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boulevard du 11 novembre 1918, 69622 Villeurbanne, Cedex, France
6Present address: Diabetes and Endocrinology Research Unit, Australian National University Medical School, Garran, ACT, Australia
7Present address: ClevelandClinic Lerner Research Institute, Department of Cellular andMolecularMedicine, 9500 Euclid Avenue, Cleveland,

Ohio 44195, USA
8Co-first authors
*Correspondence: murthy.madiraju@crchum.qc.ca (S.R.M.M.), marc.prentki@umontreal.ca (M.P.)

http://dx.doi.org/10.1016/j.cmet.2014.04.003
SUMMARY

Glucose metabolism in pancreatic b cells stimulates
insulin granule exocytosis, and this process requires
generation of a lipid signal. However, the signals
involved in lipid amplification of glucose-stimulated
insulin secretion (GSIS) are unknown. Here we
show that in b cells, glucose stimulates production
of lipolysis-derived long-chain saturated monoacyl-
glycerols, which further increase upon inhibition
of the membrane-bound monoacylglycerol lipase
a/b-Hydrolase Domain-6 (ABHD6). ABHD6 expres-
sion in b cells is inversely proportional to GSIS. Exog-
enous monoacylglycerols stimulate b cell insulin
secretion and restore GSIS suppressed by the pan-
lipase inhibitor orlistat. Whole-body and b-cell-
specific ABHD6-KO mice exhibit enhanced GSIS,
and their islets show elevated monoacylglycerol pro-
duction and insulin secretion in response to glucose.
Inhibition of ABHD6 in diabetic mice restores GSIS
and improves glucose tolerance. Monoacylglycerol
binds and activates the vesicle priming protein
Munc13-1, thereby inducing insulin exocytosis. We
propose saturated monoacylglycerol as a signal for
GSIS and ABHD6 as a negative modulator of insulin
secretion.

INTRODUCTION

Insulin is secreted from the pancreatic b cell upon fusion of insu-

lin granules with the plasma membrane (Ashcroft and Rorsman,

2012; Kwan and Gaisano, 2009; MacDonald, 2011), and

glucose-stimulated insulin secretion (GSIS) occurs via glucose
Ce
metabolism in the b cell (MacDonald, 2011; Maechler and Woll-

heim, 1998; Prentki et al., 2013). Insulin secretion is altered in

diabetes, and despite decades of research, the signaling path-

ways involved in GSIS remain to be defined (Nolan and Prentki,

2008). Glucose metabolism in the b cell elevates ATP, which, by

closing potassium channels, triggers an increase in cytosolic

Ca2+ necessary for insulin granule exocytosis (Prentki and Mat-

schinsky, 1987). However, glucose signaling for insulin exocy-

tosis also occurs via other metabolic coupling factors besides

ATP (Henquin, 2011; Jitrapakdee et al., 2010; Maechler and

Wollheim, 1998; Prentki and Madiraju, 2012).

The glycerolipid/free fatty acid (GL/FFA) cycle (Nolan et al.,

2006a; Nolan and Prentki, 2008) conducts synthesis of glycero-

lipids, including mono-acylglycerols (MAGs), di-acylglycerols

(DAGs), and tri-acylglycerols (TGs) and phospholipids followed

by their lipolysis to FFA and glycerol. Lipolysis plays a key role in

GSIS (NolanandPrentki, 2008;Prentki andMadiraju, 2012)bypro-

ducing a signaling molecule(s) that remains to be defined (Prentki

et al., 2013). GSIS is reduced in isolated islets obtained frommice

deficient in either adipose triglyceride lipase (Peyot et al., 2009),

which hydrolyzes TG to DAG (Nolan and Prentki, 2008), hor-

mone-sensitive lipase (Fex et al., 2009; Peyot et al., 2004), which

forms MAG from DAG (Haemmerle et al., 2002), or when DAG

lipase (which also forms MAG) is inhibited by RHC80267 (Guenifi

et al., 2001). On the basis of these observations, we hypothesized

that MAG is a key signal mediating the link between glucose and

intracellular fatty acid (FA) signaling and insulin secretion.

If DAG were a signal for GSIS (Eliasson et al., 2008; Green

et al., 2009; Kwan et al., 2006), suppression or inhibition of

HSL or DAG lipase, which elevates DAG levels, should enhance

GSIS instead of reducing it. MAG can be hydrolyzed not only by

MAG lipase (MAGL) but also by the recently discovered plasma-

membrane-bound enzymes a/b-hydrolase domain-containing 6

(ABHD6), with its catalytic site facing the cytosol and ABHD12

with exterior-facing catalytic site (Blankman et al., 2007). Recent

studies suggested a potential role for ABHD6 in the control of
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Figure 1. Expression and Distribution of Monoacylglycerol Lipase and ABHD6 in Rat Tissues, Pancreatic Islets, and b Cell Lines

(A) Upper panel: MAGL protein level. Lower panel: MAGL mRNA expression.

(B) Upper panel: ABHD6 protein level. Lower panel: ABHD6 mRNA level.

(C and D) Assessment of MAG hydrolysis using 1-OG (50 mM) as substrate in INS832/13 cells without and with ABHD6 inhibitor WWL70 (10 mM) and panlipase

inhibitor orlistat (25 mM) in (C) membranes and (D) cytosol. n = 6. *p < 0.05; ***p < 0.001 versus control (Cont).

(E)WWL70-sensitiveMAGhydrolysis activity in INS832/13 cell extracts is higher with 1-PG (50 mM) thanwith 1-OG (50 mM). ***p < 0.001 versus 1-OG (n = 3). All the

values shown are mean ±SEM.
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metabolic syndrome (Thomas et al., 2013) and inflammation

(Alhouayek et al., 2013).

Here we show that glucose stimulation elevates various MAG

species in the b cells, particularly saturated 1-MAG species, and

that MAG accessible to ABHD6 but not to MAGL acts as a signal

for promoting insulin granule exocytosis by binding to the vesicle

priming protein Munc13-1. Suppression of ABHD6 either genet-

ically or pharmacologically leads to MAG buildup in b cells with a

resultant increase in GSIS in vitro, ex vivo, and in vivo. The data

indicate that ABHD6 negatively regulates GSIS and thatMAG is a
994 Cell Metabolism 19, 993–1007, June 3, 2014 ª2014 Elsevier Inc.
metabolic coupling factor for insulin secretion in response to

glucose and FAs.

RESULTS

Membrane-Bound ABHD6 Is the Predominant MAG
Lipase in b cells
In b cell lines and islets from rat, mouse, and human, MAGL is

expressed at very low levels, unlike other tissues (Figure 1A).

