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Abstract

This paper deals with a general fixed point iteration for computing a point in some nonempty closed and convex solution set
included in the common fixed point set of a sequence of mappings on a real Hilbert space. The proposed method combines two
strategies: viscosity approximations (regularization) and inertial type extrapolation. The first strategy is known to ensure the strong
convergence of some successive approximation methods, while the second one is intended to speed up the convergence process.
Under classical conditions on the operators and the parameters, we prove that the sequence of iterates generated by our scheme
converges strongly to the element of minimal norm in the solution set. This algorithm works, for instance, for approximating
common fixed points of infinite families of demicontractive mappings, including the classes of quasi-nonexpansive operators and
strictly pseudocontractive ones.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout, H is a real Hilbert space endowed with inner product 〈.,.〉 and induced norm | . |. For any mapping
T : H → H, we denote by Fix(T ) the set of fixed points of T , that is Fix(T ) := {x ∈ H | T x = x}. In this paper,
we are interested in solving (common) fixed point problems regarding operators such as quasi-nonexpansive, strictly
pseudocontractive, or more general ones. Let us recall that a mapping T : H →H is called:

(i) quasi-nonexpansive if |T x − q| � |x − q| for all (x, q) ∈H× Fix(T );
(ii) strictly pseudocontractive if there exists a constant ρ ∈ [0,1) such that |T x − Ty|2 � |x − y|2 + ρ|x − y −

(T x − Ty)|2 for all (x, y) ∈H×H;
(iii) demicontractive (see, e.g., [24,25]), if there exists a constant k ∈ [0,1) such that

|T x − q|2 � |x − q|2 + k|x − T x|2, ∀(x, q) ∈ H× Fix(T ), (1.1)
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which in the light of (2.9) can be equivalently written as

〈x − T x,x − q〉 � 1 − k

2
|x − T x|2, ∀(x, q) ∈H× Fix(T ). (1.2)

A mapping satisfying (1.1) or (1.2) will be called k-demicontractive and we denote by Dk the set of k-demicontractive
operators. Fixed point problems plays an important role in nonlinear analysis and optimization. In the setting of Hilbert
or Banach spaces, several strongly convergent methods were proposed:

(i) Viscosity methods of Halpern’s type [16] for nonexpansive maps [6,9,18,21,26,30,31,33];
(ii) The hybrid steepest descent method for certain quasi-nonexpansive mappings called quasi-shrinking map-

pings [34];
(iii) Outer approximation methods for certain quasi-nonexpansive mappings called firmly quasi-nonexpansive map-

pings [7];
(iv) A Mann-type iteration [23] for strictly pseudocontractive maps [19] (see also [10,11]).

Let us emphasize that the class of quasi-nonexpansive mappings is independent of the class of strictly pseudocontrac-
tive mappings, but the two of them include the extensively studied class of nonexpansive mappings. Such operators
are most difficult for research in the fixed point theory and at the same time most interesting for applications. Other
iterative schemes were proposed for approximating fixed points of (special) quasi-nonexpansive or demicontractive
maps [14,24,25,29]. Interesting weak convergence results are obtained, but the convergence in norm of the iterates
are established under very restrictive conditions regarding for instance the considered operators or the space (demi-
compactness, continuity, compactness).

It is our purpose to propose a strongly convergent method for approximating (common) fixed points of demi-
contractive maps, only with classical conditions. It is obviously observed that the class of demicontractive operators
contains the classes of quasi-nonexpansive operators and strictly pseudocontractive ones with fixed points. In view of
applications, we recall that D0 contains the class of firmly quasi-nonexpansive maps, including subgradient projection
operators which attracts great attention and occurs for instance in signal and image processing [7,12,13,34–36]. In
a more general frame, our attention will be focused on a formalism which consists in finding a point in S, a nonempty
subset of H, relatively to (Tn), a sequence of mappings on H, with the following conditions:

(C0) S is a closed and convex subset of H.
(C1) (Tn)n�0 ⊂ Dk , where k ∈ [0,1).
(C2) ∀n � 0, S ⊂ Fix(Tn).
(C3) For any subsequence (Tnj

) of (Tn), for (ξnj
) ⊂ H, for ξ ∈ H,

(ξnj
) → ξ weakly and ξnj

− Tnj
ξnj

→ 0 strongly ⇒ ξ ∈ S.

To this end, we examine the following iteration method[
xn+1 := (1 − w)vn + wTnvn, vn = (1 − αn)xn + θn(xn − xn−1),

x0, x1 ∈H, w ∈ [0,1), (θn) and (αn) are sequences in [0,1).
(1.3)

Let us recall that (1.3) is called inertial, because of the term θn(xn − xn−1). This algorithm is based upon a discrete
version of a second order dissipative dynamical system [4,5] and can be regarded as a procedure of speeding up the
convergence properties (see, e.g., [3,28]). It is worth mentioning that the scheme (1.3) was considered in [22], in
the special case when αn ≡ 0 and w = 1, for solving the above formalism without (C0) and with the condition (C3)
replaced by

(C3′) For any (ξn) ⊂ H , for ξ ∈ H ,

ξ is a weak cluster point of (ξn) and ξn − Tnξn → 0 strongly ⇒ ξ ∈ S.

