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Abstract

Let G = (V , E) be a connected graph such that edges and vertices are weighted by nonnegative reals. Let p be a positive integer.
The minmax subtree cover problem (MSC) asks to find a pair (X,T) of a partition X = {X1, X2, . . . , Xp} of V and a set T of
p subtrees T1, T2, . . . , Tp , each Ti containing Xi so as to minimize the maximum cost of the subtrees, where the cost of Ti is
defined to be the sum of the weights of edges in Ti and the weights of vertices in Xi . In this paper, we propose an O(p2n) time
(4 − 4/(p + 1))-approximation algorithm for the MSC when G is a cactus.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Given a graph, the p-traveling salesmen problem (p-TSP) asks to find a set of p tours that cover all vertices in
the graph, minimizing a given objective function. This type of problems arises in numerous applications such as the
multi-vehicle scheduling problem [5]. Graphs are restricted to be paths or trees in some applications such as the task
sequencing problem, the delivery scheduling by ships on a shoreline [12] and the scheduling of automated guided
vehicles. The 1-TSP or p-TSP on paths or trees and analogous routing problems have been studied extensively (e.g.,
[1,2,6,7,12]).

Among these problems, this paper considers the minmax subtree cover problem, which is defined in the following.
Let G=(V , E) be an undirected graph, where we may denote the vertex set and the edge set of G by V (G) and E(G),

respectively. Let n=|V (G)| and m=|E(G)|. We denote by (G, w, h) a graph G such that each edge e and each vertex
v are weighted by nonnegative reals w(e) and h(v), respectively. A collection X of disjoint subsets X1, X2, . . . , Xk of
V is called a partition of V if their union is V, where some Xi may be empty. A collection X of V is called a p-partition
of V if |X| = p. We denote

∑
v∈Xh(v) for a vertex set X by h(X) and

∑
v∈F w(v) for an edge set F by w(F). For a

weighted graph (H, w, h), we may denote w(E(H)) by w(H) and w(H) + h(V (H)) by ŵ(H).
Then the minmax subtree cover problem is described as follows.
Minmax subtree cover problem (MSC):
Input: An instance I = (G, w, h, p) which consists of a connected graph G, an edge weight w, a vertex weight h

and an integer p ∈ [2, n].
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Feasible solution: A p-partition X={X1, X2, . . . , Xp} of V and a set of p subtrees T={T1, T2, . . . , Tp} of G such
that Xi ⊆ V (Ti).

Goal: Minimize cost(X,T) := max1� i �p{w(Ti) + h(Xi)}.
That is, the MSC asks to find a set of p subtrees such that the union of the subtrees covers all vertices in V so as to

minimize the maximum cost of the subtrees, where the cost of a subtree Ti is the sum of the weights of edges in Ti and
the weights of vertices that are covered by Ti (each vertex is covered by exactly one of the subtrees). Subtrees in T are
not necessarily edge-disjoint or vertex-disjoint. The MSC has an application in the multi-vehicle scheduling problem
[6]. The next problem is closely related to the MSC.

Minmax rooted-subtree cover problem (MRSC):
Input: An instance I = (G, w, h, r, p) which consists of a connected graph G, an edge weight w, a vertex weight

h, a vertex r designated as a root, and an integer p ∈ [2, n].
Feasible solution: A p-partition X={X1, X2, . . . , Xp} of V and a set of p subtrees T={T1, T2, . . . , Tp} of G such

that Xi ∪ {r} ⊆ V (Ti).
Goal: Minimize cost(X,T) := max1� i �p{w(Ti) + h(Xi)}.
The MRSC asks to find a set of p subtrees such that each subtree contains r and the union of the subtrees covers

all vertices in V, where the objective is to minimize the maximum cost of the subtrees. The MSC and MRSC are both
NP-hard. If G is a tree, then there are several approximation algorithms to these problems. For the MSC on a tree G,
Averbakh and Berman [4] presented a (2 − 2/(p + 1))-approximation algorithm that runs in O(pp−1np−1) time,
and Nagamochi and Okada [9] recently gave a polynomial time (2 − 2/(p + 1))-approximation algorithm with time
complexity O(p2n).