However, ABHD6 is well expressed both at mRNA and protein
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levels in islets and b cell lines (Figure 1B). Using 1-oleoylglycerol

(1-OG), MAG hydrolase activity in INS832/13 b cells was found

primarily in the membrane fraction (Figure 1C) and is inhibited

by the ABHD6 inhibitor WWL70, which does not affect MAGL,

ATGL, or HSL (Bachovchin et al., 2010; Blankman et al., 2007),

and by panlipase inhibitor orlistat (Figure 1D). ABHD6 activity

in INS832/13 cell extracts with 1-palmitoylglycerol (1-PG) is

�3-fold higher than with 1-OG (Figure 1E). ABHD12 expression

is low in b cells and rodent islets as compared to human islets

(data not shown).

Elevation of 1-MAG by Glucose and ABHD6 Inhibition in
b Cells Correlates with GSIS
If MAG is a mediator of GSIS, its level is expected to respond to

an increase in glucose concentration, and agents that either

increase or reduce MAG levels should modulate insulin secre-

tion accordingly. Incorporation of [1-14C]-arachidonic acid into

1- and 2-MAG, besides other glycerolipids, increased in

INS832/13 cells at high glucose (Figure S1A available online).

We also tested the effect of WWL70 and orlistat on [14C]-glucose

incorporation into different lipids. Under conditions where the

lipid carbons are prelabeled with [14C]-glucose, incubation with

10 mM glucose led to elevated lipolysis, measured as 14C-FFA

release (Figure S1B) and a rise in neutral glycerolipids, particu-

larly 1- and 2- MAG (Figure S1C). TG accumulated with orlistat

but not with WWL70 (Figure S1D), and these inhibitors had no

effect on total DAG levels (Figure S1D). While orlistat had no

effect on 2-MAG, it was increased by WWL70 (Figure S1C).

Orlistat, which inhibits GSIS (Nolan et al., 2006b), decreased

1-MAG, while WWL70, which enhances GSIS (see below Fig-

ure 3), increased 1-MAG (Figure S1C). Thus, elevated glucose

promotes lipolysis and FFA release in b cells and causes a rise

in 1- and 2-MAG levels that is amplified in the presence of

WWL70. In addition, GSIS in the presence of inhibitors of lipol-

ysis (orlistat) or ABHD6 (WWL70) correlates only with 1-MAG

and not 2-MAG, DAG, or TG.

Glucose Specifically Increases Saturated Long-Chain
FA and MAG Species
As ABHD6 inhibition reduced glucose-induced FFA release from

INS cells (Figure S1B), we examined if this is specific for any

particular FFA. In rat islets, 16.7 mM glucose specifically in-

creased the release of long-chain saturated FFA (Figure 2A)—

e.g., palmitate (C16:0) and stearate (C18:0)—and this was

abolished by WWL70 (Figure 2B), but the release of unsaturated

FFA or saturated FFA of <C16 chain length was not affected (Fig-

ures 2A and 2B). Similar changes were noticed in the total FFA

present in the islets (Figure 2C). Thus, WWL70 is a useful tool

to study the role of ABHD6 and MAG in glucose signaling as it

shows the anticipated effects on lipid metabolism. It reduces

MAG hydrolysis in vitro, increases MAG levels, and reduces

FFA content and release in intact b cells.

The pattern of lipolysis (FFA release) with glucose andWWL70

was largely related to the MAG species in the cells. As glucose

and WWL70 led to MAG accumulation in INS cells incubated

with [14C]-glucose, we examined the effect of WWL70 on indi-

vidual MAG species (Figure 2D). Thus, a 2–10 mM increase

in glucose elevated total cellular MAG (both 1- and 2-MAG)

>2-fold, and this was further increased by WWL70 (Figure 2E).
Ce
Glucose primarily increased both 1- and 2-PG (Figure 2F) and

SG (Figure 2G), though there was noticeable effect on other

MAGs. WWL70 was specific in further elevating the 1-MAG

levels, in particular 1-PG and 1-stearoylglycerol (1-SG) (Figures

2Fand 2G), andother saturated FA-containingMAGs (Figure 2D).

This indicates that ABHD6 has preferential access to 1-MAGs

with saturated FA.

MAG Enhances Insulin Release and Restores GSIS
Suppressed by Orlistat
Since glucose primarily elevates long-chain saturated MAG, we

tested whether these MAGs are efficient secretagogues when

added exogenously. 1-PG and 1-SG were most effective in

enhancing GSIS in INS832/13 cells (Figure 3A), compared to

1-OG (Figure 3A) and 1-linoleoylglycerol (Figure S2A). The

GSIS enhancing effect by 1-PG (Figure 3B) and 1-SG (Fig-

ure S2B) was also seen in human and rat islets.

Exogenous MAG (1-PG, Figure 3C; 1-SG, Figure S2C; and

2-arachidonoylglycerol, Figures S2D, S2E, and S2F) was not

only effective in enhancing GSIS but also in restoring GSIS sup-

pressed by orlistat in INS832/13 cells. This provides strong phar-

macological evidence for the view that lipolysis-derivedMAG is a

signal for GSIS.

Cannabinoid Receptors Are Not Implicated in Glucose
Signaling for Insulin Secretion
A specific antagonist (AM251) of the CB1 receptor (Lan et al.,

1999) known to be present in b cell (Matias et al., 2006), and

an inverse agonist (AM630) of the CB2 receptor (Ross et al.,

1999) whose presence in b cells is controversial (Kim et al.,

2011), did not alter GSIS (Figure S2E and S2F). In addition, resto-

ration of orlistat-inhibited GSIS by 2-arachidonoylglycerol (2-AG)

was not affected by AM251 (Figure S2F).

ABHD6 Inhibition Amplifies GSIS
Inhibition of ABHD6 byWWL70 in INS832/13 cells, which causes

MAG accumulation, almost doubled GSIS both in the presence

and absence of palmitate (Figure 3D). In contrast, orlistat, which

decreased 1-MAG (Figure S1C), inhibited GSIS (Figure 3D).

WWL70 had no effect on insulin secretion at low glucose and

amplified only GSIS, with maximal effect at 10 mM (Figure S2G),

without affecting the total cellular insulin content (data not

shown). WWL70 was also effective in enhancing GSIS in islets

from CD1 mice (Figure 3E), C57Bl6 mice, and Wistar rats (data

not shown), as well as from nondiabetic human donors (Fig-

ure 3E). Insulin secretion induced by membrane depolarization

with 10 mM arginine or 35 mM KCl was not affected by

WWL70 in INS832/13 cells (data not shown).