This latter condition is slightly weaker than (C3), but only weak convergence results were established for a wide
class of operators which includes α-averaged quasi-nonexpansive maps. Recall that the condition (C3) and (C3′)
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can be regarded as sorts of demi-closedness of the sequence (Tn) which reduces to the classical demi-closedness
property [15] when Tn is a constant sequence. Let us mention some typical examples covered by our formalism:

(1) The first one is related to computing zeroes of a maximal monotone set-valued mapping A : H → P(H). The
conditions (C0)–(C3) are satisfied with S = A−1(0) and Tn = JA

λn
, where (λn) ⊂ (λ,+∞) (for some positive λ) and

JA
λn

:= (I + λnA)−1 is the resolvent of A of parameter λn (see, e.g., [8,20] and the references therein for details on

proximal methods). Indeed, (C0) holds because JA
λn

is well known to be nonexpansive, (C1) is satisfied with k = 0,

(C2) holds since Fix(JA
λn

) = A−1(0) and (C3) is deduced from the fact that the graph of a maximal monotone mapping
is weakly–strongly closed (see, for instance, [8]). Let us mention that the algorithm (1.3) was studied in the special
case when αn ≡ 0 and w = 1, by Alvarez and Attouch [3] (see also [2,17,27]).

(2) The second one consists in approximating a common fixed point of finitely many maps (Ti)
N
i=0 ⊂ Dk such

that each Ti is demi-closed and
⋂N

i=0 Fix(Ti) �= ∅. Letting U = ∑N
i=0 wiTi where (wi)

N
i=0 ⊂ (0,1] is such that∑N

i=0 wi = 1, we will prove that the conditions (C0)–(C3) hold with Tn = U and S = ⋂N
i=0 Fix(Ti) (see Theorem 4.2).

(3) The third one is concerned with the numerical approach to a common fixed point of infinitely many maps
(Ti)i�0 ⊂ Dk satisfying

⋂
i�0 Fix(Ti) �= ∅. Let us consider the special case of our formalism with Tn = ∑n

i=0 wi,nTi

and S = ⋂
i�0 Fix(Ti), where each Ti is demi-closed and (wi,n) ⊂ [0,+∞) are real numbers such that:

(i) ∀n � 0,
∑n

i=0 wi,n = 1;
(ii) ∀i � 0, (wi,n)n�0 is bounded away from zero for n large enough (that is: ∀i � 0, ∃Ni ∈ N and ∃wi > 0 such that

∀n � Ni , wi,n � wi ).

In this context, we will prove that (C0)–(C3) hold (see Theorem 4.3).
Under the conditions (C0)–(C3) and other suitable conditions on the parameters (w), (αn) and (θn), we prove that

the sequence (xn) generated, with arbitraries x0 and x1 in H, by (1.3) converges strongly to PS(0) where PS is the
metric projection from H onto S. To this end, for the convenience reader we enumerate the main assumptions used
through the rest of the paper:

(H1) (αn) is a non-increasing sequence in [0,1).
(H2) w ∈ (0, 1−k

2 ] (k being the constant occurring in (1.1)).
(H3) αn → 0.
(H4) (θn) is a non-decreasing sequence in [0, θ ], where θ ∈ [0, 1

3 ).
(SP)

∑
n�0 αn = +∞ (slow parametrization).

2. Preliminaries

The next lemmas are needed to state our convergence results.

Lemma 2.1. Let (Tn) and S �= ∅ satisfy the assumptions (C1)–(C2) and suppose the conditions (H1) and (H4) hold.
Then the sequence (xn) given by (1.3) satisfies for all n � 1,

Pn+1 − Pn + (1 − 3θn+1 − αn)dn + ρ − 1

2
|xn+1 − vn|2 � −αn〈xn, xn − q〉, (2.1)

where q is any element in S, ρ := 1
w

(1 − k − w) and Pn is defined by

Pn := φn − θn−1φn−1 + 2θndn−1 + 1

2
αn|xn|2, (2.2)

with φj := 1
2 |xj − q|2 and dj := 1

2 |xj+1 − xj |2.

