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a b s t r a c t

Macrophages are present in all tissues, either as resident cells or monocyte-derived cells that infiltrate into
tissues. The tissue site largely determines the phenotype of tissue-resident cells, which help to maintain
tissue homeostasis and act as sentinels of injury. Both tissue resident and recruited macrophages make a
substantial contribution to wound healing following injury. In this review, we evaluate how macrophages
in two fundamentally distinct tissues, i.e. the lung and the skin, differentially contribute to the process
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of wound healing. We highlight the commonalities of macrophage functions during repair and contrast
them with distinct, tissue-specific functions that macrophages fulfill during the different stages of wound
healing.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
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. Introduction
Wound healing is a highly dynamic and tightly coordinated
rocess to achieve restoration of tissue integrity after infection
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/).
or physical trauma. Fundamentally, this process can be divided
into three overlapping but distinct phases. These phases have been
defined as “coagulation and inflammation”, “tissue formation” and
“tissue remodeling” [1]. During “coagulation and inflammation”
the wound is provisionally closed by a blood clot and recruitment
of inflammatory cells is initiated; during “tissue formation” pro-
inflammatory signals decline and cell proliferation is initiated by
local growth factors; and during “tissue remodeling” wound re-
organization restructures the tissue [2] as shown for the skin in

Fig. 1. Cells from the monocyte/macrophage lineage are critical
players following tissue damage, and depletion of macrophages
results in impaired wound healing [3–5]. In particular the capac-
ity of myeloid cells to regulate inflammation, to remove apoptotic
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Fig. 1. Sequent phases of physiological skin wound healing.
During the “Coagulation and Inflammation” phase, immediately after injury, tissue-resident macrophages contribute to the initiation of a local inflammatory response, which
leads to the influx of high numbers of neutrophils into the wound. In parallel, a fibrin clot forms, around which a provisional protective matrix is formed. During the “Tissue
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ormation” phase, a highly vascularized granulation tissue develops within the wou
ells. Keratinocytes migrate from the wound margins to close the epidermal gap. Du
f the extra-cellular matrix within the wound, leaving behind a scar tissue that is c

ell debris and to promote cell proliferation have supported the
otion that macrophages critically orchestrate the repair and heal-

ng response of damaged tissues [6]. Macrophages are present
uring all stages of the repair process and conditional depletion
uring the different phases of wound healing has revealed that
acrophages fulfill distinct functional roles at the different stages,

nd emphasizes the great diversity and plasticity macrophages dis-
lay during this process [7].

While many processes during wound repair are evolutionary
onserved and follow similar mechanisms in different organisms
nd individual tissues, many other aspects of wound repair are
egulated in a tissue specific context. Accordingly, tissue resident
acrophage populations differ substantially from each other and
ay contribute to local wound healing in a tissue specific fashion. In

his review, we compare the contribution of different macrophage

opulations to wound healing in two fundamentally distinct tis-
ues, the skin and the lung. In this way, we separate common
acrophage functions in wound healing from tissue-specific func-

ions of macrophages, and review their distinct roles during the

ig. 2. Architecture of skin vs. alveoli.
he skin is composed of two layers: the epidermis and the dermis. The epidermis provid
he epidermis is a squamous epithelium composed of different layers, supported by self-
n extracellular matrix that provides tensile strength and elasticity. The dermis is tightly
ell types, including fibroblasts and endothelial cells. Appendages such as hair roots, seba
ocated in the epidermal layer whereas dermal macrophages are the dominant macropha
he pulmonary alveoli are the terminal ends of the respiratory tree forming an anatom
hin alveolar epithelium composed of two cell types: thin, squamous type I cells, which
uboidal type II cells that secrete pulmonary surfactant. Surrounding the alveolar sacs, the
he interstitial macrophages. Lining the airway lumen alveolar macrophages are embedd
efence.
mprising of a high cell density of mainly macrophages, fibroblasts and endothelial
e “Tissue Reorganisation” phase, macrophages contribute to the active remodelling
erized by increased matrix deposition and reduced cellular density.

different phases of wound healing. Based on these different aspects,
we propose a common model for the function of macrophages dur-
ing wound healing.