Insulin Secretion Is Inversely Proportional to ABHD6
Levels
To further ascertain the role of ABHD6 in GSIS regulation,

we modified ABHD6 expression in INS832/13 cells by overex-

pression or RNAi knockdown. An �3 fold increase in ABHD6

(Figure 4A) decreased GSIS with or without palmitate (Fig-

ure 4B), as compared to GFP-expressing control cells. In

contrast, a decrease in ABHD6 content by >80% using two

different siRNAs (A1 and A2) led to �2-fold increase in GSIS, in

comparison to control RNAi-transfected cells (Figures 4C, 4D,
ll Metabolism 19, 993–1007, June 3, 2014 ª2014 Elsevier Inc. 995



Figure 2. Glucose Specifically Enhances the

Production and Release of Saturated FFA

fromRat Islets and Increases the Differential

Production of Monoacylglycerol Species in

b Cells

(A–C) Release and cellular content of different FFA

species by isolated rat islets at 2.8 mM glucose

(2.8G) and 16.7G with and without 10 mM WWL70

after 2 hr incubation. n = 12. *p < 0.05; **p < 0.01;

***p < 0.001 versus 2.8G.

(B) Release of palmitate (C16:0), stearate (C18:0),

and oleate (C18:1) into incubation medium; (C)

cellular content of palmitate, oleate, and stearate in

rat islets.

(D–G) Effect of glucose and 10 mM WWL70 on the

content of MAG species in INS832/13 cells after

2 hr incubation. 2G, 2 mM glucose; 10G, 10 mM

glucose.

(D) All measured MAG species; ##p < 0.01 versus

2G; *p < 0.05; **p < 0.01 versus 10G.

(E–G) (E) Total MAG corresponding to the sum of all

measured MAG species; (F) 1- and 2- PG (C16:0)

and (G) 1- and 2-SG (C18:0). n = 15; *p < 0.05

versus 2G; #p < 0.05; ##p < 0.01 versus 10G. All the

values shown are mean ±SEM.
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and 4E). An ABHD6 gene expression dosage effect on GSIS with

the two siRNAs is apparent.

MAG Hydrolysis by ABHD6 but Not by MAG Lipase
Controls Insulin Secretion
We tested whether the signaling competent MAG for insulin

secretion is accessible not only to ABHD6 but also to the small

amount of MAGL in the b cell. MAGL is distributed between

cytosol and membrane fractions (Severson and Hee-Cheong,

1988), unlike ABHD6, which is membrane bound (Blankman

et al., 2007) (Figure 1C). Inhibition of MAGL by JZL184 (Long

et al., 2009) caused a modest increase in MAG levels in INS832/

13 cells but had no effect on GSIS (Figure S3). In addition, RNAi

silencing (Figures 4F and 4G) or overexpression ofMAGL (Figures
996 Cell Metabolism 19, 993–1007, June 3, 2014 ª2014 Elsevier Inc.
4H and 4I) in INS832/13 cells had no effect

on GSIS. Thus, only ABHD6-accessible

MAG acts as a signal for GSIS.

Enhanced Insulin Secretion in
Whole-Body ABHD6-Deficient Mice
Whole-body ABHD6 deletion in mice was

achieved by knockout (KO)-first technique

(Figure S4A) (Skarnes et al., 2011). Gene

deletion was verified by genotyping.

Genomic PCR of abhd6 locus yielding a

single fragment of 517 bp is indicative of

gene deletion in the homozygous KO

mice, whereas a fragment of 200 bp is

indicative of wild-type (WT) (Figure S4B).

Both fragments were noticed in heterozy-

gous (HZ) mice. ABHD6 deletion was also

confirmed in the western blots showing

complete loss of the 37 kDa ABHD6 pro-

tein (Figure 5A) in the homozygous KO
mice. There was no difference in the growth and food intake of

ABHD6-KO and HZ mice in comparison to WT mice up to

25 weeks of age (Figures S4C and S4D).

We examined if the isolated islets from 16-week-old ABHD6-

KOmice also exhibit enhancedGSIS and elevatedMAG content,

similar to the in vitro approaches usingWWL70 and RNAi knock-

down. These experiments revealed an increase in GSIS in the

ABHD6-KO islets at 8.3 and 16.7 mM glucose, while the islets

from HZ mice also showed elevated GSIS at 16.7 mM glucose

(Figure 5B). Interestingly, KO islets also showed elevated KCl-

stimulated insulin secretion (Figure 5B).

We measured MAG content ex vivo, in islets from ABHD6-KO,

HZ, and WT mice after incubation at 2.8 and 16.7 mM glucose.

Total and 1-MAG (Figures 5C and 5D) were elevated in the islets



Figure 3. Monoacylglycerol and the ABHD6 Inhibitor WWL70 Enhance Insulin Secretion in b Cells

(A) Dose-dependent effect of different MAGs on GSIS at 5 mM glucose in INS832/13 cells. n = 12. *p < 0.05; ***p < 0.001 versus no MAG addition.

(B) 1-PG (100 mM) enhances GSIS in human islets (n = 4) and rat islets (n = 6). **p < 0.01 versus control.

(C) Exogenous MAG restores GSIS inhibited by orlistat. 1-PG (50 mM) restoration of 25 mM orlistat-inhibited GSIS (at 5 and 10 mM glucose) in INS832/13 cells.

n = 12. ***p < 0.001 compared with control; ###p < 0.001 versus the orlistat group.

(D) Effect of WWL70 (10 mM) and orlistat (25 mM) on GSIS in INS832/13 cells. Insulin secretion was measured at 1 and 10 mM glucose without and with 0.3 mM

palmitate. n = 12. ***p < 0.001 versus control.

(E) Effect of WWL70 (10 mM) on GSIS in CD1 mouse islets and human islets. n = 12. *p < 0.05; **p < 0.01 versus no WWL70 addition. All the values shown are

mean ±SEM.
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Figure 4. Expression Level of ABHD6 but Not MAGL Affects Glucose-Stimulated Insulin Secretion in b Cells

(A–E) ABHD6 overexpression ([A] and [B]) and RNAi knockdown ([C]–[E]) in INS832/13 cells.

(A) ABHD6 expression in cells transfected with pCMV6-ABHD6 (48 hr posttransfection) as compared to cells expressing GFP.

(B) Insulin secretion in control andABHD6overexpressing cells at 2 and 10mMglucosewithout andwith palmitate. n= 9. *p<0.05; ***p <0.001 versus control cells.

(C) Reduced ABHD6 expression by RNAi knockdown for 24 hr. A1 and A2 siRNAs reduce the protein level as compared to the control siRNAs C1 and C2. NT, not

transfected.

(D) Corresponding ABHD6 mRNA levels.

(legend continued on next page)
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from all animal types at high glucose. The increase in 2-MAGwas

moderate and significant only in the KO islets (Figure S4E).

Importantly, there was an inverse effect of ABHD6 ‘‘gene

dosage’’ on total MAG, 1-MAG, and 2-MAG levels at high

glucose (Figures 5C, 5D, and S4E). Thus, genetic deletion of

ABHD6 was associated with enhanced ex vivo GSIS and total

MAG, as well as 1-MAG and 2-MAG in the islets. Similar to the

observations with INS832/13 cells (Figure 2D), maximal changes

in the ABHD6-KO islets were seen in saturated-FA-containing

MAG species (Figures S4F and S4G). Thus, in ABHD6-KO islets,

high glucose induced �4-fold increase in 1-PG and >2-fold in-

crease in 1-SG and these increases were higher than in WT

and HZ islets (Figure S4F). While similar trend was seen in

corresponding 2-MAG levels, the total amounts were lower

than 1-MAG (Figure S4G). Other 1-and 2-MAGs contributed

quantitatively much less to total MAG (data not shown).