Proof. Given any q in S, by (1.3) we have

xn+1 − q = (vn − q) − w(vn − Tnvn),
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hence

|xn+1 − q|2 = |vn − q|2 + w2|vn − Tnvn|2 − 2w〈vn − Tnvn, vn − q〉,
which by the demicontractivity condition (1.2) yields

|xn+1 − q|2 � |vn − q|2 − w(1 − k − w)|vn − Tnvn|2. (2.3)

By (1.3) we also have Tnvn − vn = 1
w

(xn+1 − vn). Setting ρ := 1
w

(1 − k − w), by (2.3) we then obtain

|xn+1 − q|2 � |vn − q|2 − ρ|xn+1 − vn|2,
or equivalently

|xn+1 − q|2 + (ρ − 1)|vn − xn+1|2 � |vn − q|2 − |vn − xn+1|2. (2.4)

Let us estimate separately each term in the right-hand side of the previous inequality. Concerning the first term, we
have

|vn − q|2 = ∣∣(xn − q) + θn(xn − xn−1) − αnxn

∣∣2

= |xn − q|2 + ∣∣θn(xn − xn−1) − αnxn

∣∣2 + 2
〈
xn − q, θn(xn − xn−1) − αnxn

〉
,

that is,

|vn − q|2 = |xn − q|2 + 2θn〈xn − q, xn − xn−1〉 − 2αn〈xn − q, xn〉 + ∣∣θn(xn − xn−1) − αnxn

∣∣2
. (2.5)

Concerning the second term, we immediately obtain

|vn − xn+1|2 = |xn − xn+1|2 + 2θn〈xn − xn+1, xn − xn−1〉 − 2αn〈xn − xn+1, xn〉
+ ∣∣θn(xn − xn−1) − αnxn

∣∣2
. (2.6)

As a consequence, by (2.4)–(2.6) we get

|xn+1 − q|2 + (ρ − 1)|vn − xn+1|2 � |xn − q|2 + 2θn〈xn − q, xn − xn−1〉 − 2αn〈xn − q, xn〉 − |xn − xn+1|2
− 2θn〈xn − xn+1, xn − xn−1〉 + 2αn〈xn − xn+1, xn〉. (2.7)

Using Young’s inequality, we have

〈xn − xn+1, xn − xn−1〉 � −1

2
|xn − xn+1|2 − 1

2
|xn − xn−1|2,

which by (2.7) yields

|xn+1 − q|2 − |xn − q|2 − θn|xn − xn−1|2 + (1 − θn)|xn − xn+1|2 + (ρ − 1)|vn − xn+1|2
� −2αn〈xn − q, xn〉 + 2θn〈xn − q, xn − xn−1〉 + 2αn〈xn − xn+1, xn〉. (2.8)

Furthermore, for any a, b ∈H, it is easily checked that

〈a, b〉 = −1

2
|a − b|2 + 1

2
|a|2 + 1

2
|b|2, (2.9)

so that (2.8) can be equivalently rewritten as

|xn+1 − q|2 − |xn − q|2 − θn|xn − xn−1|2 + (1 − θn)|xn − xn+1|2 + (ρ − 1)|vn − xn+1|2

� −2αn〈xn − q, xn〉 + 2θn

(
−1

2
|xn−1 − q|2 + 1

2
|xn − q|2 + 1

2
|xn − xn−1|2

)

+ 2αn

(
−1

2
|xn+1|2 + 1

2
|xn+1 − xn|2 + 1

2
|xn|2

)
, (2.10)

that is
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|xn+1 − q|2 − |xn − q|2 + 2θn+1|xn+1 − xn|2 − 2θn|xn − xn−1|2 + θn

(|xn−1 − q|2 − |xn − q|2)
+ αn

(|xn+1|2 − |xn|2
) + (1 − θn − 2θn+1 − αn)|xn − xn+1|2 + (ρ − 1)|vn − xn+1|2

� −2αn〈xn − q, xn〉. (2.11)

Assuming (θn) is non-decreasing and (αn) is non-increasing, we deduce

|xn+1 − q|2 − |xn − q|2 + 2θn+1|xn+1 − xn|2 − 2θn|xn − xn−1|2 + αn+1|xn+1|2 − αn|xn|2 − θn|xn − q|2
+ θn−1|xn−1 − q|2 + (1 − 3θn+1 − αn)|xn − xn+1|2 + (ρ − 1)|vn − xn+1|2

� −2αn〈xn − q, xn〉, (2.12)

namely

φn+1 − φn + 2θn+1dn − 2θndn−1 − θnφn + θn−1φn−1 + 1

2
αn+1|xn+1|2 − 1

2
αn|xn|2

+ (1 − 3θn+1 − αn)dn + (ρ − 1)

2
|vn − xn+1|2

� −αn〈xn − q, xn〉, (2.13)

that is the desired result. �
Lemma 2.2. Let (Tn) and S �= ∅ satisfy the assumptions (C1)–(C2) and suppose the conditions (H1)–(H4) hold. Then
there exist some integer n0 and a positive constant γ such that for any q in S, the sequence (xn) given by (1.3) satisfies
for n � n0 + 1,

Γn+1 − Γn + γμn+1dn � 1

2
μn+1αn|q|2,

(Γn) being defined by

Γn := μnφn + 2μnθne
αndn−1 − μnθn−1φn−1,

where φj := 1
2 |xj − q|2, dj := 1

2 |xj+1 − xj |2 and μj := exp (
∑j

i=0 αi).

Proof. By (H2) we have ρ := 1
w

(1 − k − w) � 1, which by Lemma 2.1 entails

φn+1 − φn � θnφn − θn−1φn−1 − (1 − 3θn+1 − αn)dn − 2θn+1dn + 2θndn−1

− 1

2
αn+1|xn+1|2 + 1

2
αn|xn|2 − αn〈xn, xn − q〉.