2. Architecture and function of the skin

The skin forms a physical barrier between the organism and its
environment, and thus a pivotal function of the skin is the protec-
tion from chemical and physical assaults, as well as from pathogen
invasion and to prevent unregulated water loss [8]. Mammalian
skin is composed of mainly two layers, the epidermis and the der-
mis, with a fat-rich subcutaneous tissue lying beneath the dermis
(Fig. 2a). The epidermal layer is rich in cells and comprises a phys-
ical, chemical and immunological barrier, and the dermis, which
is rich in extracellular matrix that provides tensile strength and

elasticity. The epidermis is a squamous epithelium composed of dif-
ferent layers, supported by self-renewing proliferating tissue-stem
cells within the basal layer [9]. The dermis is tightly connected to
the epidermis by the basement membrane and consists of different

es a physical, chemical and immunological barrier from the outside environment.
renewing proliferating tissue-stem cells. In contrast, the dermis is a structure rich
connected to the epidermis by the basement membrane and consists of different
ceous glands and sweat glands are located in the dermal part. Langerhans cells are
ge population in the dermal layer.
ical structure that allows for oxygen uptake. The alveolar sacs are composed of a
cover 95% of the alveolar surface and form the structure of the alveolar wall, and
lung interstitium is a connective tissue-rich framework for the alveoli and contains
ed in the alveolar fluid rich in pulmonary surfactants providing a barrier for lung
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ell types, including fibroblasts and endothelial cells. Appendages
uch as hair roots, sebaceous glands and sweat glands are located
n the dermal part.

Two types of macrophage populations reside in the skin: Langer-
ans cells (LCs) which are mainly located in the epidermal layer, and
ermal macrophages, which are the dominant macrophage popula-
ion in the dermis. LCs originate from yolk-sac derived progenitors
nd fetal liver monocytes, which are recruited to the epidermis
efore birth [10]. Under steady state conditions, LCs self-renew and
nly upon inflammation do blood monocytes replenish the epi-
ermal LC population [11,12]. LCs are defined by their expression
f the lectin receptor langerin (CD207). In addition, LCs express
D11c and CD11b and are positive for F4/80 and MHCII. In con-
rast, dermal macrophages express F4/80 and CD11b but no CD11c
r Langerin and only low levels of MHCII [13]. While the contri-
ution of macrophages during wound healing is well established,
he specific repair function of LCs is yet to be determined [14]. It is
nown that LCs re-populate the epidermis in the process of wound
losure and increased numbers have been correlated with healing
n diabetic foot ulcer patients [15] suggesting LCs are beneficial.

. Pulmonary environment and lung macrophages

The main function of the lung is to allow for oxygen uptake
Fig. 2b). To achieve this function the human lung has an enormous
xposed area – approximately the size of a tennis court [16]. This
xposure carries the risk that the lung will initiate inflammation
pon inhaled bacteria, viruses, oxidants, pollutants and allergens,
ompromising tissue integrity. However, a protective barrier of
nnate immune components functions to maintain a tolerant state
owards innocuous antigens present in the inhaled air. This bar-
ier is made up of mucus and the alveolar fluid, which is rich in
ulmonary surfactant and opsonins including immunoglobulins,
omplement and collectins (Surfactant proteins A and D) [16]. Addi-
ionally, different types of macrophages (bronchial macrophages,
nterstitial macrophages and alveolar macrophages) reside in dis-
inct spaces within the lungs [17]. Alveolar macrophages are
mbedded in the alveolar fluid, covering the alveolar surface
Fig. 2b) and are defined in the mouse by their high expression
f the sialic acid-binding immunoglobulin-type lectin F (Siglec F)
nd the alpha integrin CD11c. In addition, alveolar macrophages
xpress typical macrophage markers such as CD11b, F4/80, MerTK
nd CD64. In contrast, interstitial macrophages, which are the dom-
nant macrophage population in the lung interstitium, express
4/80, CD11b and MHCII, but express low levels of CD11c [17].
nder steady state conditions, alveolar macrophages comprise
0–95% of the cells in the alveolar space and similar to LCs are
oetal liver monocyte-derived and self-renewing [18,19]. Alveolar

acrophages are required for surfactant catabolism and main-
aining lung homeostasis [20]. In addition, alveolar macrophages
emove antigenic particles and through a variety of mechanisms
ctively down-regulate inflammation and promote a state of
mmune tolerance [16,21]. In contrast to alveolar macrophages,
nterstitial macrophages are located within the lung tissue and
re not in direct contact with the alveolar fluid and the exterior
nvironment. Although the interstitial macrophages are a cell pop-
lation that remains largely uncharacterized, it has been suggested
hat they can join alveolar macrophages in their role of dampening
nflammation [22].