Averbakh and Berman [3] have given a linear time 4
3 -approximation algorithm for the MRSC with p = 2 on a tree G,

and Nagamochi and Okada [9] proposed an O(n log log1+�/2 3) time (2 + �)-approximation algorithm for the MRSC
with any integer p ∈ [2, n] on a tree G, where � > 0 is a prescribed number. Very recently, Nagamochi [8] proposed an
O(m + n log n) time (3 − 2/(p + 1))-approximation algorithm for the MRSC on an arbitrary connected graph G.

Note that, for any solution to the MRSC, the set of edges used in the subtrees induces a connected spanning subgraph
from G, implying that, for a minimum spanning tree T ∗ of G, (w(T ∗)+h(V ))/p is a lower bound on the optimal value
to the MRSC. However, no such conventional lower bound is known for the MSC, and no polynomial approximation
algorithm has been obtained for the MSC on any class of non-tree graphs so far.

In this paper, we establish a framework for designing approximation algorithms for the MSC on arbitrary graphs,
and then give an O(p2n) time (4 − 4/(p + 1))-approximation algorithm for the MSC on a cactus G. This is the first
approximation algorithm for the MSC on a class of non-tree graphs.

The rest of the paper is organized as follows. Section 2 introduces some terminology and presents preliminary results
on the MSC. Section 3 gives a framework of designing approximation algorithms for the MSC. Section 4 analyzes the
ratio between lower bounds on trees and cacti in order to design a (4 − 4/(p + 1))-approximation algorithm for the
MSC on a cactus. Section 5 describes some concluding remarks.

2. Preliminaries

We denote by (G, w) an edge weighted graph G such that each edge e is weighted by a nonnegative real w(e), where
weight w(e) for an edge e = (u, v) with end vertices u, v ∈ V may be denoted by w(u, v). A vertex with degree 1 is
called a leaf in G, and the set of leaves in G is denoted by L(G). For a subgraph H of (G, w, h), (H, w) means a graph
H in which each edge has the same weight in G (i.e., the edge weight of H is the restriction of w on E(H)). Similarly,
we define (H, w, h) for a subgraph H of G. Let hmax = maxv∈V h(v).

Let T be a tree. For a subset X ⊆ V (T ) of vertices, let T 〈X〉 denote the minimal subtree of T that contains X (where
the leaves of T 〈X〉 will be vertices in X). In this paper, we say that T 〈X〉 is induced from T by X. A graph G is called a
cactus if no two cycles in G share more than one vertex (see Fig. 1(a)).

We call an instance I =(G, w, h, p) of the MSC a tree instance (resp., cactus instance) if G is a tree (resp., cactus), and
denote the optimal value to I by opt(I ). We easily observe the following property. For a tree instance I = (T , w, h, p)

of the MSC,

opt(I )� max

{
ŵ(T )

p
, hmax

}
, (1)
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Fig. 1. Examples of cacti: (a) G = (V , E) and (b) I = (G, w, h, p = 4).

provided that there is an optimal solution (X,T) to I such that each edge is contained in some subtree Ti ∈ T. In
general, (1) does not hold. Nagamochi and Okada [10] have introduced the following lower bound on opt(I ). Given
an instance I = (G, w, h, p), a valued subtree collection of I is defined to be a set S of vertex-disjoint subtrees
S1, S2, . . . , Sk ⊆ G such that each Si is weighted by a positive integer pSi

with
∑

Si∈SpSi
= p. For a valued subtree

collection S of I, consider a solution (X,T) such that
⋃

Ti∈TE(Ti) induces from G components S1, S2, . . . , S|S| and
each Si contains pSi

subtrees from T. Then we see that

�(S) = max

{
ŵ(Si)

pSi

| Si ∈ S

}

is a lower bound on the minimum cost(X,T) over all such solutions. Therefore, by considering the minimum �(S)

over all valued subtree collections S of I, we obtain a lower bound on opt(I ). Define

�∗(I ) = min{�(S) | all valued subtree collections S of I }.

Lemma 1 (Nagamochi and Okada [10]). For any instance I of the MSC, opt(I )��∗(I ).

Nagamochi and Okada [10] have shown the following result.

