose that there do exist two such z 's, say z_{1}, z_{2}. Then

$$
\begin{aligned}
& |\mathcal{F}| \leqslant \sum_{\substack{x \subset\left\{x_{1}, y_{1} \mid \\
x 1\right. \text {-dim }}}\left|\mathcal{F}_{x}\right|+\sum_{\substack{u_{i} \subset\left\{x_{1}, y_{1}, z_{2}\right\} \sim\left\{x_{1}, y_{1}\right] \\
u_{i} \mid-\operatorname{dim}}}\left|\mathcal{F}_{u_{1}, u_{2} \mid}\right| \\
& \leqslant\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left(\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{l}
n-4 \\
k-4
\end{array}\right]+\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{c}
n-3 \\
k-3
\end{array}\right]\right)+\left(\left[\begin{array}{l}
3 \\
1
\end{array}\right]-\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)^{2}\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{c}
n-3 \\
k-3
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{c}
k \\
1
\end{array}\right] 3\left[\begin{array}{c}
n-4 \\
k-4
\end{array}\right]+\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right]^{2}+q^{4}\right)\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{c}
n-3 \\
k-3
\end{array}\right]
\end{aligned}
$$

Hence we can suppose that there exist at most one such z 's. Suppose that z_{1} is such. We have

$$
\left|\mathscr{F}_{x_{1}, y_{1}}\right| \leqslant\left[\begin{array}{l}
k \\
1
\end{array}\right]^{2}\left[\begin{array}{c}
n-4 \\
k-4
\end{array}\right]+\left[\begin{array}{l}
n-3 \\
k-3
\end{array}\right],
$$

and so

$$
\left|F_{x_{1}}\right| \leqslant\left[\begin{array}{c}
k \\
1
\end{array}\right]^{3}\left[\begin{array}{c}
n-4 \\
k-4
\end{array}\right]+\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{l}
n-3 \\
k-3
\end{array}\right] .
$$

Thus

$$
\begin{aligned}
|\mathcal{F}| & \leqslant \sum_{\substack{x \subset\left[x_{1}, y_{1}, z_{1}\right] \\
x 1 \cdot \cdot \lim }}\left|\mathcal{F}_{x}\right| \leqslant\left[\begin{array}{l}
3 \\
1
\end{array}\right]\left(\left[\begin{array}{l}
k \\
1
\end{array}\right]^{3}\left[\begin{array}{ll}
n-4 \\
k-4
\end{array}\right]+\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{l}
n-3 \\
k-3
\end{array}\right]\right) \\
& \leqslant \frac{\left[\begin{array}{l}
3 \\
q^{3}
\end{array}\right]}{q^{3}}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]+\frac{1}{q^{2}}\left[\begin{array}{l}
k \\
1
\end{array}\right]^{2}\left[\begin{array}{ll}
n-3 \\
k-3
\end{array}\right]<\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] .
\end{aligned}
$$

Thus we can suppose tat $x \in A_{2} \Rightarrow$ there is some $A \in \mathcal{F}$ such that $A \cap\left[x_{1}, y_{1}, x\right]=(0)$. Hence $\left\{\mathcal{F}_{x_{1}} i \leqslant\left[\begin{array}{l}k \\ 1\end{array}\right]^{3}\left[\begin{array}{l}n-4 \\ k-4\end{array}\right]\right.$.

In general, suppose that for $1 \leqslant p \leqslant k-3$, we have non-zero vectors $y_{1}, \ldots . y_{p} \in V$ and $A_{1}, \ldots, A_{p+1} \in \mathcal{F}$ such that $y_{i} \in A_{i}$ and $A_{i+1} \cap\left[x_{1}, y_{1}, \ldots, y_{i}\right]=(0)$ for $1 \leqslant i \leqslant p$. Thus

$$
\left|\mathcal{F}_{x_{1}, y_{1}, \ldots . y_{p}}\right| \leqslant\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{c}
n-p-2 \\
k-p-2
\end{array}\right],
$$

and so inductively we obtain that

$$
\left|\mathcal{F}_{x_{1}}\right| \leqslant\left[\begin{array}{l}
k \\
1
\end{array}\right]^{p+1}\left[\begin{array}{l}
n-p-2 \\
k-p-2
\end{array}\right] .
$$