. Tissue resident macrophage populations during the

mmediate responses to wounding

A number of evolutionary conserved reactions lead to a rapid
ctivation of tissue resident macrophages and initiate an inflamma-
elopmental Biology 61 (2017) 3–11 5

tory response upon wounding (Fig. 1). This first response to tissue
injury involves a rapid release of calcium by damaged cells that
travels as a wave via through adjacent cells to activate NADPH oxi-
dase [23]. The NADPH oxidase mediates the production of hydrogen
peroxide H2O2, known to be an immediate damage signal [24]. Cal-
cium and hydrogen peroxide are thus the earliest known signals
after tissue damage that mobilize epithelial cells and bring immune
cells to the site of wounding [24,25]. In monocytes/macrophages
H2O2 has been shown to trigger the active release of high-mobility
group Box 1 protein (HMGB-1) [26]. HMGB-1 release is a potent
mediator of systemic inflammation, when passively released by
necrotic cells, and is reported to be one of the first amplifiers of
the pro-inflammatory cascade upon wounding [26].

Other factors that lead to immediate activation of tissue
resident macrophages are cell-endogenous molecules that are con-
stitutively expressed and released upon tissue damage. These
‘danger-associated molecular patterns’ (DAMPs) can for instance
be molecules such as HMGB-1 or ATP. ATP in blood normally has a
half-life of less than 40 s. However, intracellular ATP released by
wounding can be rapidly recognized by two different classes of
purigenic receptors, P2Y (a G-protein coupled receptor) and P2X
(a ligand-gated ion channel), which are both expressed on a num-
ber of tissue resident macrophages. Although P2YR signaling may
contribute to repair through the uptake of apoptotic cells, both
P2YR and particularly P2XR have strong pro-inflammatory effects,
promoting recruitment of inflammatory cells to the site of injury
[27]. In addition, a number of cytokines are pre-stored in tissue
cells, which are then rapidly processed and released upon injury.
These ‘alarmins’ including IL-1� and IL-33, target tissue resident
macrophages, such as alveolar macrophages, and induce their acti-
vation [21,28].

In parallel, damage of blood vessels causes blood leakage that
then rapidly activates a coagulation cascade resulting in the for-
mation of a clot (Fig. 1). This clot serves as a first protective shield
against invading pathogens and ongoing blood loss. It consists of
platelets that are embedded in cross-linked fibrin fibers derived
by thrombin cleavage of fibrinogen [1]. In the lung, coagulation
occurs not only intra-vascularly in a milieu containing the com-
plete plasma clotting system, but also extra-vascularly within the
alveolar cavities [29]. Alveolar macrophages directly contribute
to this pro-coagulant activity [30], potentially via the production
of tissue factor and thereby help initiate the coagulation cascade
[31]. Beyond the essential function of preventing blood loss, coag-
ulation also contributes directly to the subsequent inflammatory
and fibro-proliferative responses during wound healing via acti-
vation of resident macrophages [32]. For example, clot formation
in itself releases substantial amounts of free heme, a DAMP that
causes oxidative damage and acts on macrophages to promote a
pro-inflammatory cascade [33].

All these different pathways induce an immediate pro-
inflammatory environment around the wound, which within hours
after injury leads to the rapid influx of additional leukocyte popula-
tions, such as neutrophils and monocytes [34]. Since this immediate
response to injury is so highly conserved in all tissues, macrophages
in both the skin and the lungs act as sentinels of tissue homeostasis
and both have the capability to recognize immediate danger signals
and to initiate the inflammatory phase of wound healing.

5. The inflammatory response and influx of monocyte
populations
The induction of a pro-inflammatory environment within the
ruptured tissue leads to the influx of neutrophils and monocytes
(Fig. 3a). In response to tissue-specific signals these monocytes
then differentiate into macrophages and join tissue resident
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Fig. 3. In all three phases of wound repair (Coagulation and Inflammation, Tissue Formation and Tissue Reorganisation) resident macrophages and monocyte-derived
macrophage populations play essential but distinct roles. a) Following injury, tissue-resident macrophage populations function as sentinels and become rapidly activated
and contribute to a pro-inflammatory environment within the wound. During the “Coagulation and Inflammation” phase, this pro-inflammatory environment induces the
influx of the first wave of CCR-2 expressing monocytes into the wound, which is then followed by a second wave of CX3CR-1 expressing monocytes. These recruited monocyte
populations undergo marked phenotypic and functional changes in response to IL-4 as well as to tissue-specific factors. During this phase, the pro-inflammatory environment
is resolved and macrophage derived growth factors contribute to tissue repair and regeneration. This resolving environment initiates the “Tissue Reorganisation” during
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hich macrophages contribute to the degradation of cell debris and the re-organisa
f wound repair is conserved in both the lung as the skin but the dynamics of the
he skin. Disruption of this process leads to pathology, which manifests itself as fibr

acrophage populations in driving the restoration of tissue
ntegrity. The differentiation of monocyte populations during