Theorem 2 (Nagamochi and Okada [10]). For a tree instance I = (T , w, h, p) of the MSC, there exists a solution
(X,T) such that cost(X,T)� max{(2 − 2/(p + 1))�∗(I ), hmax} holds and any two subtrees Ti, Tj ∈ T are edge-
disjoint.

To find such a solution in this theorem in polynomial time, they investigated a relation between the MSC and a problem
of minimizing the maximum cost of vertex-disjoint subtrees. Based on the next result, an O(p2n) time algorithm for
constructing a solution in Theorem 2 has been obtained [9].

Theorem 3 (Perl and Vishkin [11]). Let (T = (V , E), w, h) be a weighted tree. For a given integer p�2, a set F of
(p − 1) edges that minimizes the maximum weight ŵ(T ′) of subtrees T ′ in (V , E − F) can be found in O(n + �p(p +
log �)) time, where � and � denote the radius and the maximum degree of tree T, respectively.

We remark that there is a cactus instance I = (G, w, h, p) of the MSC such that, for any optimal solution (X,T),
the set of all edges in subtrees in T does not induce a forest from G (i.e., all edges of some cycle in G are used in T).
Fig. 1(b) shows a cactus instance I = (G, w, h, p = 4) of the MSC such that an optimal solution uses all edges in the
cactus, where h(v)=0 for non-leaves v and h(u1)=h(u2)=30, h(v1)=h(v2)=70, and h(u3)=h(u4)=h(v3)=h(v4)=50
for leaves, and w(e) = 1 for all edges. Observe that opt(I ) = 105 and an optimal solution consists of four subtrees Ti

(1� i�4) such that Ti is a path of five edges connecting ui and vi .
To utilize Theorem 2 to approximate the MSC on a cactus G, one may try to transform an optimal solution (X,T) of

a cactus instance I = (G, w, h, p) into an approximate solution of a tree instance I ′ = (T , w, h, p) for a spanning tree
T of G. However, there may be a subtree Ti ∈ T which contains an edge e not in T, and transforming Ti by replacing
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Fig. 2. Splitting a vertex u into d − 2 vertices of degree 3.

e with other edges in the cycle C containing e may increase the cost of Ti by an arbitrarily large amount compared to
its original cost.

For this, we examine the relation between the lower bounds �∗(I ) and �∗(I ′) for cactus instances I and tree
instances I ′.

Lemma 4. For an instance I = (G = (V , E), w, h, p) with a connected graph G, there is a spanning subtree T of G
such that �∗(I ′)��∗(I ) holds for the tree instance I ′ = (T , w, h, p).

Proof. Let S be a valued subtree collection in I such that �(S) = �∗(I ). Since G is connected, there is a spanning
tree T of G such that E(T ) ⊇ ⋃

S∈SE(S). Since �∗(I ′)��(S) holds for the tree instance I ′ = (T , w, h, p), we have
�∗(I ′)��(S) = �∗(I ) for the tree T. �

In general, it seems hard to find such a spanning tree T in Lemma 4 without knowing an optimal valued subtree
collection S of I. When G is a tree-like graph, it might be possible to choose a spanning tree T of G such that �∗(I ′)
approximates �∗(I ). For an instance I = (G = (V , E), w, h, p), let T be a spanning tree of G, and consider the tree
instance I ′ = (T = (V , E′), w, h, p). Let ��1 be a number such that

�∗(I ′)�� · �∗(I ). (2)

In Section 4, we shall see that factor � in (2) can be chosen as 2 when G is a cactus.

3. Algorithm for MSC

In this section, we give a framework for designing approximation algorithms for the MSC on arbitrary graphs, based
on an approximation algorithm for the MSC on trees [9]. We first convert a given tree instance I = (T , w, h, p) into
another tree instance Ĩ = (T̃ , w, h, p) by the following procedure.