By Lemma 4.3,

$$
\left|F_{x, y}\right| \leqslant\left[\begin{array}{l}
k \\
1
\end{array}\right] p\left[\begin{array}{l}
n-p-2 \\
k-p-2
\end{array}\right]
$$

for all 2-dimensional $[x, y] \subset V$.
Suppose that there are $p+2$ inearly independent vectors z_{1}, \ldots, z_{p+2} in A_{p+1} such that $\left[x_{1}, y_{1}, \ldots, y_{p}, z_{i}\right] \cap A \neq(0)$ for $A \in \mathcal{F}$ for $i=1$, $\ldots, p+2$. Let $u_{i} \in\left[x_{1}, y_{1}, \ldots, y_{p}, z_{i}\right] \sim\left[x_{1}, y_{1}, \ldots, y_{p}\right], i=1, \ldots, p+2$, then u_{1}, \ldots, u_{p+2} are independent. Thus

$$
\begin{aligned}
& |\mathcal{F}| \leqslant \sum_{\substack{x \in\left\{x_{1}, v_{1}, \ldots, y_{p} \mid \\
x 1-\operatorname{dim}\right.}}\left|F_{x}\right|+\sum_{u_{i} \subset\left\{x_{1}, y_{1}, \ldots, y_{p}, z_{i} \mid \sim\left\{x_{1}, y_{1}, \ldots, y_{p} \mid\right.\right.}^{u_{i} 1 \text { dim }} \mid \mathcal{F}_{u_{1}, \ldots, u_{p+2} \mid} \\
& \leqslant\left[\begin{array}{c}
p+1 \\
1
\end{array}\right]\left[\begin{array}{l}
k \\
1
\end{array}\right]^{p+1}\left[\begin{array}{c}
n-p-2 \\
k-p-2
\end{array}\right]+\left(\left[\begin{array}{c}
p+2 \\
1
\end{array}\right]-\left[\begin{array}{c}
p+1 \\
1
\end{array}\right]\right)^{p+2}\left[\begin{array}{c}
n-p-2 \\
k-p-2
\end{array}\right] \\
& \leqslant\left[\begin{array}{c}
p+1 \\
1
\end{array}\right]\left[\begin{array}{l}
k \\
1
\end{array}\right]^{p+1}\left[\begin{array}{c}
n-p-2 \\
k-p-2
\end{array}\right]+q^{(p+1)(k-1)}\left[\begin{array}{cc}
n-p-2 \\
k-p-2
\end{array}\right] \\
& \leqslant\left(\left[\begin{array}{c}
p+1 \\
1
\end{array}\right]+1\right)^{[k}\left[\begin{array}{l}
k+1
\end{array}\right]_{n-p-2}^{n-p-2}\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right] \text {. }
\end{aligned}
$$

Thus we can suppose that there are at most $p+1$ such z_{i} 's. Hence

$$
\left|F_{x_{1}, y_{1}, \ldots, y_{p}}\right| \leqslant\left[\begin{array}{l}
k \\
1
\end{array}\right]^{2}\left[\begin{array}{c}
n-p-3 \\
k-p-3
\end{array}\right]+\left[\begin{array}{c}
p+1 \\
1
\end{array}\right]\left[\begin{array}{c}
n-p-2 \\
k-p-2
\end{array}\right],
$$

and so

$$
\left|\mathcal{F}_{x_{1}}\right| \leqslant\left[\begin{array}{l}
k \\
1
\end{array}\right]^{p+2}\left[\begin{array}{cc}
n-p & 3 \\
k-p-3
\end{array}\right]+\left[\begin{array}{c}
p+1 \\
1
\end{array}\right]\left[\begin{array}{c}
k \\
1
\end{array}\right]^{p}\left[\begin{array}{c}
n-p-2 \\
k-p-2
\end{array}\right] .
$$