We thenassessed the impact ofABHD6deletiononGSIS in vivo

by oral glucose tolerance test (OGTT) in 26-week-old male

ABDH6-KOandHZmiceandWT littermates.Results indicatedun-

altered glucose tolerance in both ABHD6-KO and HZ mice, as

compared to WT mice (Figure 5E). Plasma insulin during OGTT

increasedsignificantly inboth theKOandHZmice (Figure5F; inset

showing area under the curve [AUC]), consistent with the results

from the normal mice administered with ABHD6 inhibitor WWL70

(see below). The increase in GSIS appeared to be ABHD6 gene

dosage dependent, as evident from AUC calculations (Figure 5F

inset).Since therewaselevated insulinemiawithunchangedglyce-

mia in the KO and HZ mice upon glucose load, we tested if the

insulin sensitivity is altered in these mice. Hyperinsulinemic eugly-

cemic clamp revealed unaltered insulin sensitivity in KO and HZ

mice fed chowdiet for 26weeks (Figure 5G), confirming the results

obtained by insulin tolerance test, (Figure S4H). Basal glycemia

and insulinemia were similar in the KO, HZ, and WT mice.

Lack of Effect of WWL70 on GSIS and MAG Hydrolyzing
Activity in ABHD6-KO Islets
ABHD6-KO mouse islet extracts showed �50% reduced MAG

hydrolytic activity that was insensitive to inhibition by WWL70,

unlike in the WT islets (Figure S4I). The residual MAG hydrolysis

activity in the KO-islet extracts could be due to HSL, MAGL, and

other nonspecific hydrolases. ABHD6 inhibition by WWL70

enhanced GSIS in WT islets ex vivo but not in whole-body KO

mouse islets, which show already enhanced GSIS (Figure S4J).

These results reinforce the view that WWL70 is a specific inhib-

itor of ABHD6 and that its effect on GSIS in b cells is exclusively

due to ABHD6 inhibition.

ABHD6 Inhibition Enhances GSIS and Restores Glucose
Tolerance in Diabetic Mice
We examined if the GSIS-enhancing effect of ABHD6 inhibition is

noticeable in vivo in control CD1 mice and in the low-dose strep-
(E) Insulin secretion at 2 and 10 mM glucose in control cells and after RNAi knoc

(F and G) MAGL RNAi knockdown.

(F) MAGL mRNA levels decreased after RNAi knockdown for 48 hr. M-1 and M-2

(G) Insulin secretion in INS832/13 cells at 1 and 10 mM glucose after MAGL RNA

(H and I) MAGL overexpression.

(H) Elevated expression ofMAGL in INScells transfectedwithpCMV6-MAGL (48 hr

(I) Insulin secretion at 2 and 10 mM glucose without and with 10 mM WWL70; n =

Ce
tozotocin (LD-STZ) diabetes mouse model. We chose to employ

the LD-STZ mouse model as this presents with �50% reduced

b cell mass, fed hyperglycemia of approximately 20 mM, slightly

elevated fasting glycemia, and significantly lowered fed insuline-

mia (Hayashi et al., 2006). Thus, in order to study the in vivo

effects of ABHD6 inhibition specifically on insulin secretion, we

felt it important to choose an animal model that is not insulin

resistant and hyperinsulinemic (e.g., db/db, ob/ob, high-fat-fed

mice, etc.) and where b cell mass is not drastically decreased.

Intraperitoneal (i.p.) administration of WWL70 for 3 days

enhanced insulinemia in control mice during OGTT but did not

affect glycemia (Figures 5H and 5I). In LD-STZ diabetic mice

WWL70 restored glucose-responsive insulin release, normalized

basal glycemia, and markedly improved glucose tolerance (Fig-

ures 5J and 5K).

Enhanced GSIS In Vivo and Ex Vivo in b-Cell-Specific
ABHD6 KO Mice
In order to ascertain whether the insulin secretion effects seen in

whole-body ABHD6-KO mice are indeed due to the lack of

ABHD6 in pancreatic b cells per se, we generated b-cell-specific

ABHD6 KO (BKO) mice. Floxed ABHD6 mice on pure C57Bl6N

background were produced from the KO-first mice (whole-

body ABHD6-KO) by crossing with Flpo transgenic mice on

pure C57Bl6N genetic background. Floxed ABHD6 mice were

crossed with tamoxifen-inducible mip-cre transgenic mice

(Wicksteed et al., 2010) that were backcrossed to C57Bl6N for

eight generations to produce mice that carried floxed ABHD6

gene and tamoxifen-inducible mip-cre transgene, which were

used for generating BKO mice. After 2 weeks following five

consecutive tamoxifen injections, ABHD6 expression was abro-

gated only in pancreatic islets (b cells) (Figure 6A) but not in other

tissues (Figures 6B–6D) of the BKO mice. ABHD6 mRNA levels

were unchanged in ventromedial hypothalamus (Figure S5A)

and arcuate nucleus (Figure S5B) regions of hypothalamus, indi-

cating no leakage of cre expression in these regions and thus

there is no central nervous system involvement in the altered

b cell function of BKO mice. Similar to whole-body KO mice,

there were no significant alterations in body weight gain (Fig-

ure S5C) or food intake (Figure S5D) up to 5 weeks post-tamox-

ifen injection. BKO mice did not show any changes in b cell

mass compared to floxed andmip-cre control mice (Figure S5E).

BKO male mice showed slightly improved glucose tolerance

(Figure 6E) and elevated insulinemia (Figure 6F) during OGTT.

Similar to the whole-body KO mice, BKO mouse islets showed

enhanced GSIS ex vivo (Figure 6G).

MAG Binds to the Exocytosis Effector Munc13-1
Among the potential targets for MAG action relevant for insulin

secretion, Munc13-1 seemed plausible, as this protein orches-

trates membrane fusion events in various cell types (Ma et al.,
kdown of ABHD6. **p < 0.01 versus control (C1 and C2) groups; n = 9.

are the siRNAs; Cont, RNAi control.

i knockdown.

posttransfection) as compared toGFP-expressing anduntransfected cells (NT).

9. All the values shown are mean ±SEM.
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Figure 6. Enhanced Glucose-Induced Insu-

lin Secretion by b-Cell-Specific Deletion of

ABHD6 in Mice

(A–D) Expression of ABHD6 protein in different

tissues from b-cell-specific ABHD6-KO (BKO)

mice. Two weeks post-tamoxifen injection to

induce Cre recombinase expression and ABHD6

deletion in b cells, tissues from the mipcre+, WT,

flox/flox, and BKO mice were analyzed for ABHD6

expression by western blot. (A) Pancreatic islets,

(B) skeletal muscle, (C) white adipose (visceral),

and (D) liver. Representative blots from two sepa-

rate experiments.