ound healing has been studied particularly well in skin injury
odels, using reporter mouse strains and in vivo imaging. It

as been shown that by the induction of chemokines, activated
erivascular macrophages are major players in the process of neu-
rophil recruitment to inflamed skin [35]. Furthermore, it had been
ssumed that within the first hours after damage it was exclu-
ively neutrophils that infiltrate the site of damage, followed by
onocytes as early as 24–48 h post injury [36]. However, recent

maging data by Rodero et al. revealed that an initial wave of
onocytes enters the wound at the same time as neutrophils are

ccumulating and that monocytes infiltrate the wound bed through
icro-hemorrhages caused by disrupted vessel integrity. These
onocytes directly crawl trough vascular leakage and spread ran-

omly into the wound bed [37].
In the skin, this first sequence of monocyte infiltration is fol-

owed by a second phase of monocyte infiltration starting 24 h
ost wounding, whereby the type of monocytes that infiltrate the
ound changes over time (Fig. 3a). Two fundamentally different

ubsets of monocytes have been identified to infiltrate the wound
ed. One monocyte population is characterized by the expression
f the chemokine receptor CCR-2 (which are equivalent to CD14
xpressing monocytes in humans), and the other is characterized
y the expression of the chemokine receptor CX3CR-1 (which are
quivalent to CD16 expressing monocytes in humans) [38–40].
sing CCR-2/GFP reporter mice it was shown that CCR-2 express-
ng monocytes are predominantly recruited to skin wounds in the
rst days following wounding. Accordingly, the absolute number
f macrophages at the site of wounding is significantly reduced in
CR-2 deficient mice during the early phase of wounding [41]. As
f excessive ECM material and thus the restoration of affected tissue. b) This process
tive phases differ between the tissues, with the lung tissue recovering faster than
r emphysema in the lung and as extended scar tissue in the skin.

CCR-2 deficient mice had reduced blood vessel formation within
the wound bed, this subset of monocytes has been assumed to be
pro-angiogenic. Other processes of wound healing, such as wound
closure rate and scar formation, were not altered in CCR-2 deficient
mice [41]. The early influx of monocytes gives rise to macrophage
that express iNOS, IL-1b and IL-6 [41] (Fig. 3a). It is thus assumed
that a key function of monocyte-derived cells, along with neu-
trophils during the inflammatory phase is to contribute to the
defense against microorganisms, which might have entered the
wound.

In contrast to the early influx of CCR-2 expressing monocytes,
an influx of CX3CR-1 expressing monocytes is observed at later
stages of skin wound repair (Fig. 3a). Consistent with the dif-
ferent kinetics of infiltration, in CX3CR-1 deficient mice, unlike
CCR-2 deficient mice, impaired healing was most pronounced at
the late stage of repair in models of excisional or burn wounds
[42,43]. These findings strongly suggest that the two wound-
infiltrating monocyte populations have distinct functions during
wound repair, with CCR-2 expressing monocytes substantially con-
tribute to neo-angiogenesis of the wound bed, while CX3CR-1
expressing monocytes contribute more to wound closure and the
deposition of extracellular matrix component within the wound.
However, in neither CCR-2 nor CX3CR-1 deficient mice were wound
macrophages completely abrogated suggesting a level of redun-
dancy between the populations with both contributing to the wider
macrophage pool present in the wound bed [42].

Despite their distinct contributions to wound healing, the exact

fate of the different infiltrating monocyte populations remains
poorly understood. In addition, the tissue-specific mechanisms
underlying the transition from an inflammatory monocyte into
tissue-resident macrophages and the extent to which different
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nfiltrating monocyte populations contribute to the macrophage
ool remain to be fully understood. However, for both locations, in
he skin as in the lung, it has become apparent that monocyte-
erived macrophages in both tissues have specific functions
uring tissue repair, which separate them from tissue-resident
acrophages.

. Role of macrophages during the tissue formation phase

The tissue formation phase of wound healing is characterized
y dynamic cellular proliferation and differentiation of cells along
ith the creation of new extracellular matrix (ECM) and deposi-

ion of collagen to support the new cells (Fig. 1). The process is
rchestrated by cell–cell and cell-ECM interactions. Additionally,
n integral part of this process is that inflammation and new cell
ecruitment must be actively suppressed [44]. Data from excisional
unch biopsy of the skin, show that macrophages are the dominant

mmune cells during the tissue formation phase [7]. When cells
f the myeloid lineage are conditionally depleted at a very early
nflammatory stage, mice exhibit reduced vascularization of the

ound bed and impaired re-epithelialization. However, depletion
t the tissue formation stage, when several different monocyte pop-
lation have already infiltrated the wound, has devastating effects
n the progression of wound healing and leads to massive hem-
rrhage [7]. The critical role of macrophages to efficient wound
ealing is thus particularly apparent during the tissue-formation
hase [4,7] because they contribute to all aspects of this highly
omplex orchestra of cell growth, matrix deposition and controlled
nflammation.