Suppose that we do have independent vectors $z_{1}, z_{2} \in A_{p+2}$ such that $A \in \mathcal{F} \Rightarrow A \cap\left[x_{1}, y_{1}, \ldots, y_{p}, z_{i}\right] \neq(0)$ for $i=1,2$. Then

$$
\begin{aligned}
& |\mathcal{F}| \leqslant \sum_{\substack{x \subset\left\{x_{1}, y_{1}, \ldots, y_{p} \mid \\
x 1-\operatorname{dim}\right.}}\left|\mathcal{F}_{x}\right|+\sum_{\substack{u_{i} \subset\left[x_{1}, y_{1}, \ldots, y_{p}, z_{i}\right] \sim\left\{x_{1}, y_{1}, \ldots, y_{p}\left| \\
u_{i}\right|-\operatorname{dim}\right]}}\left|\mathcal{F}_{u_{1}, u_{2}}\right| \\
& \leqslant\left[\begin{array}{c}
p+1 \\
1
\end{array}\right]\left(\left[\begin{array}{l}
k \\
1
\end{array}\right]^{p+1}\left[\begin{array}{l}
n-p-3 \\
k-p-3
\end{array}\right]+\left[\begin{array}{c}
p+1 \\
1
\end{array}\right]\left[\begin{array}{l}
n-p-2 \\
k-p-2
\end{array}\right]\right) \\
& +\left(\left[\begin{array}{c}
p+2 \\
1
\end{array}\right]-\left[\begin{array}{c}
p+1 \\
1
\end{array}\right]\right)^{2}\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{c}
n-p-2 \\
k-p-2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant\left[\begin{array}{c}
p+1 \\
1
\end{array}\right]\left[\begin{array}{l}
k \\
1
\end{array}\right]^{p+2}\left[\begin{array}{l}
n-p-3 \\
k-p-3
\end{array}\right]+q^{p}\left[\begin{array}{c}
k \\
1
\end{array}\right]^{p+1}\left[\begin{array}{l}
n-p-2 \\
k-p-2
\end{array}\right] \\
& \leqslant\left(\frac{\left[\begin{array}{c}
p^{+1}
\end{array}\right]}{q^{p+2}}+\frac{1}{q}\right)\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right]<\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right] .
\end{aligned}
$$

Thus we can suppose that there is at most one such z. Hence

$$
\left|\mathcal{T}_{x_{1}}\right| \leqslant\left[\begin{array}{l}
k \\
1
\end{array}\right]^{p+2}\left[\begin{array}{c}
n-p-3 \\
k-p-3
\end{array}\right]+\left[\begin{array}{c}
k \\
1
\end{array}\right]^{p}\left[\begin{array}{c}
n-p-2 \\
k-p-2
\end{array}\right] .
$$

Suppose that $z_{1} \in A_{y+1}$ is such a z, then

$$
\begin{aligned}
& |\Im| \leqslant \sum_{x \in\left|x_{1}, y_{1}, y_{p}, 2\right|}\left|F_{x}\right| \leqslant\left[\begin{array}{c}
p+2 \\
i
\end{array}\right]\left(\left[\begin{array}{c}
k \\
1
\end{array}\right]^{p+2}\left[\begin{array}{c}
n-p-3 \\
k-p-3
\end{array}\right]+\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{c}
n-p-2 \\
k-p-2
\end{array}\right]\right) \\
& <\left[\begin{array}{c}
p+2 \\
1
\end{array}\right]\left[\begin{array}{l}
k \\
1
\end{array}\right]^{p+2}\left[\begin{array}{cc}
n-p-3 \\
k-p-3
\end{array}\right]+\frac{1}{q}\left[\begin{array}{l}
k \\
1
\end{array}\right]^{p+1}\left[\begin{array}{cc}
n-p & 2 \\
k-p-2
\end{array}\right] \\
& <\left(\frac{\left[^{p+2}\right.}{q^{p+2}}+\frac{1}{q^{p+2}}\right)\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]<\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] .
\end{aligned}
$$

Thus we can suppose that for all $z \in A_{p+1}$, there is some $A \in \mathscr{F}$ such
that $\left.A \cap i i_{1}, y_{1}, \ldots, y_{p}, z\right]=(0)$. Take $y_{p+1} \in A_{p+1}$, and let A_{p+2} be su:h that $A_{p+2} \cap\left[x_{1}, y_{1}, \ldots, y_{p+1}\right]=(0)$.