(E–G) Effect of BKO on glucose tolerance and

glucose-induced insulin secretion in vivo and

ex vivo in islets.

(E) Glycemia during OGTT in mipcre+ (n = 9), flox/

flox (n = 12), and BKO (n = 9) mice. OGTT was

performed after a 6 hr food withdrawal. Inset

depicts AUC. *p < 0.05 versus flox/flox.

(F) Corresponding insulinemia in the OGTT. Inset,

AUC for insulinemia. *p < 0.05 versus flox/flox.

(G) Ex vivo GSIS at 2.8, 8.3, and 16.7 mM glucose

in islets from mipcre+ (n = 7), flox/flox (n = 8), and

BKO mice (n = 8). Insulin secretion is shown as

percentage of total insulin content. *p < 0.05 versus

flox/flox or mipcre+. All the values shown are

mean ±SEM.
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2013), binds DAG, and participates in the exocytotic process in b

cells (Kwan and Gaisano, 2009). However, the C1 domain of

Munc13-1 shows lower affinity for DAG, the proposed physio-

logical ligand (Rhee et al., 2002), than for phorbol myristate ace-

tate (PMA) (Shen et al., 2005). We assessed if MAG is a better

ligand than DAG for Munc13-1 C1 domain. Using three indepen-

dent approaches, we proved it to be the case. (1) Tryptophan

fluorescence quenching of the Munc13-1 C1 domain showed

that 1-PG binds as effectively as PMA, a well-known C1 domain

ligand, and better than dioctanoylglycerol (Figure 7A). Palmitate

did not show any binding. Similar highly efficient binding was

also observed with 1-SG (data not shown). (2) Protein-lipid over-
Figure 5. Enhanced Glucose-Induced Insulin Secretion by Genetic Del

(A) Western blot analysis of different tissues reveals complete loss of ABHD6 prot

mice as compared to the WT mice.

(B–D) Elevated GSIS in ABHD6-KO mouse islets is associated with glucose-dep

(B) Ex vivo GSIS in islets from ABHD6-KO, heterozygote (HZ), and wild-type (WT)

glucose concentrations (n = 6 mice per group); *p < 0.05; **p < 0.01; ***p < 0.001

(C) Total MAG content of islets from ABHD6-KO, HZ, andWTmice. Isolated islets

and islet MAG levels were analyzed (n = 3). *p < 0.05 versus 2.8G in the same ge

(D) Total 1-MAG levels in the islets incubated as in (B) (n = 3). **p < 0.01 versus 2

(E–G) Effect of ABHD6 gene knockout in male mice on glucose-induced insulin s

(E) Glycemia during oral glucose tolerance test (OGTT) in 26-week-old WT, HZ

withdrawal. Inset, area under the curve (AUC).

(F) Corresponding insulinemia; inset, AUC. *p < 0.05 versus WT.

(G) Insulin sensitivity assessment by hyperinsulinemic euglycemic clamp in 26-we

glucose infusion rate was calculated and shown as inset for 90 to 120 min time p

(H–K) Effect of in vivo pharmacological suppression of ABHD6 by WWL70 on g

induced in CD1 mice by a single low-dose of streptozotocin. After 4 weeks, the d

vehicle for 3 days, followed by OGTT (8–10 mice per group).

(H and I) (H) Glycemia and (I) insulinemia in normal mice. Insets depict AUC. *p <

(J and K) (J) Glycemia and (K) insulinemia in STZ diabetic mice. Insets depict

mean ±SEM.

Cel
lay showed that GST-Munc13-C1 fusion protein (but not GST

alone) binds to 1-PG and 1-SG, similar to or better than diocta-

noylglycerol, whereas binding with palmitate, stearate, and TG

was insignificant (Figure 7B). (3) Munc13-1 C1 domain peptide

could bind to the NBD-MAG and quench its fluorescence (emis-

sion l = 540 nm), whereas a similar-sized control peptide

(glucagon-like peptide 1) could not bind NBD-MAG (Figure S6A).

Glucose and MAG Cause Munc13-1 Translocation to
Plasma Membrane
Confocal microscopy (Figure 7C) revealed that in INS832/13

cells expressing Munc13-1-EGFP, high glucose concentration
etion or Pharmacological Suppression of ABHD6 in Mice

ein in homozygous ABHD6-KO mice, a partial loss in heterozygote ABHD6-KO

endent increase in the islet MAG content.

mice. GSIS was measured at basal (2.8G), intermediate (8.3G) and high (16.7G)

versus WT group at the same glucose concentration.

were incubated at 2.8mM (2.8G) and 16.7mM (16.7G) glucose for 1 hr in KRBH,

notype; ##p < 0.01 versus WT islets.

.8G in the same genotype; ##p < 0.01 versus WT islets.

ecretion and insulin sensitivity.

, and KO mice (n = 5–8 per group). OGTT was performed after a 6 hr food

ek-old chow-fed ABHD6-KOmalemice. Glycemia was clamped at 7.2mM, and

eriod of the clamp.

lucose-induced insulin secretion in normal and diabetic mice. Diabetes was

iabetic and control mice were treated daily with WWL70 (i.p., 5 mg/kg BW) or

0.05; **p < 0.01 versus vehicle treated.

AUC. *p < 0.05; **p < 0.01 versus vehicle treated. All the values shown are
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promotes the translocation of Munc13-1-EGFP to plasma mem-

brane, and this translocation is not seen with H567K mutant

Munc13-1-EGFP (mutation in the DAG-binding C1 domain).

PMA caused much higher Munc13-1 translocation, independent

of glucose levels. ABHD6 inhibitor WWL70, which increases

intracellular MAG levels, and exogenous 1-PG caused signifi-

cantly increased translocation of Munc13-1 at 10 mM glucose

and to a lesser extent at 2mMglucose (Figures 7Cand7D). These

effectswere lost withH567KmutantMunc13-1. In a complemen-

tary approach, we noticed that in WT islets, high glucose

increased Munc13-1 translocation to a membrane fraction. In

addition, incubation of whole-body ABHD6-KO mouse islets at

high glucose (which elevates their MAG levels; see Figures 5C

and 5D) led to a greater increasedMunc13-1migration to plasma

membrane in comparison to WT mouse islets and also to KO

islets incubated at lowglucose concentration (FigureS6B). These

results further support the view thatMAGbindswithMunc13-1 at

its C1 domain, in situ, and causes its translocation to plasma

membrane, an important step in insulin granule exocytosis.