LOWER_DEGREE
Input: A tree (T = (V , E), w, h) with an edge weight w and a vertex weight h.
Output: A tree (T̃ , w, h) with an edge weight w and a vertex weight h.
Step 1: For each non-leaf v ∈ V (T ) − L(T ), we rename v by v′, set h(v′) := 0, and add a new leaf, which we now

call v, introducing a new edge ev = (v′, v) with w(ev)=0, where we let the new v have the same weight h(v) as before.
Step 2: For each vertex u with degree d �4, execute the following procedure.
Let e1, e2, . . . , ed be the edges incident to u. Split u into d − 2 vertices u2(=u), u3, . . . , ud−1 introducing new

vertices u3, u4, . . . , ud−1. Replace the end vertex u of each ei , i = 2, 3, . . . , d − 1 (resp., of e1 and ed ) with ui (resp.,
with u2 and ud−1). Join the split vertices u2, u3, . . . , ud−1 by d − 3 new edges (u2, u3), . . . , (ud−1, ud) (see Fig. 2).
Let weights of all introduced vertices and edges be zero, while the edges e1, e2, . . . , ed have the same weights as before.

Let Ĩ = (T̃ , w, h, p) be the resulting instance, in which every vertex has degree at most three. Then the next two
lemmas hold.

Lemma 5. For a tree instance I =(T , w, h, p), let Ĩ =(T̃ , w, h, p) be a tree instance obtained by LOWER_DEGREE.
Then �∗(Ĩ )��∗(I ).
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Proof. Let S = {S1, S2, . . . , Sk} be a valued subtree collection of I with �(S) = �∗(I ), where each Si is weighted
by pSi

. For each Si ∈ S, consider the subtree S̃i = T̃ 〈V (Si)〉 of T̃ . By the construction of Ĩ , S̃i has cost w(S̃i) +
h(V (S̃i)) = w(Si) + h(V (Si)). Suppose that there is a vertex z ∈ V (T̃ ) − V (T ) that is not covered by any subtree S̃i .
By construction, such a vertex z satisfies h(z)=0 and is connected to a vertex u ∈ V (T ) in T̃ via a path that consists of
edges of weight zero. Thus by attaching such uncovered vertices to some subtrees S̃i , we can obtain a valued subtree
collection S̃ of Ĩ with �(S̃) = �∗(I ). This implies �∗(Ĩ )��(S̃) = �∗(I ). �

Lemma 6 (Nagamochi and Okada [9]). Let Ĩ = (T̃ , w, h, p) be a tree instance of the MSC in which every vertex is
of degree at most 3 and every internal vertex u satisfies h(u) = 0. For a solution (X̃, T̃) to Ĩ such that T̃ consists of
edge-disjoint subtrees, there is a solution (X∗,T∗) to Ĩ with cost(X∗,T∗)�cost(X̃, T̃) such that T∗ consists of
vertex-disjoint subtrees.

Based on the above properties, we obtain the following algorithm for the MSC.
Algorithm APPROX
Input: An instance I = (G, w, h, p) of the MSC such that G is connected.
Output: A solution (X,T) to I.
Step 1: Find a spanning tree T of G, and let � be a factor such that (2) holds for the tree instance I ′ = (T , w, h, p).
Step 2: Convert the tree instance I ′ = (T , w, h, p) of the MSC into a tree instance Ĩ = (T̃ , w, h, p) by procedure

LOWER_DEGREE.
Step 3: Find a set of p vertex-disjoint subtrees T ∗

i , i = 1, 2, . . . , p, in Ĩ that minimizes max1� i �p ŵ(T ∗
i ). Let

X∗ = {X∗
i = V (T ∗

i ) | i = 1, 2, . . . , p}.
Step 4: Output solution (X,T) such that X={Xi =X∗

i ∩V (T ) | i=1, 2, . . . , p} and T={T 〈Xi〉 | i=1, 2, . . . , p}.

Theorem 7. For a given instance I = (G, w, h, p) of the MSC, APPROX delivers in O(�1 + p2n) time a solution
(X,T) such that

cost(X,T)�� ·
(

2 − 2

p + 1

)
opt(I ) (3)

and T consists of edge-disjoint subtrees, where �1 denotes the time to execute Step 1.