In both the lung and the skin macrophages are major sources
f growth factors [41,45–49]. Macrophage-derived growth factors
ot only induce differentiation and proliferation of cells but also

nduce ECM deposition [50]. Because ECM can bind growth fac-
ors, it regulates their activity. ECM functions as a reservoir for
rowth factors, concentrates their activity in the vicinity of cells
nd protects them from degradation. A key player in this orchestra
s heparan sulfate, which as a component of the newly formed ECM
nderneath the wound, binds and enriches a number of different
rowth factors [50]. Heparan sulfate can potentiate the biologi-
al activity of VEGF, the basic fibroblast growth factor (FGF-2), the
GF-like growth factor Amphiregulin or the transforming growth
actor-� (TGF-�). These growth factors target structural and pro-
enitor cell populations such endothelial cells, mesothelial cells and
otentially pericytes [51] to proliferate or survive as well as differ-
ntiate into one or more cell types contributing to wound repair
50,52].

One prominent example demonstrating the pivotal role of
acrophages during this phase of tissue repair is VEGF mediated

eo-angiogenis of the wound bed. Wound angiogenesis, which is
prouting of capillaries from existing blood vessels into the wound
ed, are promoted by growth factors such as VEGF-A. Angiogen-
sis is vital for healing and repair, because it supplies the newly
ormed tissue with nutrients and oxygen. The source of VEGF within
he wound has been particularly well studied in a model of skin
epair [41]. Using reporter mice, macrophages were identified as
he major source of VEGF during an early healing stage – while, at
ater stages, most VEGF expressing cells were found within the neo-
pithelium itself [41]. Accordingly, mice deficient for VEGF within
he myeloid lineage (LysM-Cre × VEGFfl/fl) showed impaired vascu-
arization in early phases of wound healing. Since vascularization

nally recovered in these mice, these data suggest that myeloid-
erived VEGF is important for the induction of wound angiogenesis,
hereas at later stages epidermal cells might be able to take over

s the critical source of VEGF during skin repair [41].
elopmental Biology 61 (2017) 3–11 7

7. Resolution of inflammation during the tissue formation
phase

Resolution of inflammation is a necessary step in the pro-
cess that allows the formation and growth of new tissue, and
macrophages actively contribute by the secretion of macrophage-
derived anti-inflammatory cytokines. One of the first steps to
initiate both resolution of inflammation and the initiation of
tissue formation is the ingestion of apoptotic neutrophils by
macrophages. Mice which are impaired in their ability to take
up apoptotic neutrophils exhibit delayed healing of excisional
skin wounds [53]. Phagocytosis of apoptotic cell debris trig-
gers the release of growth factors such as vascular endothelial
growth factor (VEGF) [54] or hepatocyte growth factor (HGF)
[55], which are known to be crucial for tissue repair after injury.
Additionally, it has long been known that ingestion of apoptotic
neutrophils stimulates the release of anti-inflammatory media-
tors by macrophages [56], in particular TGF-beta, a cytokine that
exhibits both anti-inflammatory activity and control of cell prolifer-
ation and differentiation [57]. IL-10 is also induced in macrophages
on the uptake of apoptotic neutrophils and contributes to the res-
olution of lung injury [58]. In the skin, IL-10 is needed for an
appropriately controlled repair response as IL-10-deficient mice
show a sustained inflammatory response, which subsequently
leads to increased collagen deposition in scar tissue [59]. Overall,
IL-10 is increasingly recognised as central to quality tissue repair,
at least in part through its ability to suppress inflammation [60].

Another strategy to dampen inflammation is the induction of
interleukin-1 receptor antagonist (IL-1Ra) [61]. IL-1Ra is a mem-
ber of the IL-1 family that binds to IL-1 receptors but does not
induce any intracellular response. IL-1Ra therefore is able to inhibit
the effects of IL-1� and IL-1� [62,63], which are pro-inflammatory
cytokines released at a very early phase of wounding upon tis-
sue disruption [64]. In particular the sustained and sometimes
excessive influx and activation of neutrophils into the wound
is detrimental for the wound healing process [1]. Macrophage-
derived IL-1ra dampens the local release of the chemokine MIP-2
and the local expression of the epithelial adhesion molecule ICAM-
1, in this way attenuating neutrophil recruitment. Since IL-1� is a
critical survival signal for neutrophils, the local blockade of IL-1�
by macrophage-derived IL-1ra within the wound may also induce
apoptosis in wound-resident neutrophils [56,61]. In addition it
has been shown that by expressing the apoptosis-inducing ligand
TRAIL, macrophages can directly induce apoptosis in neutrophils
[65].