MAG Directly Promotes Exocytosis in Single b Cells at
Least in Part via Munc13-1
We examined whether MAG promotes exocytosis by acting on

Munc13-1 by performing cell membrane capacitance (Cm) mea-

surements by patch clamp, using islet b cells from Munc13-1+/+

andMunc13-1+/� mice (Munc13-1�/� mice are not viable). Insu-

lin exocytosis was induced by a train of ten 500 ms depolariza-

tion pulses. Cell Cm changes elicited by the first two pulses

approximate the size of the ready releasable pool (RRP) of

primed and fusion-ready granules, reflecting the first phase insu-

lin secretion. Subsequent pulses estimate the rate of granule re-

filling or mobilization from the reserve pool(s) to the RRP (Gillis

et al., 1996), which correlates with the second phase of insulin

secretion (Rorsman and Renström, 2003). In Munc13-1+/+

b cells, 1-PG increased Cm at every depolarizing pulse (Fig-

ure 7E) and enhanced insulin exocytosis in both the size of

RRP and the rate of granule pool refilling compared with control.

In Munc13-1+/� b cells exocytosis was reduced by �50%, and

MAG stimulation of exocytosis was also decreased proportion-

ally. While 1-PG could significantly enhance insulin exocytosis
Figure 7. Monoacylglycerol Binds toMunc13-1 C1 Domain, FacilitatesM

Exocytosis in Single b Cells

(A) Ligand binding to Munc13-1 C1 domain assessed by tryptophan fluorescenc

peptide (1 mM) incubated with 1 mM of either palmitic acid (PA), 1,2-dioctanoylgly

peak fluorescence emission at 350 nm; n = 3 experiments, each with ten spectra

(B) Protein-lipid overlay assay. 1-PG, PA, 1,2-DOG, triglycerides (TG), 1-SG, and

membranes were incubated with 10 mg/ml of Munc13-1-C1-GST fusion protein

cedures for assessing the bound Munc13-1-C1-GST.

(C) INS832/13 cells were transfected with plasmids expressing either pEGFP-WT

Three days later, the cells were incubated in KRBH at 2 or 10 mM glucose, conta

Then the coverslips were processed and imaged using confocal microscope. Re

(D)Munc13-1 translocation to plasmamembranewas quantified using Image J sof

are expressed as pixel intensity in the plasma membrane as a percentage of who

and ##p < 0.01 versus corresponding 2G control; yp < 0.05 and yyp < 0.01 versu

(E) MAG induction of exocytosis is dependent onMunc13-1. Changes in cell mem

b cells with or without 1-PG (MAG) pretreatment using a train of ten depolarizat

recordings of exocytosis from Munc13-1+/+ and Munc13+/� mice b cells with or

normalized to basal cell membrane capacitance (fF/pF) in Munc13-1+/+ and Mun

three to four mice). *p < 0.05. Panel III: statistical analysis showing the size of

mobilization (refilling) (n = 11–16 cells, from three to four mice). *p < 0.05. All the

Cel
in the RRP in Munc13-1+/� b cells, the rate of refilling was not

significantly stimulated, unlike in the Munc13-1+/+ b cells.

We examined if MAG affects voltage-gated Ca2+ channel ac-

tivity, which plays key role in GSIS (Prentki and Matschinsky,

1987; Rorsman and Renström, 2003). In the b cells from both

Munc13+/+ and Munc13+/� mice, no significant changes in

Ca2+ current amplitudes and current densities were observed

with or without MAG or WWL70 pretreatment (Figure S6C).

Recent studies (Iwasaki et al., 2008; Zygmunt et al., 2013) sug-

gested that MAG activates the transient receptor potential vanil-

loid-1 (TRPV1), which when stimulated acts as a Ca2+ channel.

We examined this possibility by employing a pharmacological

antagonist AMG9810 and TRPV1-KO mice for both in vivo and

ex vivo studies. The results ruled out this possibility (data not

shown).

DISCUSSION

This study provides biochemical, pharmacological, cell biology,

and genetic evidence in support of the hypothesis, depicted in

Figure S6D, proposing that the enigmatic lipolysis-derived mole-

cule mediating the link between glucose metabolism and insulin

granule exocytosis in the b cell is MAG that targets Munc13-1

and that the signaling competent MAG level is controlled by

ABHD6. The overwhelming set of data and complementary ap-

proaches that collectively support this view are summarized as

follows: (1) GSIS is reduced both in vivo and ex-vivo in mice defi-

cient in ATGL (Peyot et al., 2009) and HSL (Fex et al., 2009; Peyot

et al., 2004), the first two enzymes of the lipolysis pathway. (2)

Elevated glucose promotes b cell lipolysis, as shown by a rise

FFA levels inside and released from b cells. (3) GSIS in INS832/

13 cells is associated with a rise in total MAG levels, in particular,

saturated FA containing 1-MAG. (4) Exogenous MAG amplifies

GSIS in INS832/13 cells and islet tissues. (5) GSIS is curtailed

by the panlipase inhibitor orlistat, which suppresses lipolysis

and the glucose-induced rise in MAG. (6) Orlistat-inhibited

GSIS is restored by exogenous MAG. (7) ABHD6 is expressed

at high levels in the b cell and islet tissues, whereas MAGL is

poorly expressed. (8) The ABHD6 inhibitor WWL70 enhances

glucose-induced MAG accumulation and insulin secretion.
unc13-1 Translocation to PlasmaMembrane, and Stimulates Insulin

e quenching. Representative fluorescence emission spectra of Munc13-1 C1

cerol (DOG), phorbol-12-myristate-13-acetate (PMA), or 1-PG or DMSO. Inset:

. **p < 0.001 and ***p < 0.00001.

stearic acid (SA) were spotted on nitrocellulose membrane and, after blocking,

or GST (negative control) and processed as described in Experimental Pro-

Munc13-1 or pEGFP-H567K mutant Munc13-1 and were grown on coverslips.

ining 0.3 mM PMA, 10 mMWWL70, 100 mM 1-PG, or DMSO for 10 min at 37�C.
presentative images are shown.

tware. About six to ten individual cells were imaged per each treatment. Results

le-cell intensity. *p < 0.05 and ***p < 0.001 versus 2G DMSO control; #p < 0.05

s 10G DMSO control. Details in Supplemental Information.

brane capacitance (Cm) weremeasured inMunc13-1+/+ andMunc13-1+/�mice

ion pulses (500 ms in duration) from �70 mV to 0 mV. Panel I: representative

without MAG pretreatment. Panel II: cumulative changes in cell capacitance

c13-1+/� mice b cells with or without MAG pretreatment (n = 11–16 cells, from

the readily releasable pool (RRP) of insulin granules and the rate of granule

values shown are mean ±SEM.
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(9) Overexpression of ABHD6 in the b cell reduces GSIS,

whereas RNAi silencing of the enzyme enhances insulin release.