Proof. For the instance I ′ obtained in Step 1, �∗(I ′)�� · �∗(I )�� · opt(I ) holds by Lemma 1 and condition (2). By
Lemma 5, �∗(Ĩ )��∗(I ′) holds for the instance Ĩ in Step 2. By Theorem 2, there exists a solution (X̃, T̃) with

cost(X̃, T̃)� max

{(
2 − 2

p + 1

)
�∗(Ĩ ), hmax

}

such that T̃ consists of edge-disjoint subtrees in Ĩ . By Lemma 6, instance Ĩ has a solution (X∗,T∗) such that
cost(X∗,T∗)�cost(X̃, T̃) and T∗ consists of vertex-disjoint subtrees in Ĩ . Such a solution can be found in Step
3 in O(p2n) time by using Theorem 3. Note that T in Step 4 is obtained from T∗ in Step 3 by contracting all
edges (of zero) introduced in the construction of T̃ from T. Hence T consists of edge-disjoint subtrees and satisfies
cost(X,T) = cost(X∗,T∗). Therefore, from the above inequalities and opt(I )�hmax, we have (3). We easily see
that APPROX can be implemented to run in O(�1 + p2n) time. �

4. Factor � for cacti

In this section, we show that every cactus G contains a spanning tree T such that (2) holds for factor � = 2.

Lemma 8. For an instance I = (G, w, h, p) such that G is a cactus, let (T , w) be a minimum spanning tree of the
edge weighted graph (G, w). Then �∗(I ′)�2�∗(I ) holds for the tree instance I ′ = (T , w, h, p).

This lemma and Theorem 7 imply the next result.
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Fig. 3. Illustration for subtrees Si , Sj , Sk ∈ S and edges emax, e1, e2 ∈ E(C).

Corollary 1. For a given instance I = (G, w, h, p) of the MSC such that G is a cactus, a solution (X,T) with
cost(X,T)�(4 − 4/(p + 1)) opt(I ) can be obtained in O(p2n) time.

In the rest of this section, we prove Lemma 8. Let �∗ = �∗(I ), S be a valued subtree collection to I = (G, w, h, p)

with �(S) = �∗, and (T , w) be a minimum spanning tree of (G, w). For notational simplicity, we assume that a given
cactus G has no bridge, i.e., G consists only of cycles (if necessary, we add to each bridge e = (u, v) a new edge
e′ = (u, v) with w(e′) = w(e), and we can assume that no new edge is included in any subtree in S).

Let E = E(G) − E(T ), where, by the minimality of T, each edge e ∈ E has the maximum edge weight among
edges in the cycle containing e. Let E(S) = ⋃

S∈S E(S). Notice that S may not be a valued subtree collection of
I ′ = (T , w, h, p), i.e., some edges in E may be used in subtrees in S.

We now give an algorithm for transforming S into a valued subtree collection S′ of I ′. The algorithm consists of
two phases. In the first phase, we break a subtree S ∈ S into two fractions (or into a smaller subtree S and a fraction),
where a fraction is a triplet (E′, V ′, p′) of an edge set E′ ⊆ E(S), a vertex set V ′ ⊆ V (S) and an integer p′ ∈ [0, pS].
For a fraction � = (E′, V ′, p′), define ŵ(�) = w(E′) + w(V ′) and p(�) = p′, respectively. During the first phase, we
maintain a set S of vertex-disjoint subtrees S, each weighted by a positive integer pS such that

⋃
S∈S

V (S) ⊆ V,
∑
S∈S

pS �p, �(S)��∗. (4)

The resulting S after the first phase is not a valued subtree collection to I ′ if
⋃

S∈S V (S) 
= V or
∑

S∈SpS < p. In
the second phase, we modify subtrees Si ∈ S by attaching fractions � to them so that the set of the resulting subtrees
becomes a valued subtree collection S′ of I ′ and �(S′)�2�∗ holds.

4.1. Phase-1

We now describe a procedure for the first phase. For each subtree Si ∈ S, let �i := ∅, where �i stores a set of
fractions � that will be added to Si in the second phase.