The intricate connection between repair and resolution of
inflammation is demonstrated by a number of macrophage-derived
cytokines that show a dual functionality. Best known is TGF�,
which directly contributes to the process of wound healing, while
at the same time suppressing local inflammation. Another good
example is the Epidermal Growth Factor (EGF)-like growth fac-
tor Amphiregulin [66]. Amphiregulin can induce the differentiation
of tissue precursor cells within wounds [67]. At the same time,
Amphiregulin can enhance local regulatory T cell function [68,69]
thereby suppressing local inflammation. When Amphiregulin is
produced by activated alveolar macrophages, it can protect against
LPS-induced acute lung injury [70] and mice with a regulatory T cell
specific deficiency of the EGF-R (FoxP3cre × EGF-Rfl/fl), which can-
not respond to Amphiregulin, show a marked delay in skin wound
repair [71]. Further, intra-nasal administration of Amphiregulin
protects mice from lethal lung infections by promoting tissue
integrity and repair [72,73]. Although Tregs themselves are impor-

tant source of Amphiregulin during wound healing [74], the exact
cellular sources need further study.

Macrophage-derived arginase is another excellent example of a
molecule that demonstrates the close relationship of tissue repair
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ctivities to suppression of inflammation. Arginase converts argi-
ine into ornithine, which can serve as a precursor for the synthesis
r proline and hydroxyproline, which are central constituents of
ollagen. Additionally, ornithine feeds into the biosynthetic path-
ay for polyamines, which are required for cellular proliferation

75]. The activity of arginase also suppresses the inflammatory
esponse because arginase competes with iNOS for their common
ubstrate, arginine. Additionally by reducing the extra-cellular argi-
ine concentration, arginase suppresses activated T cells, which are
ighly arginine-dependent [76].

. IL-4 receptor signaling to macrophages during tissue
epair

Arginase is considered a marker for macrophages activated via
he IL-4 receptor (M(IL-4)) [77] and thus M(IL-4) or ‘alternatively
ctivated’ macrophages have long been considered to have tissue
epair function [78]. However, arginase can be induced by many dif-
erent factors including IL-10, and thus the specific importance of

(IL-4) to tissue repair has been a matter of some debate. Recent
tudies have ended this debate by providing direct evidence for
he contribution of M(IL-4) to tissue repair along with detailed

echanistic insight. In mice lacking the IL-4R� on macrophages,
kin wound healing was delayed and vascular stability impaired
79]. Knipper et al. further showed that the IL-4R�-inducible pro-
ein RELM� when produced by macrophages instructed fibroblasts
o produce lysyl hydroxylase 2 (LH2) [79]. LH2 is an enzyme that
irects collagen cross-links that are biochemically more stable and

ess likely to be degraded by enzymes than those found in uninjured
kin. These findings demonstrate that although fibroblasts are the
ain matrix producing cells, macrophages critically regulate the

ynthesis and organization of de-novo collagen depositions in the
ound.

Assessing the contribution of M(IL-4) in the lung during wound
ealing has been somewhat complicated by the fact that alve-
lar macrophages already express markers typically associated
ith M(IL-4), such as Ym1 and CD206, and rapidly secrete typi-

al M(IL-4) growth factors, such as Amphiregulin [80–82]. While
lveolar macrophages in the steady state exhibit STAT-6 activa-
ion and arginase expression (C. Minutti, unpublished data), they
ave little or no basal iNOS expression and STAT1 phosphoryla-
ion [83], typical markers of classical activation of macrophages
erived from other tissues. Therefore alveolar macrophages are
onsidered to be somewhat biased even at steady-state. Indeed,
he anti-inflammatory properties of alveolar macrophages, as well
s M(IL-4) macrophages may contribute to the ability of the lung to
void over-reaction to innocuous substances. Consistent with this
oncept, depletion of CD206+ macrophages substantially exagger-
ted lung injury in endotoxemic mice [84].