In this inequality, it is easily seen that

〈xn, xn − q〉 = −1

2
|q|2 + 1

2
|xn|2 + φn,

hence

φn+1 − φn + αnφn � θnφn − θn−1φn−1 − (1 − 3θn+1 − αn)dn − 2θn+1dn + 2θndn−1 + 1

2
αn|q|2. (2.14)

By a simple calculation we obtain

1

μn+1
(μn+1φn+1 − μnφn) = φn+1 − φn + 1

μn+1
(μn+1 − μn)φn � φn+1 − φn + αn+1φn,

which by (H1) yields

1

μn+1
(μn+1φn+1 − μnφn) � φn+1 − φn + αnφn. (2.15)
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Thanks to (2.14) and (2.15), we deduce that

1

μn+1
(μn+1φn+1 − μnφn) � θnφn − θn−1φn−1 − (1 − 3θn+1 − αn)dn − 2θn+1dn

+ 2θndn−1 + 1

2
αn|q|2. (2.16)

As μn � μn+1 and μn+1 = μne
αn+1 � μne

αn (again with (H1)), we then get

μn+1φn+1 − μnφn � μn+1φnθn − μnφn−1θn−1 − μn+1(1 − 3θn+1 − αn)dn − 2μn+1θn+1dn

+ 2μnθne
αndn−1 + 1

2
μn+1αn|q|2,

namely

μn+1φn+1 − μnφn � μn+1φnθn − μnφn−1θn−1 − μn+1
(
1 − θn+1

(
3 + 2

(
eαn+1 − 1

)) − αn

)
dn

− 2μn+1θn+1e
αn+1dn + 2μnθne

αndn−1 + 1

2
μn+1αn|q|2.

By (H4), recalling that θn ∈ [0, θ ] where θ ∈ [0,1/3), we have

1 − θn+1
(
3 + 2

(
eαn+1 − 1

)) − αn � 1 − θ
(
3 + 2

(
eαn+1 − 1

)) − αn.

Clearly, for n large enough (n � n0), it is immediate that there exists a positive constant γ such that

1 − θn+1
(
3 + 2

(
eαn+1 − 1

)) − αn � γ,

because (αn) → 0 by (H3), hence

μn+1φn+1 − μnφn � μn+1φnθn − μnφn−1θn−1 − γμn+1dn − 2μn+1θn+1e
αn+1dn + 2μnθne

αndn−1

+ 1

2
μn+1αn|q|2,

which leads to the desired result. �
Lemma 2.3. Let (Tn) and S �= ∅ satisfy the assumptions (C1)–(C2) and suppose the conditions (H1)–(H4) hold. Then
the sequence (xn) generated by (1.3) is bounded.

Proof. According to Lemma 2.2, we have for n � n0 + 1,

Γn+1 − Γn0 � 1

2
|q|2

n∑
k=n0+1

μk+1αk, (2.17)

where Γn+1 := μn+1φn+1 + 2μn+1θn+1e
αn+1dn − μn+1θnφn, hence μn+1(φn+1 − θnφn) � Γn+1, which by (2.17)

yields

φn+1 − θnφn � e−tn+1Γn0 + 1

2
|q|2e−tn+1

n∑
k=n0+1

αke
tk+1, (2.18)

where tn := ∑n
i=0 αi . It is easily checked that αke

tk+1 � e2(etk − etk−1) (for all k � 1), so that
∑n

k=n0+1 μk+1αk �
e2etn , which by (2.18) and (H4) leads to

φn+1 � θφn +
(

Γn0 + 1

2
e2|q|2

)
.

Omitting the details calculation and since θ ∈ [0,1), we deduce that

φn+1 � θn−n0φn0+1 + 1

1 − θ

(
Γn0 + 1

2
e2|q|2

)
,

which proves the boundedness of (xn). �
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3. Strong convergence results

This section is devoted to the strong convergence of the sequence generated by (1.3). Under very classical condi-
tions, we prove that (xn) converges strongly to PS(0) where PS is metric projection from H onto S. The following
lemmas are useful to prove our main convergence result.

Lemma 3.1. Let Tn : H → H and S �= ∅ satisfy the assumptions (C2)–(C3). Suppose the condition (H3) holds and
assume the sequence (xn) given by (1.3) is bounded and satisfies |xn+1 − xn| → 0. Then any weak cluster point of
(xn) is in S. If in addition the condition (C0) holds, we have

lim inf
n→∞ 〈xn − x∞, x∞〉 � 0, (3.1)

where x∞ is the element of minimal norm in S (that is x∞ := PS(0)).