(10) Islets from whole-body ABHD6-KO mouse show elevated

GSIS ex vivo. (11) MAG hydrolyzing activity of ABHD6-KO islets

is reduced by �50%, and the remaining activity is insensitive to

inhibition by WWL70. (12) The enhanced GSIS seen in ABHD6-

KOmouse islets ex vivo is not further increased by ABHD6 inhib-

itor WWL70. (13) While total and 1-MAG levels increase in islets

from ABHD6-KO, HZ, and WT mice at high glucose concentra-

tion, this increase is inversely proportional to ‘‘ABHD6-gene

dosage.’’ (14) GSIS in vivo is enhanced in whole-body ABHD6-

deficient mice. (15) b-cell-specific deletion of ABHD6 in mice

also led to enhanced GSIS both in vivo and in islets ex vivo,

thus excluding any involvement of central nervous system or

peripheral tissues in the enhanced GSIS. (16) WWL70 enhances

GSIS in vivo in control mice and restores GSIS in LD-STZ dia-

betic mice. (17) MAG binds efficiently to the exocytotic effector

Munc13-1. (18) Addition of either WWL70 or exogenous MAG

increased the glucose-stimulated translocation of Munc13-1 to

plasma membrane in INS832/13 b cells, and this effect is lost

with C1-domain-mutated Munc13-1. (19) Glucose stimulation

of ABHD6-KO mouse islets caused increased migration of

Munc13-1 to plasma membrane. (20) MAG causes exocytosis

in single patch-clamped b cells. (21) MAG-induced exocytosis

is reduced in Munc13-1+/� b cells.

Saturated long-chain 1-MAG (e.g., 1-PG or 1-SG) is likely the

physiologically relevant MAG with regard to metabolic coupling

for GSIS. Thus, glucose stimulation and suppression of ABHD6

either by its inhibition by WWL 70 or its genetic deletion caused

more prominent rises in saturated 1-MAG than 2-MAG species.

In addition, glucose only triggered the release of lipolysis-

derived, saturated long-chain FAs. Furthermore, saturated

long-chain fatty acyl 1-MAGs were better secretagogues than

monounsaturated or polyunsaturated 1-MAG species. In addi-

tion, elevated glucose caused a prominent rise in the incorpora-

tion of labeled glucose into 1-MAG, whereas incorporation into

2-MAG was largely unaltered. Also, the lipolysis inhibitor orlistat

suppressed the impact of glucose on 1-MAG levels but barely

affected the incorporation of glucose into 2-MAG or DAG. These

findings are completely congruent with the fact that lipolysis of

TG by ATGL generates primarily 1,3-DAG (Eichmann et al.,

2012; Lass et al., 2011), which is further hydrolyzed to 1-MAG

by HSL. Interestingly, a recent study documented that ABHD6

has preferential activity for 1-MAG species, and saturated

long-chain 1-MAG species are efficiently hydrolyzed by the

enzyme (Navia-Paldanius et al., 2012). Although ABHD6 was re-

ported in a recent study to hydrolyze lysophosphatidylglycerol

(Thomas et al., 2013), this activity is only about 5% of this

enzyme’s MAG hydrolyzing activity, indicating that ABHD6 is

predominantly a MAG hydrolase.

The results indicate that there is a ‘‘signaling competent pool’’

of 1-MAG, likely close to or associated to the inner side of the

plasma membrane that plays a role in insulin exocytosis.

ABHD6 controls the level of this pool, thereby regulating GSIS,

whereas this pool of 1-MAG is not influenced by MAGL, which

per se is expressed at low levels in b cells. Thus, using pharma-

cological and siRNA agents, we observed that ABHD6 inhibi-

tion, but not MAGL inhibition, alters GSIS. Notably, MAGL is

an amphiphilic enzyme distributed between cytosol and mem-
1004 Cell Metabolism 19, 993–1007, June 3, 2014 ª2014 Elsevier Inc
brane fractions (Severson and Hee-Cheong, 1988), whereas

ABHD6 is exclusively membrane bound (Marrs et al., 2010).

Similar intracellular compartmentalization having an impact on

the signaling functions of eicosanoids (Bozza et al., 2011) and

sphingolipids (Siow and Wattenberg, 2011), because of the

intracellular distribution of the involved enzymes, has been

described.

We ruled out the possibility that endocannabinoid receptors

(Matias et al., 2006) that bind 2-arachidonoylglycerol, but not

saturated MAG, are involved in the MAG-mediated effects on in-

sulin secretion. Thus, a specific antagonist of the CB1 receptor

(AM251) (Lan et al., 1999) and an inverse agonist (AM630) of

the CB2 receptor (Ross et al., 1999) did not alter GSIS. In addi-

tion, the restoration of orlistat-inhibited GSIS by 2-AG was not

affected by AM251. Finally, 2-AG levels even at high glucose

were <1% of the total b cell MAG, whereas the saturated MAG

that rose in the presence of glucose was 100-fold higher, as

compared to 2-arachidonylglycerol and stimulated insulin secre-

tion. Noteworthy, only 2-AG, but not saturated MAG, can bind

CB receptors and act as their ligand (Ben-Shabat et al., 1998).

It was earlier suggested (Li et al., 2012) that MAGL is important

in GSIS regulation in MIN6 cells and islets by regulating 2-AG

levels. However, these authors employed URB602, which has

low affinity for MAGL (Ki �28 mM) and is not selective (Vande-

voorde et al., 2007; Wiskerke et al., 2012). In fact, URB602 at

50 mM caused glucose-independent insulin secretion (at 2 mM

glucose) and reduced GSIS at 20 mM glucose (Li et al., 2012),

a clear indication of this drug’s toxic effects on b cell. In our

studies, we employed 1 mM JZL184 (IC50 25 nM for rat MAGL;

Long et al., 2009) to inhibit MAGL, which does not exert any toxic

effects, and our results rule out the involvement of CB1/2 recep-

tors in GSIS regulation.

Since the components of exocytotic machinery, including

Munc13-1, are needed also for non-fuel-induced insulin secre-

tion (e.g., high KCl) (Roduit et al., 2004), it is anticipated that

elevated levels of MAG can influence KCl-induced secretion

via Munc13-1 activation. Thus, in the islets from ABHD6-KO

mice, the elevated secretion by KCl (at 2.8 mM glucose) could

be due to increased MAG levels even at 2.8 mM glucose in these

islets. However, in INS832/13 cells, ABHD6 inhibition byWWL70

had no effect on KCl-induced secretion (at 1 mM glucose), as

under these conditions, MAG levels did not increase in these

cells.