Choose a cycle C0 in G as a root cycle, and define distance dist(v) for a vertex v ∈ V to be the number of cycles
which share edges with a simple path from a vertex in C0 to v in G. For each cycle C, define dist(C)=minv∈V (C) dist(v)

and call the vertex v ∈ V (C) with dist(v) = dist(C) the parent of C. Then we number all cycles as C0, C1, . . . , Cr

such that dist(Ci)�dist(Cj ) for any i < j .
For each cycle C = Cr, Cr−1, . . . , C1 in this order, we apply the following procedure CUT if there is a subtree

Si ∈ S with E(Si) ∩ E ∩ E(C) 
= ∅; we skip applying CUT to cycle C otherwise.
Procedure CUT
Let emax be the edge in E(Si) ∩ E ∩ E(C), and vC ∈ V (C) be the parent of C. Let e1, e2 ∈ E(C) − E(Si) be the

edges incident to Si (possibly e1 = e2), and Sk (resp., Sj ) be the subtree that is adjacent to Si via edge e1 (resp., e2)
(possibly Sk = Sj ). See Fig. 3.
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Fig. 4. Illustrations for Case 1 with e1 = e2.
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Fig. 5. Illustration for Case 2.

Case 1: e1 = e2 (hence V (Si) = V (C)) (Fig. 4(a)). Let Si be the subtree obtained from Si by replacing emax with e1
(Fig. 4(b)).

Case 2: Sj or Sk does not contain vC ∈ V (C) (assume vC /∈ V (Sk) without loss of generality) (Fig. 5(a)). Let S′
i

and S′′
i be two subtrees obtained from Si by removing edge emax; S′′

i is assumed to be adjacent to Sk without loss of
generality. Let

pS′
i
:=

⌈
ŵ(S′

i )

ŵ(Si)
pSi

⌉
, pS′′

i
:= pSi

−
⌈

ŵ(S′
i )

ŵ(Si)
pSi

⌉
.

Let �′′ be the set of fractions in �i that are created from the descendents of S′′
i .

� := (V (S′′
i ), E(S′′

i ) ∪ {e1}, pS′′
i
), �k := �k ∪ {�}�′′, �i := �i − �′′

and

Si := S′
i , pSi

:= pS′
i

(see Fig. 5(b)).
Case 3: Sj = Sk and vC ∈ V (Sj ) (Fig. 6(a)). Let

� := (V (Si), (E(Si) − {emax}) ∪ {e1, e2}, pSi
), �j := �j ∪ {�}

and

S := S − {Si}, �j := �j ∪ �i

(see Fig. 6(b)).
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Fig. 6. Illustration for Case 3.

Claim 1. A set S of subtrees obtained after Phase-1 satisfies (4).

Proof. In Case 3, subtree Si is simply removed from the current S. In other cases, Si and pSi
will be modified. In

Case 1, pSi
remains unchanged, while ŵ(Si) never increases since w(emax)�w(e1). In Case 2, subtree Si is modified

into subtree S′
i such that

ŵ(S′
i )

pS′
i

= ŵ(S′
i )

�(ŵ(S′
i )/ŵ(Si))p �

ŵ(S′
i )

(ŵ(S′
i )/ŵ(Si))pSi

= ŵ(Si)

pSi

,

which preserves property �(S)��∗. We easily observe that the first two conditions in (4) remain valid after each
application of CUT. �

Claim 2. Any fraction � created during Phase-1 satisfies ŵ(�)/p(�)�2�∗ if p(�)�1 and ŵ(�) < �∗ if p(�) = 0.

Proof. By Claim 1, any subtree S ∈ S after each application of CUT satisfies pS �1 and ŵ(S)/pS ��∗. Then a
fraction � = (V (Si), (E(Si) − {emax}) ∪ {e1, e2}, pSi

) in Case 3 satisfies

ŵ(�)

p(�)
= ŵ(Si) − w(emax) + w(e1) + w(e2)

pSi

� ŵ(Si) + w(e2)

pSi

�2
ŵ(Si)

pSi

�2�∗.

We next consider a fraction � = (V (S′′
i ), E(S′′

i ) ∪ {e1}, pS′′
i
) in Case 2. Note that pS′′

i
= pSi

− �pSi
ŵ(S′

i )/ŵ(Si) =
�pSi

(ŵ(S′′
i ) + w(emax))/ŵ(Si)�. If pS′′

i
�1, then it holds

ŵ(�)

p(�)
= ŵ(S′′

i ) + w(e1)

�((ŵ(S′′
i ) + w(emax))/ŵ(Si))pSi

� �2 · ŵ(S′′
i ) + w(emax)

((ŵ(S′′
i ) + w(emax))/ŵ(Si))pSi

= 2 · ŵ(Si)

pSi

�2�∗.