Proof. Let (xnk
) be a subsequence of (xn) which converges weakly to an element u in H. Assuming |xn+1 −xn| → 0,

αn → 0 and (xn) is bounded, we easily deduce that (vnk
) converges weakly to u (since vn := xn + θn(xn − xn−1))

and by (1.3) we have |Tnvn − vn| = 1
w

|xn+1 − vn| → 0. By (C3), we then obtain u ∈ S, so that the set of weak
cluster points of (xn) is included in S. As (xn) is assumed to be a bounded sequence, so does the quantity 〈xn −
q, q〉. It is then a simple matter to check that there exists a subsequence of (xn) (labeled (xmk

)) which converges
weakly to some element u∗ in H (hence u∗ ∈ S) and such that lim infn→∞〈xn − x∞, x∞〉 = limk→∞〈xmk

− x∞, x∞〉,
hence lim infn→∞〈xn − x∞, x∞〉 = 〈u∗ − x∞, x∞〉. Reminding that x∞ := PS(0) and u∗ ∈ S, we necessarily have
〈u∗ − x∞, x∞〉 � 0, which ends the proof. �
Lemma 3.2. Let Tn :H → H and S �= ∅ satisfy the assumptions (C0) and (C2)–(C3). Assume (H3) holds and suppose
the sequence (xn) generated by (1.3) has a subsequence (xnk

) such that:

(i) (xnk
) ⊂ Ω := {x ∈H; 〈x − x∞, x〉 � 0}, where x∞ := PS(0).

(ii) |xnk+1 − xnk
| → 0 as k → ∞.

(iii) θnk
|xnk

− xnk−1| → 0 as k → ∞.

Then (xnk
) converges strongly to x∞.

Proof. It is easily checked that Ω is the closed ball of center 1
2x∞ and radius 1

2 |x∞|, that is Ω = {x ∈H; |x − 1
2x∞| �

1
2 |x∞|}, hence Ω is a nonempty bounded, closed and convex set. Clearly, by the condition (i), we have (xnk

) ⊂ Ω .
Consequently, by extracting from (xnk

) a subsequence (again labeled (xnk
)) which converges weakly to some q in H,

we also have |xnk
− xnk+1| → 0 as k → ∞ and θnk

|xnk
− xnk−1| → 0 (by the condition (i) and (ii)). As Ω is a closed

and convex set, it is then weakly closed, so that q belongs to Ω . Moreover, by (1.3) we have |vnk
− Tnk

vnk
| =

1
w

|xnk+1 − vnk
| → 0, since vnk

= (1 − αnk
)xnk

+ θnk
(xnk

− xnk−1), (xnk
) is bounded and αnk

→ 0. Furthermore, it is
obvious that (vnk

) converges weakly to q . By (C3) we then obtain q ∈ S, so that q ∈ Ω ∩ S = {x∞}, hence q = x∞.
Moreover, we have

|xnk
− x∞|2 = 〈xnk

, xnk
− x∞〉 − 〈x∞, xnk

− x∞〉,
hence |xnk

− x∞|2 � −〈x∞, xnk
− x∞〉, since (xnk

) ⊂ Ω . Passing to the limit in this last inequality yields
|xnk

− x∞| → 0. It is then immediate that (xnk
) converges strongly to x∞, which ends the proof. �

Lemma 3.3. Let Tn : H → H and S �= ∅ satisfy the assumptions (C0)–(C3). Assume the conditions (H1)–(H4) and
(SP) hold and suppose furthermore the sequence (xn) given by (1.3) satisfies:

(i) |xn+1 − xn| → 0.
(ii) limn→∞ |xn+1 − x∞|2 − θn|xn − x∞|2 exists (where x∞ := PS(0)).

Then (xn) converges strongly to x∞.
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Proof. To begin with, we observe that (xn) is a bounded sequence (see Lemma 2.3). Let us suppose in addition
that the quantity |xn+1 − x∞|2 − θn|xn − x∞|2 converges to some λ > 0. According to Lemma 3.1, we also have
lim infn→∞〈xn − x∞, x∞〉 � 0. As a consequence, noting that

〈xn − x∞, xn〉 = |xn − x∞|2 + 〈xn − x∞, x∞〉,
we obtain lim infn→∞〈xn − x∞, xn〉 � λ. It is easily deduced from Lemma 2.1 that there exists n4 � 0 such that for
n � n4, Pn+1 − Pn � −αn(λ) (since ρ � 1 by (H2) and since 1 − 3θn+1 − αn � 0 by (H3) and (H4) (for n large
enough)), which yields λ

∑n
k=n4

αk � Pn4 − Pn+1, ∀n � n4. Clearly, if
∑

αn = ∞ (SP), this last inequality is absurd
as n → ∞, because its left-hand side tends to +∞, while the right-hand side is supposed to be bounded (because (xn)
is bounded). We conclude that λ = 0, which by (H4) and by an easy computation leads to the desired result. �

At once, we claim the main result of this section.

Theorem 3.4. Let Tn : H → H and S �= ∅ satisfy the assumptions (C0)–(C3). Assume the following conditions hold:
(H1), (H3)–(H4), (SP) and

(H2)′ 0 < w < 1−k
2 .

Then the sequence (xn) given by (1.3) converges strongly to x∞ := PS(0), where PS is the metric projection from H
onto S.