Thus for $1 \leqslant p \leqslant k-1$, we have either $\left.\left|\mathcal{F}_{x_{1}}\right| \leqslant[]_{1}^{k}\right]^{p}\left[\begin{array}{c}n-1-p \\ k_{-}-1-p\end{array}\right]$ or $|\mathcal{F}|<\left[_{k-1}^{n-1}\right]$. Hence either $\left|\mathcal{F}_{x_{1}}\right| \leqslant\left[\begin{array}{l}k\end{array}\right]^{k-1}$ or $|\mathcal{F}|<\left[_{k-1}^{n-1}\right]$. By Lemma $4.2,\left|\mathcal{F}_{x_{1}}\right| \leqslant\left[\begin{array}{l}k \\ 1\end{array}\right]^{k-1} \Rightarrow|\mathcal{F}|<\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]$. Thus we have $|\mathcal{F}|<\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]$ in all cases.

5. $S(r, k, n, q)$

The method developed in the last section can be modified to obtain a bound on the size of families in $S(r, k, n, q)$. Again, there are non-trivial cases where our method fails to apply, but we do have $\left[\begin{array}{c}n-r \\ k-r\end{array}\right]$ as a best possible bound over a fairly wide range.

Lemma 5.1. If $q \geqslant 3, n \geqslant 2 k+1$, or if $n \geqslant 2 k+2$, then

Proof. By Lemma 4.1,

$$
\left[\begin{array}{c}
n-r \\
k-r
\end{array}\right]>(q-i)^{\prime} q^{(n-2 k+r-1) p}\left[\begin{array}{c}
k-r+1 \\
1
\end{array}\right]^{p}\left[\begin{array}{c}
n-r-p \\
k-r-p
\end{array}\right] .
$$

Now

$$
\left[\begin{array}{c}
p+r \\
r
\end{array}\right]=\left[\begin{array}{c}
p+r \\
p
\end{array}\right]=\prod_{i=0}^{p-1} \frac{q^{p+r}-q^{i}}{q^{p}-q^{i}},
$$

and it can be easily checked that if either $q \geqslant 3, n \geqslant 2 k+1$, or $n \geqslant 2 k+2$, then

$$
(q-1) q^{n-2 k+r-1} \geqslant \frac{q^{p+r}-q^{i}}{q^{p}-q^{i}} \quad \text { for } i=0,1, \ldots, p-1
$$

Thus

$$
\left[\begin{array}{c}
n-r \\
k-r
\end{array}\right]>\left[\begin{array}{c}
p \div r \\
r
\end{array}\right]\left[\begin{array}{c}
k-r+1 \\
1
\end{array}\right]\left[\begin{array}{c}
n-r-p \\
k-r-p
\end{array}\right] .
$$

Theorem 5.2. If $n \geqslant 3 k+2$ or if $n \geqslant 2 k+1$ and $q \geqslant 3$, the $\left||9| \leqslant\left[\begin{array}{c}n-r \\ k-r\end{array}\right]\right.$ for $G \in S(r, k, n, q)$. In fact, if $\operatorname{dim}(\cap \mathcal{F})<r$, then $|F|>\left|\begin{array}{l}n-r \\ n-r\end{array}\right|$.

Proef. Take $\mathcal{F} \in S(r, h, n q)$. If $\operatorname{dim}(\cap \mathcal{F}) \geqslant r$, then $|\mathcal{F}| \leqslant\left[\begin{array}{c}n-r \\ k-r\end{array}\right]$ by Remark 2.1. Thus we ca \imath suppose $\operatorname{dim}(\cap \mathcal{F})<r$.

Let $\left[x_{1}, \ldots, x_{r}\right] \subset V^{\prime}$ be such that

$$
17_{x_{1} \ldots, x_{r}}\left|=\max _{A \subset V}^{A r \cdot \operatorname{dim}}\right| \mathscr{F}_{A} \mid
$$