On the other hand, if pS′′
i
< 1, i.e., pSi

(ŵ(S′′
i ) + w(emax))/ŵ(Si) < 1, then we have

ŵ(�) = ŵ(S′′
i ) + w(emax) <

ŵ(Si)

pSi

��∗.

This proves the claim. �

Claim 3. For each Si ∈ S obtained after Phase-1, �i contains at most one fraction � with p(�) = 0.

Proof. Any fraction � with p(�)= 0 is created in Case 2 when a cycle C is being scanned, and added to �k of a subtree
Sk with V (Sk) ∩ V (C) 
= ∅ and vC /∈ V (Sk). This implies that Sk cannot receive any other fraction �′ with p(�′) = 0.
Therefore, �i contains at most one fraction � with p(�) = 0. �
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4.2. Phase-2

In the second phase, we paste fractions in �i to the subtree Si ∈ S by the following procedure.
Procedure PASTE
Let S be the set of subtrees obtained in Phase-1. For each subtree Si ∈ S with �i 
= ∅, we modify Si as follows:

for �i = {(V ′
j , E

′
j , p

′
j ) | j = 1, 2, . . . , k}, let

S∗
i :=

⎛
⎝V (Si) ∪

⋃
1� j �k

V ′
j , E(Si) ∪

⋃
1� j �k

E′
j

⎞
⎠

and

pS∗
i

:= pSi
+

∑
1� j �k

p′
j .

Let S∗ be the set of resulting subtrees.
By construction of fractions in CUT, we easily see that Si computed by PASTE is a subtree and that the resulting

set S∗ is a set of vertex-disjoint subtrees of T such that
⋃

S∈S∗ V (S) = V and
∑

S∈S∗ pS = p, i.e., S∗ is a valued
subtree collection of I ′ = (T , w, h, p).

Lemma 9. Let S∗ be a valued subtree collection of I ′ = (T , w, h, p) computed after Phase-2. Then �(S∗)�2�∗.

Proof. Let S be a set of subtrees obtained after Phase-1. Consider a subtree S∗
i ∈ S∗, and let �i = {�1, �2, . . . , �k},

where ŵ(S∗
i ) = ŵ(Si) + ŵ(�1) + · · · + ŵ(�k) and pS∗

i
= pSi

+ p(�1) + · · · + p(�k) hold for Si ∈ S. Then it suffices
to show that

ŵ(S∗
i )

pS∗
i

= ŵ(Si) + ŵ(�1) + · · · + ŵ(�k)

pSi
+ p(�1) + · · · + p(�k)

�2�∗. (5)

If p(�j ) 
= 0 for all �j ∈ �i , then it holds

ŵ(Si) + ŵ(�1) + · · · + ŵ(�k)

pSi
+ p(�1) + · · · + p(�k)

� max

{
ŵ(Si)

pSi

,
ŵ(�1)

p(�1)
, . . . ,

ŵ(�k)

p(�k)

}
�2�∗

by Claim 2. We now consider the case where �i contains a fraction � with p(�) = 0. By Claim 3, �i contains exactly
one such fraction, say �1 with p(�1) = 0. Therefore, by Claim 2, we have

ŵ(S∗
i )

pS∗
i

� max

{
ŵ(Si) + ŵ(�1)

pSi

,
ŵ(�2)

p(�2)
, . . . ,

ŵ(�k)

p(�k)

}

� max

{
ŵ(Si) + �∗

pSi

, 2�∗
}

�2�∗,

as required. �

This completes the proof of Lemma 8.
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5. Concluding remarks

In this paper, we have designed a framework for designing approximation algorithms for the MSC on an arbitrary
graph, and have given an O(p2n) time (4−4/(p+1))-approximation algorithm for the MSC on a cactus. Our framework
for designing algorithms for the MSC seems effective on classes of graphs which have a similar structure with trees. It
would be interesting to investigate factors � in (2) for those classes such as outerplanar graphs.
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