Proof. Clearly, (xn) is bounded (by Lemma 2.3), so that there exists a positive constant C such that
|〈xn, xn − x∞〉| � C for all n � 0. Moreover, by (H3) and (H4) there exists a positive constant γ such that
1 − 3θn+1 − α � γ for all n � m0, where m0 is some large enough integer. Consequently, by Lemma 2.1 we get
for m � m0,

Qn+1 − Qn + γ |xn+1 − xn|2 + ρ − 1

2
|xn+1 − vn|2 � Cαn (3.2)

where Qn := φn − θn−1φn−1 + 2θndn−1 + 1
2αn|xn|2, with φj := 1

2 |xj − x∞|2 and dj := 1
2 |xj+1 − xj |2 and ρ :=

1
w

(1 − k − w), hence ρ > 1 (by the condition (H2)′). The rest of the proof is divided into two parts:
(1) Assume (Qn) is a monotonous sequence (that is, for some n0 large enough, (Qn)n�n0 is either non-decreasing

or non-increasing). It is then immediate that (Qn) is convergent, hence Qn+1 − Qn → 0 which by (3.2) yields
|xn+1 − xn| → 0. Moreover, it is easily observed that

lim
n→+∞Qn = lim

n→+∞(φn − θn−1φn−1),

so that limn→+∞ |xn+1 − x∞|2 − θn|xn − x∞|2 exists. As a consequence, applying Lemma 3.3 we deduce
limn→∞ |xn − x∞| = 0.

(2) Assume (Qn) is not a monotonous sequence and let τ : N → N be the map defined for all n � n0 (for some n0
large enough) by

τ(n) := max{k ∈ N; k � n, Qk � Qk+1}. (3.3)

Clearly, τ(n) is a non-decreasing sequence such that τ(n) → +∞ (as n → +∞) and Qτ(n) � Qτ(n)+1 (for n � n0),
which by (3.2) entails

γ |xτ(n)+1 − xτ(n)|2 + (ρ − 1)|xτ(n)+1 − vτ(n)|2 � Cατ(n) → 0.

It is then easily deduced that |xτ(n)+1 − xτ(n)| → 0 and θτ(n)|xτ(n) − xτ(n)−1| → 0 (since vn := xn + θn(xn − xn−1)).
Note also that for any j � 0 (by Lemma 2.1), we have Qj+1 < Qj when xj /∈ Ω := {x ∈ H; 〈x − x∞, x〉 � 0},
hence xτ(n) ∈ Ω for all n � n0 (since Qτ(n) � Qτ(n)+1). Consequently, by Lemma 3.2 we deduce |xτ(n) − x∞| → 0
and it is immediate that limn→∞ Qτ(n) = limn→∞ Qτ(n)+1 = 0. Furthermore, for n � n0, it is easily observed that
Qn � Qτ(n)+1 if n �= τ(n) (that is, if τ(n) < n), because we necessarily have Qj > Qj+1 for τ(n) + 1 � j � n − 1.
It follows that for all n � n0, Qn � max{Qτ(n), Qτ(n)+1} = Qτ(n)+1 → 0, hence lim supn→∞ Qn � 0, that is
lim supn→∞(φn+1 − θnφn) � 0, which by (H4) and by a simple calculation leads to the desired result. �



884 P.-E. Maingé / J. Math. Anal. Appl. 344 (2008) 876–887
4. Application to common fixed point problems

In this section, we show how (1.3) works for solving common fixed point problems. To begin with, we make the
following remark.

Remark 4.1. Let T be a k-demicontractive self-mapping on H with Fix(T ) �= ∅ and set Tw := (1 − w)I + wT for
w ∈ (0,1]. It is obviously checked that Fix(T ) = Fix(Tw) if w �= 0. For an arbitrary (x, q) ∈ H × Fix(T ) and using
(1.2), we have

|Twx − q|2 = ∣∣(x − q) + w(T x − x)
∣∣2

= |x − q|2 − 2w〈x − q, x − T x〉 + w2|T x − x|2
� |x − q|2 − w(1 − k − w)|T x − x|2.

It is immediate that Tw is quasi-nonexpansive with Fix(T ) = Fix(Tw), provided that w ∈ (0,1−k]. As a consequence,
Fix(T ) is a closed convex subset of H, as the fixed point set of a quasi-nonexpansive mapping (see [34, Proposition 1]).

Lemma 4.1. Let (Ti)
N
i=0 ⊂ Dk (with N ∈ N and k ∈ [0,1)) be such that

⋂N
i=0 Fix(Ti) �= ∅ and set T := ∑N

i=0 wiTi ,

where (wi)i�0 ⊂ [0,+∞) are such that
∑N

i=0 wi = 1. Then the following results hold:

(i1) Fix(T ) = ⋂
i∈I Fix(Ti), where I := {i ∈ N | i � N, wi �= 0}.

(i2) T belongs to Dk .

(i3) 〈x − T x, x − q〉 � k−1
2

∑N
i=0 wi |x − Tix|2, for all (x, q) ∈H× Fix(T ).