By our assumption, there is some $A_{1} \in \mathcal{F}$ such that $\left[x_{1}, \ldots, x_{r}\right] \not \subset A_{1}$. Hence there exists a ($k-r+1$)-dimensional subspace B_{1} of A_{1} such that $B_{1} \cap\left[x_{1}, \ldots, x_{r}\right]=(0)$. For all A in $\mathcal{F}, \operatorname{dim}\left(A \cap A_{1}\right) \geqslant r$, so $A \cap B_{1} \neq(0)$. Thus

$$
\left|\mathcal{F}_{x_{1}, \ldots . x_{r}}\right| \leqslant\left[\begin{array}{c}
k-r+1 \\
1
\end{array}\right]\left[\begin{array}{c}
n-r-1 \\
k \rightarrow r-1
\end{array}\right] .
$$

Take $y_{1} \therefore B_{1}$ If $\operatorname{dim}\left(A \cap\left[x_{1}, \ldots, x_{r}, y_{1}\right]\right) \geqslant r$ for all A in \mathcal{F}, then

$$
|\mathcal{F}| \leqslant \sum_{c \left\lvert\,\left\{\begin{array}{c}
\left|x_{1}, \ldots, x_{r}, y_{1}\right| \\
c r-\operatorname{dim}
\end{array}\right.\right.}\left|\mathcal{F}_{c}\right| \leqslant\left[\begin{array}{c}
r+1 \\
r
\end{array}\right]\left[\begin{array}{c}
k-r+1 \\
1
\end{array}\right]\left[\begin{array}{cc}
n-r-1 \\
k-r-1
\end{array}\right]<\left[\begin{array}{c}
n-r \\
k-r
\end{array}\right]
$$

by Lernma 5.1.
Hence we can suppose that there is some A_{2} in \mathcal{F} such that $\operatorname{dim}\left(A_{2} \cap\left[x_{1}, \ldots, x_{r}, y_{1}\right]\right) \leqslant r-1$. Thus there is a $(k-r+1)$-dimensional subspace B_{2} of A_{2} such that $B_{2} \cap\left[x_{1}, \ldots, x_{r}, y_{1}\right]=(0)$. But $B_{2} \cap A \neq(0)$ for all $A \in \mathcal{F}$, so

$$
\left|\mathcal{F}_{x_{1}, \ldots, x_{r}, y_{1}}\right| \leqslant\left[\begin{array}{c}
k-r+1 \\
1
\end{array}\right]\left[\begin{array}{c}
n-r-2 \\
k-r-2
\end{array}\right] .
$$

Hence

$$
\left.\left|\mathcal{F}_{x_{1}, \ldots, x_{r}}\right| \leqslant \sum_{\substack{y<B_{1} \\
y 1 \operatorname{dim}}}\left|\mathcal{F}_{x_{1}, \ldots, x_{r}, y}\right| \leqslant\left[\begin{array}{c}
k-r+1 \\
1
\end{array}\right]\right]^{2}\left[\begin{array}{c}
n-r-2 \\
k-r-2
\end{array}\right] .
$$

In general, for $0 \leqslant p \leqslant k-r-1$, either (i) $|F|<\left[\begin{array}{l}n-r \\ k-r\end{array}\right]$, or (ii) for every $y_{i} \in B_{i}$, there is some $A_{i+1} \subseteq \mathscr{F}$ such that $\operatorname{dim}\left(\left[x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{i}\right]\right.$ $\left.\cap . \Phi_{i+1}\right) \leqslant r-1$; thus there is a $(k-r+1)$-dimensional subspace $B_{i+1} \subset A_{i+1}$ such that $\left[x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{i}\right] \cap B_{i+1}=(0)$ for $i=$ $0,1, \ldots, p$.

Suppose that (ii) holds. $A \in \mathcal{F} \Rightarrow \operatorname{dim}\left(A \cap A_{p+1}\right) \geqslant r \Rightarrow$ $A \cap B_{p+1} \neq(0)$. Thus if $y_{p} \in B_{p}$, then

$$
\begin{aligned}
\left|\xi_{x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{p}}\right| & \leqslant \sum_{\substack{y \subset B_{p+1} \\
y 1-d i m}}\left|\mathcal{F}_{x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{p}, y}\right| \\
& \leqslant\left[\begin{array}{c}
k-r+1 \\
1
\end{array}\right]\left[\begin{array}{c}
n-r-p \\
k-r-p
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mid \mathcal{F}_{x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{p-1}} & \leqslant \sum_{\substack{y_{p} \subset B_{p} \\
y_{p} 1-\operatorname{dim}}} \mid \mathcal{F}_{x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{p-i} \mid} \\
& \leqslant\left[\begin{array}{c}
k-r+1 \\
1
\end{array}\right]\left[\begin{array}{c}
n-r-p-1 \\
k-r-p-1
\end{array}\right] \text { for all } y_{p-1} \in B_{p-1}
\end{aligned}
$$