More direct evidence for the contribution of M(IL-4) in pro-
oting lung repair came from studies of the lung migrating

ematode, Nippostrongylus brasiliensis, which leads to the expan-
ion of large numbers of highly activated M(IL-4) [85]. Depletion
f macrophages exacerbated the hemorrhaging caused by worm
igration and led to more severe acute lung injury. Macrophage

epletion also resulted in a significant reduction in insulin-like
rowth factor 1 (IGF-1) and arginase, both of which are induced
y IL-4 and are important for repair in this lung injury model [85].
GF-1 stimulates the proliferation and survival of fibroblasts and

yofibroblasts to promote matrix production and wound closure
86]. In addition to IGF-1 and arginase many other repair proteins

re regulated by IL-4 or IL-13 in macrophages [87]. Taken together,
he studies on M(IL-4) suggest that in both tissues, the skin as well
s the lung, their involvement is likely to be most prominent during
he tissue formation stage as they appear to contribute to cellu-
elopmental Biology 61 (2017) 3–11

lar proliferation, regulation of fibroblasts, collagen production and
cross-linking while exerting broadly anti-inflammatory functions.

9. Contribution of macrophages to tissue re-organisation

The final stage of wound healing is the “tissue-remodeling”
phase, during which a process of wound re-organization restruc-
tures the tissue back to its original form (Fig. 1). The re-organization
of wounded tissue is a multi-step process and during this phase,
which can last for weeks or even months, tissue resident endothe-
lial cells, macrophages and myo-fibroblasts undergo apoptosis,
newly formed blood vessels regress and remodeling and re-
organization of the newly formed collagen layer underneath the
wound occurs (Fig. 1). During this phase of wound healing,
macrophages contribute to wound healing by ingesting cell debris
and contributing to the degradation of excess ECM that had built
up in and around the wound [88]. Nevertheless, depletion of skin
macrophage in the tissue-remodeling phase does not have a sub-
stantial impact on the outcome of wound healing, suggesting
that macrophages are part of a redundant system of tissue re-
organisation and at this stage of wound repair their functions could
be taken over by other wound resident cell populations [7].

Macrophages have been suggested to have a major role in
the breakdown of matrix fragments by phagocytic uptake and
intracellular degradation [89]. However, matrix fragments are also
degraded enzymatically by secreted metalloproteinases, cysteine
proteinases (cathepsin B and L) or serine proteases (eg plasmin).
In particular, matrix metalloproteinases (MMPs) represent a group
of enzymes involved in the degradation of most of the compo-
nents of the collagen layer underneath wounds [90]. MMPs can be
produced by macrophages (Fig. 3a), but can also be produced by
other cells at the wound site such as neutrophils, keratinocytes or
fibroblasts. A specific function of macrophage-derived MMPs was
recently identified for MMP-10 [91]. MMP-10 knock out mice pro-
duce a stiffer and more collagenous scar tissue compared to wild
type mice indicating that MMP-10 is critical for collagen breakdown
in skin wound healing. Macrophage depletion and adoptive trans-
fer experiments demonstrated that macrophage-derived MMP-10
was critical for the collagenolytic activity in part by regulating the
production of other MMPs by macrophages, particularly MMP13
[91].

Alveolar macrophages have been shown to produce MMP1,
MMP2, MMP7 and MMP12 [92–94] (Fig. 3a). In addition, it has
been shown that macrophage-derived 12-lipoxygenase metabo-
lites induce MMPs by lung fibroblasts during lung inflammation
[95]. Furthermore, it has been observed that alveolar macrophages
contain evident collagen by-products in animal models of emphy-
sema, suggesting that alveolar macrophages can contribute to
collagen catabolism [96]. Overall, the specific contribution of
macrophages to this final repair stage requires further investiga-
tion, in particular whether macrophages are absolutely required,
and if so, what cytokines or factors drive their reparative pheno-
type.

10. Conclusion and outlook

The comparison of the role of macrophages in the process of
wound healing in two distinct tissues has highlighted key sim-
ilarities that likely reflect evolutionarily conserved pathways in
tissue repair. In both the lung and the skin, the process of wound
healing transitions through similar phases with macrophages per-

forming similar functions (Fig. 1). Tissue-resident macrophages
in either tissue are an essential sentinel, which recognizes tissue
damage and substantially contributes to the initiation of a local pro-
inflammatory environment. The pro-inflammatory environment
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hen allows the influx of monocyte populations into the wound
f both tissues, where they then differentiate in a tissue-specific
anner and perform essential tissue repair functions that tissue-

esident macrophage populations could not perform on their own.
he reliance of both tissues on macrophage-derived growth fac-
ors for cell proliferation and differentiation within the wound, is
lso a shared characteristic, although lung resident macrophages
re from the start more polarized towards a wound healing and
nflammation-resolving phenotype. In both tissues, macrophages
hen actively contribute to the resolution of local inflammation and
o the re-organization of the wounded tissue.