Proof. Let us prove (i1). Setting S := ⋂N
i=0 Fix(Ti) �= ∅, we clearly have S ⊂ Fix(T ), so that Fix(T ) �= ∅. Let

q ∈ Fix(T ) and let p ∈ S. It is easily seen that
∑N

i=0 wi(q − Tiq) = 0, because
∑N

i=0 wi = 1. Consequently, since
(Ti)

N
i=0 ⊂ Dk and since p belongs to each Fix(Ti), we have

0 =
N∑

i=0

wi〈q − Tiq, q − p〉 � k − 1

2

N∑
i=0

wi |q − Tiq|2.

We then obtain q − Tiq = 0 for each i ∈ I , which leads to Fix(T ) ⊂ ⋂
i∈I Fix(Ti), while the converse is obvious.

Hence Fix(T ) = ⋂
i∈I Fix(Ti), which proves (i1). Let us prove (i2) and (i3). For any (x, q) ∈ H × Fix(T ), we easily

observe that

〈x − T x, x − q〉 =
〈
x −

N∑
i=0

wiTix, x − q

〉
=

N∑
i=0

wi〈x − Tix, x − q〉;

hence, as (Ti)
N
i=0 ⊂ Dk , we obtain (iii). Moreover, we obviously have

|x − T x| =
∣∣∣∣∣

N∑
i=0

wi(x − Tix)

∣∣∣∣∣ �
N∑

i=0

wi |x − Tix|,

which by the fact that
∑N

i=0 wi = 1 and thanks to Young’s inequality leads to

|x − T x|2 �
(

N∑
i=0

wi

)(
N∑

i=0

wi |x − Tix|2
)

=
N∑

i=0

wi |x − Tix|2.

By joining this last inequality to (i3), we get 〈x − T x, x − q〉 � k−1
2 |x − T x|2, so that T ∈ Dk , which completes the

proof. �
The following theorem is concerned with the computation of a common element of a finite family of mappings.
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Theorem 4.2. Let (Ti)
N
i=0 ⊂ Dk , where k ∈ [0,1), be such that

⋂N
i=0 Fix(Ti) �= ∅ and suppose each Ti is demi-closed.

Let (xn) ⊂ H be a sequence such that⎡
⎢⎣ xn+1 := (1 − w)vn + w

N∑
i=0

wiTivn,

with vn := (1 − αn)xn + θn(xn − xn−1), ∀n � 1,

(4.1)

where w ∈ (0,1], (θn), (αn) ⊂ [0,1] and (wi)
N
i=0 ⊂ (0,1] are real numbers such that

∑N
i=0 wi = 1. Assume in addition

the following conditions are satisfied:

(W1) (αn) is a non-increasing sequence in (0,1), αn → 0 and
∑

n�0 αn = +∞.

(W2) w ∈ (0, 1−k
2 ).

(W3) (θn) is a non-decreasing sequence in [0, θ ], where θ ∈ [0, 1
3 ).

Then xn → PS(0) strongly in H as n → ∞, PS(0) being the element of minimal norm in S := ⋂N
i=0 Fix(Ti).

Proof. This result is easily deduced from Theorem 3.4. Setting U = ∑N
i=0 wiTi , we just need to prove that the

conditions (C0)–(C3) hold with Tn = U and S = ⋂N
i=0 Fix(Ti). According to Remark 4.1, each fixed point set Fix(Ti)

is closed and convex, which leads to (C0). By Lemma 4.1, we observe that (Tn) ⊂ Dk , hence (C1) holds. Using again
Lemma 4.1, we obtain Fix(Tn) = S, which amounts to (C2). It just remains to prove that (C3) is true. Let (ξnj

) be a
subsequence of (ξn) such that limj→0 |ξnj

−Uξnj
| = 0 and assume that ξnj

converges weakly to some ξ in H. Clearly,
for q ∈ S = Fix(U) and using again Lemma 4.1, we easily have

〈ξnj
− Uξnj

, ξnj
− q〉 � 1 − k

2

N∑
i=0

wi |ξnj
− Tiξnj

|2.

Consequently, by the boundedness of (ξnj
) (thanks to its weak convergence), we easily deduce that

lim
j→+∞

N∑
i=0

wi |ξnj
− Tiξnj

|2 = 0;

hence, for i = 0, . . . ,N , we obtain limj→+∞ |ξnj
− Tiξnj

|2 = 0 (since each wi is positive). As each Ti is assumed to
be demi-closed and by the weak convergence of (ξnj

) to ξ , we conclude that ξ = Tiξ (for i = 0, . . . ,N ), so that ξ ∈ S,
which yields (C3) and completes the proof. �

The following theorem is concerned with the computation of a common element of an infinite family of mappings.