Inductively, we obtain that for $i=0,1, \ldots, p$, and $y_{p i i} \in B_{p-i}$,

$$
\left|\mathcal{F}_{x_{1}, \ldots, x_{r}, y_{1} \ldots, y_{p-i}}\right| \leqslant\left[\begin{array}{c}
k-r+1 \\
r
\end{array}\right]^{i+1}\left[\begin{array}{ccc}
n-r & p-1 \\
k-r & p-1
\end{array}\right] .
$$

Thus

$$
\left|\exists_{x_{1}, \ldots x_{r}}\right| \leqslant\left[\begin{array}{c}
k-r+1 \\
1
\end{array}\right]^{p+1}\left[\begin{array}{cc}
n-r-p \\
k-r \ldots p-1
\end{array}\right]
$$

Take $y_{p+1} \in B_{p+1}$. If $\operatorname{dim}\left(A \cap\left\{x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{p+1}\right\}\right) \geqslant r$ for all A in 7 , then

$$
|F| \leqslant\left[\begin{array}{c}
r+p+1 \\
r
\end{array}\right]\left[\begin{array}{c}
k-r+1 \\
1
\end{array}\right]^{p+1}\left[\begin{array}{l}
n-r-p-1 \\
k-r-p-1
\end{array}\right]<\left[\begin{array}{c}
n-r \\
k-r
\end{array}\right]
$$

by lemma 5.1.
Thus we can suppose that there is some $A_{p+2} \in \mathscr{F}$ such that $\operatorname{dim}\left(A_{p+2} \cap\left[x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{p+1}\right]\right) \leqslant r-1$. Hence there is a $(k-r+1)$ dimensional subspace B_{p+2} of A_{p+2} such that $B_{p+2} \cap\left[x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{p+1}\right]$ $=(0)$.

We conclude that for all p such that $0 \leqslant p \leqslant k-r-1$, either (i) $|9|<\left[\begin{array}{c}n-r \\ k-p\end{array}\right]$ or (ii) $\left|\mathcal{F}_{x_{1}, \ldots, x_{p}}\right| \leqslant\left[\begin{array}{c}k-p+1 \\ 1\end{array}\right]^{p+1}\left[\begin{array}{c}n-r-p-1 \\ k-p-p-1\end{array}\right]$. Thus either (i) $|F|<\left[\begin{array}{c}n-r \\ k-r\end{array}\right]$ or $($ ii $)\left|\mathcal{F}_{x_{1}, \ldots, x_{p}}^{x_{1}, \ldots, x_{p}}\right| \leqslant\left[i^{k+1}\right]^{k-r}$. Suppose that (ii) holds. Take any $A \in \mathcal{F}$, we have

$$
\begin{aligned}
|F| & \leqslant \sum_{B \in A}\left|\mathcal{F}_{B}\right| \leqslant\left[\begin{array}{c}
k \\
r
\end{array}\right]\left[\begin{array}{c}
k-r+1 \\
1
\end{array}\right]^{k-r}=\left[\begin{array}{c}
(k-r)+r \\
r
\end{array}\right]\left[\begin{array}{c}
k-r+1 \\
1
\end{array}\right]^{k-r} \\
& <\left[\begin{array}{c}
n-r \\
k-r
\end{array}\right] \text { by Lemma } 5.1 .
\end{aligned}
$$

Thus $|\mathcal{F}|<\left[\begin{array}{l}n-r \\ k-r\end{array}\right]$ in all cases.
Remark 3.3. If $n \geqslant 2 k$, and $k=r+1$, then $|\mathcal{F}| \leqslant\left[\begin{array}{c}n-r \\ k-r\end{array}\right]$ for all $\mathcal{F} \in S(r, k, n, q)$. In fact, if $A, B \in \mathscr{F}$ such that $\operatorname{dim}(A \cap B)=r=k-1$, then $D \in \mathscr{F} \Rightarrow D \subset \operatorname{span}(A \cup B)$, and so

$$
191 \leqslant\left[\begin{array}{c}
2 k-r \\
k
\end{array}\right]=\left[\begin{array}{c}
2 k-r \\
k-r
\end{array}\right] \leqslant\left[\begin{array}{c}
n-r \\
k-r
\end{array}\right] .
$$