How is MAG signaling linked to insulin secretion? Munc-13-1,

a vesicle priming protein (Kwan et al., 2006; Sheu et al., 2003),

was proposed to be activated upon DAG binding to its C1

domain (Rhee et al., 2002) and to translocate to plasma mem-

brane and promote insulin granule exocytosis (Kwan et al.,

2006; Sheu et al., 2003). However, NMR studies revealed that

DAG binds with low affinity to Munc13-1 due to an occluding

tryptophan residue in the C1 domain (Shen et al., 2005). We

now demonstrate that the C1 domain of Munc13-1 binds to

MAG more efficiently than to DAG. Hence, the accumulation

of MAG at high glucose likely results in the activation of

Munc13-1 and exocytosis. Inasmuch as high glucose and also

ABHD6 inhibition lead to much higher rise in 1-MAG levels

than in total DAG, and because orlistat, which suppresses

GSIS completely, reduces MAG but not DAG in b cells, MAG

rather than DAG is the more plausible activator of Munc13-1
.
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linked to insulin exocytosis. WT Munc13-1, but not the C1

domain mutant (H567K) Munc13-1, showed glucose-stimulated

translocation to plasma membrane and exogenous MAG or the

ABHD6 inhibitor WWL70 also increased Munc13-1 translocation

to the plasma membrane to the same extent as high glucose,

which strongly implicates MAG as the physiological modulator

of Munc13-1 migration. We further found in patch clamp exper-

iments in WT b cells that 1-PG increases exocytosis from gran-

ules located in both the readily releasable and reserve/refilling

pools that correspond to first- and second-phase GSIS, respec-

tively. Exocytosis from granules derived from the two pools was

reduced in Munc13+/�b cells both in the absence and presence

of MAG, again supporting the view that Munc13-1 is a target of

MAG action.

Overall, the present study identifies MAG (in particular, long-

chain saturated 1-MAG species) as a lipid metabolic coupling

factor linking glucose metabolism in the pancreatic islet b cell

to insulin secretion. MAG appears to target at least in part

Munc13-1, a key exocytotic effector that orchestrates mem-

brane fusion events. The results also show that the MAG signal

for insulin secretion is modulated by the membrane-bound

MAG hydrolase ABHD6. Identifying MAG species other than

the endocannabinoid 2-AG as signaling molecules may prove

to be of broad significance in various cell types and diseases.

In addition, it will be of interest to determine whether ABHD6 in-

hibition may provide a useful approach to develop antidiabetic

agents and insulin secretagogues.

EXPERIMENTAL PROCEDURES

Islet Isolation

Pancreatic islets were isolated from male Wistar rats, C57Bl6, or CD1 mice as

before (Peyot et al., 2009). Human islets (75 to 90% pure) were from Beta-Pro

LLC (Virginia).

Insulin Secretion in Isolated Islets and INS832/13 Cells

Insulin secretion (Hohmeier et al., 2000) was measured in static incubations as

described earlier (Peyot et al., 2009) in the absence or presence of the pharma-

cological agents WWL70, orlistat, and JZL184.

Overexpression and RNAi Knockdown of ABHD6 and MAGL

The pCMV plasmids expressing human ABHD6, MAGL, and GFP were from

Origene. pCMV-ACplasmids coding for either ABHD6,MAGL, or GFP (control)

were introduced into INS832/13 cells using Amaxa Nucleofector (Program

T-27, solution V; Amaxa Inc). After transfection, cells were cultured for 72 hr

in 12-well and 6-well plates for insulin secretion and western blot analysis,

respectively. Silencer select siRNA against ABHD6 and two scrambled siRNA

were from Ambion. For RNAi knockdown of MAGL, two siRNA were used.

siRNA constructs were introduced into INS832/13 cells using RNAiMAX

(Invitrogen) and used 24 hr after transfection for western blotting and insulin

secretion determination.

Effect of ABHD6 Inhibitor in LD-STZ Mouse Diabetes Model

In vivo efficacy of the ABHD6 inhibitor WWL70 was assessed in a LD-STZ type

2 diabetes mouse model with impaired insulin secretion and reduced b cell

mass (Hayashi et al., 2006).

Analysis of MAG Binding to Munc13-1 C1 Domain

Rat Munc13-1 C1 domain (residues 567–617) was cloned as GST fusion pro-

tein (Shen et al., 2005) and was expressed in E. coli, and the C1-peptide was

purified after thrombin cleavage. Synthetic rat Munc13-1-C1 peptide was from

Biomatik. MAG binding to Munc13-C1 domain was assessed by the following:

(1) tryptophan fluorescence quenching; (2) 1-(12-(7-Nitrobenz-2-oxa-1,3-
Cel
diazol-4-yl)amino)dodecanoylglycerol (NBD-MAG) fluorescence quenching,

and (3) protein-lipid overlay.

Assessment of MAG-Induced Munc13-1 Translocation, In Situ, in

INS832/13 Cells

INS832/13 cells were transfected with plasmids expressing either Munc13-1-

EGFP or H567Kmutant Munc13-1-EGFP and plated on coverslips. After 48 hr,

the cells were incubated at 2 and 10 mM glucose, with and without 1 mMPMA,

10 mM WWL70, or 100 mM 1-PG, for 10 min and were processed for confocal

microscopy.

Studies in Munc13-1+/– Mouse Islets

Munc13-1+/� mouse (Augustin et al., 1999; Rhee et al., 2002) islets were iso-

lated as described before (Kwan et al., 2006) and dispersed into single cells

that were plated on glass coverslips and allowed to adhere for 48 hr before

cell capacitance measurements.

ABHD6 KO Mice

Whole-body and BKO mice were generated by employing ‘‘KO-first’’ design

(Skarnes et al., 2011). The mice used were of pure C57/BL6N background

and the ES cells (JM8A3.N1 [Agouti], also derived from C57Bl6N) with

confirmed conditional vector targeting for ABHD6 (HEPD0651_8_C07) were

obtained from European Conditional MouseMutagenesis Program (Germany).

Details are given in Supplemental Experimental Procedures.

Determination of FFA and Monoacylglycerol Species

FFAs accumulated in the rat islets and INS832/13 cells and released into the

medium were extracted, derivatized with phenacylbromide, and quantified

by reverse phase HPLC. Total lipids from rat islets and INS832/13 cells were

extracted, separated on boric acid/silica gel thin-layer chromatography

(TLC) with two solvent systems to allow 1- and 2-MAG separation. The sepa-

rated 1- and 2-MAG spots were scraped from the TLC plates and used to

determine different MAG species, with respect to the attached FA by saponi-

fication and extraction in n-heptane, followed by quantification by reverse-

phase HPLC.

Statistical Analysis

Values are expressed asmean ±SEM. Statistical analysis was performed using

one-way ANOVAwith Dunnett’s post hoc test for multiple comparisons or two-

way ANOVA with Bonferroni’s post hoc test for multiple comparisons using

GraphPad Prism. For electrophysiology experiments, comparisons were by

unpaired two-tailed Student’s t test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and Supplemental Experimental

Procedures and can be found with this article online at http://dx.doi.org/10.

1016/j.cmet.2014.04.003.
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D., Südhof, T.C., Takahashi, M., Rosenmund, C., and Brose, N. (2002). Beta

phorbol ester- and diacylglycerol-induced augmentation of transmitter release

is mediated by Munc13s and not by PKCs. Cell 108, 121–133.

Roduit, R., Nolan, C., Alarcon, C., Moore, P., Barbeau, A., Delghingaro-

Augusto, V., Przybykowski, E., Morin, J., Massé, F., Massie, B., et al. (2004).
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