Theorem 4.3. Let (Ti)i�0 ⊂ Dk , where k ∈ [0,1), be such that
⋂

i�0 Fix(Ti) �= ∅ and suppose each Ti is demi-closed.
Let (xn) ⊂ H be a sequence such that⎡

⎢⎣ xn+1 := (1 − w)vn + w

n∑
i=0

wi,nTivn,

with vn := (1 − αn)xn + θn(xn − xn−1), ∀n � 1,

(4.2)

where w ∈ (0,1], (θn), (αn) ⊂ [0,1] and (wi,n) ⊂ [0,+∞) are real numbers such that:

(i) ∀n � 0,
∑n

i=0 wi,n = 1;

(ii) for all i � 0, (wi,n)n�0 is bounded away from zero for n large enough (that is: ∀i � 0, ∃Ni ∈ N and ∃wi > 0 such
that ∀n � Ni , wi,n � wi ).

Assume in addition the conditions (W1)–(W3) in Theorem 4.3 hold. Then xn → PS(0) strongly in H as n → ∞, PS(0)

being the element of minimal norm in S := ⋂
i�0 Fix(Ti).
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Proof. The proof follows the same lines as Theorem 4.2 and it is given for the sake of completeness. Let us prove
that the conditions (C0)–(C3) in Theorem 3.4 are satisfied with Tn = ∑n

i=0 wi,nTi and S = ⋂
i�0 Fix(Ti). From

Remark 4.1 and Lemma 4.1, we deduce that (C0) and (C1) hold. Using again Lemma 4.1, we obtain Fix(Tn) =⋂
i∈In

Fix(Ti) for all n � 0, where In := {i ∈ N | i � n, wi,n �= 0}. Noting that S ⊂ ⋂
i∈In

Fix(Ti), we deduce that S ⊂
Fix(Tn), that is (C2). It just remains to prove that (C3) is true. Let (Tnj

) be a subsequence of (Tn) and let (ξnj
) ⊂ H be

such that limj→0 |ξnj
−Tnj

ξnj
| = 0 and assume that ξnj

converges weakly to some ξ in H. Clearly, for q ∈ Fix(Tn) and

by Lemma 4.1, we easily obtain 〈ξnj
−Tnj

ξnj
, ξnj

−q〉 � (1/2)(1−k)
∑nj

i=0 wi,nj
|ξnj

−Tiξnj
|2. Consequently, by the

boundedness of (ξnj
) (thanks to its weak convergence), we easily deduce that limj→+∞

∑nj

i=0 wnj ,i |ξnj
−Tiξnj

|2 = 0;
hence, for all i � 0, we obtain limj→+∞ wnj ,i |ξnj

− Tiξnj
|2 = 0, which by (ii) leads to limj→+∞ |ξnj

− Tiξnj
| = 0.

Assuming that each Ti is demi-closed and by the weak convergence of (ξnj
) to ξ , we conclude that ξ = Tiξ (for all

i � 0), so that ξ ∈ S, which yields (C3) and completes the proof. �
Remark 4.2. Let us observe that conditions (i) and (ii) in Theorem 4.3 are satisfied by wi,n = γi∑n

k=0 γk
for 0 � i � n,

where (γk) is any sequence in (0,1) such that
∑

k�0 γk < ∞. Indeed, (i) is immediate, while (ii) is deduced from the
fact that wi,n � γi∑

k�0 γk
> 0, for all i � 0.

Remark 4.3. The work of this paper can be extend to more general convergence results. Indeed, when vn in (1.3) is
replaced by vn := (1 − αn)xn + αna + θn(xn − xn−1), where a is an arbitrary but fixed element in H, one may expect
to get the strong convergence of the sequence (xn) to PS(a) (in Theorem 3.4), PS being the metric projection from H
onto S.

Remark 4.4. Another class of mappings which is also extensively studied and more general than nonexpansive ones is
the so-called class of asymptotically nonexpansive mappings (see, for instance, [1,32]). Interesting strong convergence
results are proved, for this latter class of operators, regarding some fixed point methods. In particular, an algorithm
which combines viscosity and outer approximations was proposed in [32]. It is worth noting that this latter algorithm
can be adapted so that it converges to the element of minimal norm in the fixed point set of a given asymptotically
nonexpansive mapping T . This limit is the same attained by the method (4.1) in the case of a single demicontractive
mapping T (i.e., N = 0 and T0 = T ). However the products T n of a quasi-nonexpansive mapping T are obviously
quasi-nonexpansive, hence not necessarily continuous (for n large enough), on the contrary to the case when T is
asymptotically nonexpansive mapping. In this latter frame, the operator T n is Lipschitz continuous for n large enough,
which is an important property needed in the convergence analysis of the related algorithms for computing fixed points.
This can explain why the technique for analysis used in this paper for demicontractive maps is completely different
from the existing ones for asymptotically nonexpansive maps.

Remark 4.5. To the best of our knowledge, there is no known existence result for a common fixed point of an infinite
family of strictly pseudocontractive mappings. Thus the assumption

⋂
n�0 Fix(Tn) �= ∅ in Theorem 3.4 as well as the

assumption
⋂

i�0 Fix(Ti) �= ∅ in Theorem 4.3 are not warranted. Then it would be interesting to study the possible
existence of a common fixed point of infinitely many demicontractive operators. However this is out of scope of the
present paper.
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