There is a fundamental limitation to the comparison of
acrophage function between different tissues, and that is the

ery different nature of the experiments that are performed. Skin
ound healing is often based on well-defined incisional or exci-

ional wounds. In contrast, wounding in experimental lung models
s often introduced either by a general physical disruption of lung
tructure, for instance, via forced ventilation or exposure to a strong
ell irritant, such as bleomycin, or by the transition of the nema-
ode Nippostrongylus brasiliensis through the lung tissue. Another
urrent limitation is the fact that key experiments, such as tracking
f different monocyte populations into the healing wound, have
xclusively been performed in one model system but not in the
ther. Nevertheless, a number of differences in macrophage func-
ion in the two tissues have become apparent. For example, while
ounds in both tissues go through very similar phases of wound

epair, the dynamics of these different phases are different (Fig. 3b).
uncture induced wounding in the skin can require weeks to com-
lete the process of wound healing. In contrast, lungs punctured by
igrating worm larvae, fully recover within days [85,97,98]. While

he different phases of wound repair within the skin are clearly dis-
inguishable and follow a clear chronological order, these phases
n the lungs overlap considerably. There is a strong indication that
he “tissue formation” phase with its macrophage mediated secre-
ion of growth factor is already initiated in the lung before the
coagulation phase” has been completed [99] (Fig. 3b). This rapid
nitiation of wound repair may be a consequence of the fact that
lveolar macrophages are already skewed towards wound repair.
he unique environment of the lung as a highly exposed organ sig-
ificantly contributes to the phenotype of alveolar macrophages
y providing local factors that increase their activation thresh-
ld and thereby imprints the characteristic tolerogenic response
n the lung. This characteristic of the lung may also explain another
ifference between the two tissues, which is the distinct regen-
rative capacity of these different tissues to re-organize wounded
issue back into its original structure. Wound repair in skin tissue
s focused on restoration of skin integrity, however, many aspects
f original skin structure with their highly differentiated compart-
entalization is not re-created. In contrast, lung tissue, even after

evere damaging or the surgical removal of parts of lung lobes, has
remarkable regenerative capacity that can lead to restoration of

lveolar architecture [51,100].
Our review of the literature also revealed a number of unan-

wered questions. One of the most pressing of these questions is
he exact role that different monocyte populations and monocytes-
erived macrophage populations play during wound healing and
ow they function in comparison to tissue resident macrophages
Fig. 3a). CCR-2 and CX3CR-1 expressing monocytes in skin models
ave distinct functions but also immigrate to the wound at differ-
nt stages of wound repair and therefore encounter fundamentally
istinct local inflammatory conditions (Fig. 3a). While CCR-2
xpressing monocytes immigrate during a pro-inflammatory envi-

onment CX3CR-1 expressing monocytes enter at a stage when
he pro-inflammatory environment has started to resolve and
hen wound-resident macrophage populations become polar-

zed towards a more alternatively activated phenotype. CCR-2
elopmental Biology 61 (2017) 3–11 9

expressing monocytes recruited to allergic skin can also acquire
an alternative polarized phenotype, highlighting monocyte plas-
ticity and context-dependence of monocyte differentiation and
macrophage polarization [101]. In the lung, with its more polarizing
environment recruited monocytes rapidly differentiate into fully
functional alveolar macrophages [102,103]. However, regardless of
the dynamics of differentiation, for both locations, in the skin as in
the lung, it became apparent that monocyte-derived macrophages
in both tissues have specific functions during tissue repair, which
separate them from tissue-resident macrophages.

In conclusion, we have aimed to describe the contribution of
macrophages to processes involved in appropriate tissue repair
under normal physiological conditions. However, it is critical to
note that failure at any of the steps discussed above can result
in a pathological outcome (Fig. 3b). Thus inflammation must be
initiated for efficient healing [104], but if it is not resolved the con-
sequence can be non-healing ulcers, or a constant battle between
inflammation and matrix deposition leading to severe fibrosis
[82,105]. Similarly, collagen deposition must stop or otherwise scar
tissue and loss of tissue function will ensue, and finally the break-
down and rebuilding of matrix that characterizes the final stages
must be appropriated controlled or the continual remodeling of
tissue will compromise it’s functional integrity. Because of their
central role in the orchestration of efficient and high quality tissue
repair, macrophages are also central to the processes that fail. Thus
by fully understanding the contribution of tissue-specific as well
as common functions of macrophages that ensure proper repair,
macrophages will be increasingly attractive targets for therapy
against diseases that result from poor quality repair.
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