The method in Theorem 5.2 can be applied to the analogous problem for subsets. By $S(r, k, n)$ we denote the set of all families \mathcal{F} of k-element subsets of an n-element set S such that $A, B \in \mathscr{F} \Rightarrow|A \cap B|$ $\geqslant r$. We have the following result:

Theorem 5.4. If $n \geqslant r+(r+1)(k-r+1)(k-r)$, and $\mathcal{F} \in S(r, k, n)$, then $|F| \leqslant\binom{ n-r}{k-r}$.

Proof. Checking over the proof for Theorem 5.2, we note that if

$$
\begin{equation*}
\binom{r+p}{r}\binom{k-r+1}{1}^{p}\binom{n-r-p}{k-r} \leqslant\binom{ n-r}{k-r} \quad \text { for } 0 \leqslant p \leqslant k-r . \tag{*}
\end{equation*}
$$

then $|F| \leqslant\binom{ n-r}{k-r}$.
Now $(n-r-i) /(k-r i) \geqslant(n-r) /(k-r)$ for $0 \leqslant i \leqslant p-1$. Thus

$$
\binom{n-r}{k-r} /\binom{n-r-p}{k-r-p}=\prod_{i=0}^{p-1} \frac{n-r-i}{k-r-i} \geqslant\left(\frac{n-r}{k-r}\right)^{p}
$$

Also, $\binom{r+p}{r}=\binom{r+p}{p} \leqslant(r+1)^{p}$. Hence if $n \geqslant r+(r+1)(k-r+1)(k-r)$, then $(n-r) /(k-r) \geqslant(r+1)(k-r+1)$, and so

$$
\begin{aligned}
\binom{n-r}{k-r} & \geqslant\binom{ n-r}{k-r}^{p}\binom{n-r-p}{k-r-p} \geqslant(r+1)^{p}\binom{k-r+1}{1} p\binom{n-r-p}{k-r-p} \\
& \geqslant\binom{ r+p}{r}\binom{k-r+1}{1}^{p}\binom{n-r-p}{k-r-p}
\end{aligned}
$$

for $0 \leqslant p \leqslant k-r$, which is (*).
Remark 5.5. [1, Theorem 2] states that if $n \geqslant r+(k-r)\left({ }_{r}^{k}\right)^{3}$ and $\mathcal{F} \in S(r, k, n)$, then $|\mathscr{F}| \leqslant\binom{ n-r}{k-r}$. Now $\binom{k}{r}^{3} \geqslant\binom{ k}{1}^{3}=k^{3} \Rightarrow(r+1)(k-r+1)$. Thus our result is a considerable improvement over that of Erdos-KoRado's. It seems that the bound on n could be improved further.

Acknowledgment

The author would like to thank Professor Daniel J. Kleitman for suggesting the problem, helpful discussions and encouragement.

References

[1] P. Erdos, Chao Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (1961) 313-320.
[2] J. Goidman and G.C. Rota, On: the foundantions of combinatorial theory IV: Finite vector spaces and Euierian generating functions, Studies in Appl. Math. 44(3) (1970) 239-258.
[3] A.j.W. Hilton and E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 18 (1967) 369-384.
[4] G.O.H. Katona, Intersection theorems for systems of finite sets, Acta Math. Acad. Sci. Hengar. 15 (1964) 329-337.
[5] G.O.H. Katona, A simple proof of the Eroös-Chao Ko-Rado theorem, J. Combin. Theory $13(B)(1972) 183-184$.
$16 \mid$ G.C. Rota and 1..H. Harper, Matching theory, an introduction, Advances in Probability 1(1971)171-215.

[^0]: ${ }^{*}$ Supported in part by ONR under Contract ONRN 00014-67-A-0204-0063.

 * Present adsfess: Network Analy sis Corporation, Glen Cove, N.Y. 11542, USA.

