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Introduction

Let R be a commutative ring with identity. An R-module M is said to be a
multiplication module if every submodule of M is of the form /M, for some ideal
I of R. We shall call a ring R a regular multiplication ring if every regular ideal of
R is a multiplication R-module. (By a regular ideal 7 is meant one which contains
a regular element of R). A multiplication ring is a ring in which every ideal is a
multiplication module. It is well known that multiplication domains are precisely
Dedekind domains [5].

The regularity in our definition has allowed us to generalize the known results
over Dedekind domains to non-domains. In Section 1, we show that a ring R is a
regular multiplication ring if and only if for every regular ideal / of R, R/I is a finite
direct sum of special principal ideal rings.

In Section 2, we show that a ring R is a regular multiplication ring if and only
if every finitely generated torsion R-module is of finite length and a direct sum of
cyclic submodules. We also show that a torsion module over a regular multiplication
ring is a direct sum of its primary parts.

We use the following notation: if R is a ring, then MaxSpec R is the set of all max-
imal ideals of R; if M is an R-module, then Supp(M)={ PeSpecR | Mp#0}.

1. Some properties of regular multiplication rings

We begin by noting that a ring R is a regular multiplication ring if and only if
every regular ideal of R is invertible. Therefore it follows that a ring R is a regular
multiplication ring if and only if ever regular ideal of R is a unique product of
powers of finitely many maximal ideals of R [4, Theorem 17].

Theorem 1. For a ring R the following statements are equivalent:
(1) R is a regular multiplication ring.

(ii) For each regular ideal I, R/I is a finite direct sum of special principal ideal
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rings. (Recall that a principal ideal ring is called special if it has only one prime ideal
and the prime ideal is nilpotent).
(iii) For each regular nonunit r, R/Rr is a principal ideal ring.

Proof. (i) = (ii). Let 7 be a regular ideal of R. Then I=P/Py>... P’", where
Py, P, ..., P, are distinct maximal ideals of R and v, v,, ..., v, are positive integers.
Hence R/I = @,’;1 R/P/. Since for each i=1,2,...,n, P,~U" is a regular ideal of R,
it follows that every ideal of R containing P” is a multiplication R-module. But
then clearly each R/P" is a multiplication ring. Therefore, each R/P" is a special
principal ideal ring [1, Theorem 1].

(ii) = (iii). Follows from the fact that a finite direct sum of principal ideal rings
is a principal ideal ring [7, Theorem 33, p.245].

(iii) = (i). Let I be a regular ideal of R and r a regular element in /. By hypothesis,
R=R/(r?) is a principal ideal ring. Hence I is a principal ideal in R and (F) ¢ T so
there is an ideal J of R with (r) C J such that IJ=(F). But then r2el/J so IJ=
IJ+ =)+ ?=(r). Thus [ is a factor of a regular principal ideal and hence is
invertible. Therefore it follows that R is a regular multiplication ring. [

Corollary. In a regular multiplication ring R, every regular ideal I can be generated
by at most two elements, one of which can be chosen arbitrarily from among the
elements of I which are not zero divisors of R. [

It is clear that every multiplication ring is a regular multiplication ring. But it is
not the case that every regular multiplication ring is a multiplication ring. As a
counterexample take R=K[x? x’]/(x*), where K is a field and x is an indeter-
minate. Clearly, here R is a regular multiplication ring. But R is not a multiplication
ring, because R is a local ring and a local multiplication ring is a principal ideal ring
[1, p.761].

We also note that in a regular multiplication ring every regular prime ideal is
maximal.

2. Modules over regular multiplication rings

Let R be a ring and M an R-module. An element m of M will be called a ‘torsion
element’ if rm =0 for some non-zero divisor r in R. If we denote by 7 (M) the set
of all torsion elements in M, then T (M) is an R-submodule of M, and will be called
the ‘torsion submodule’ of M. If T(M)=M, M will be called a ‘torsion’ R-module.

Theorem 2. Let R be a regular multiplication ring and let M be a ‘torsion’ R-module
(in the above sense). For each maximal ideal P of R, write M¥={xe M | Plx=0,
Jfor some positive integer v}. Then

M= @® M= @ M,
PeSupp(M) P e Supp(M)



Regular multiplication rings 57

Proof. Since in this case Supp(M) € MaxSpec R, we first show that for each max-
imal ideal P of R, M is a submodule of M. But this is straightforward.

We also note that for each P in Supp(M), every non-zero element of M* has its
annihilator contained only in P but not in any other maximal ideal of R. For if
0#xeMPF and Ann(x) C Q for some maximal ideal Q of R, then P’ C Ann(x) C Q,
which implies that P=Q.

Let {P,,P,, ..., P,} be a subset of Supp(M) and let Q be an element of Supp(M)
such that Q¢ {P,,P;,...,P,}. Since every element of MP'+ MP 4. ... 4 MP is
annihilated by a product of powers of Py, P,,...,P,, it follows that M2 N {M" +
MP 4+ ...+ MP}=0. Thus the submodules M? generate their direct sum

P .
@PeSupp(M) M" in M.

In order to show that M=), esuppany M P, we take x to be any non-zero element
of M. Since M is a torsion R-module and R is a regular muitiplication ring, it follows
that Ann(x) =P Py*... P;", for some unique set {P,, P,, ..., P,} of invertible max-
imal ideals of R and for some unique set of positive integers v, v,, ..., v,. But then
we have Rx = R/Ann(x) = @,’;1 R/P/. That is Rx= @;’zl Rx;, where Rx; = R/P/
fori=1,2,...,n. Clearly, for each i=1,2,...,n every element of Rx; is annihilated
by some power of P;. Therefore it follows that Rx; ¢ M for i=1,2,...,n. Hence
RxC @, esupprry M P But x was taken arbitrarily from among the non-zero
elements of M, so it follows that M= @Pesupp(M) MP,

To see that

M= G&® M= @© M,
PeSupp(M) P e Supp(M)
we consider the canonical R-module homomorphism f:M—->M®&,Rp (Pe
Supp(M)). This induces by restriction, an R-module homomorphism fp: M L
M®gRp. Since M is a torsion R-module and tensor product commutes with direct
sum and every element of M whose annihilator not contained in P becomes zero in
M®gRp, we have M@pRp=M"QzRp. That is, fp:M">M"@yRp. We have
Ker fpo={xe M?|tx=0, for some te R—P}=0. (Because for each 0#xeM?”,
Ann(x) C P). Thus fp: M > M"®,Rp is injective.

We now show that f, is surjective. Let y be any non-zero element of MP® rRp.
Then y can be written in the form y =m @ 1/¢, for some element m in M Pand ¢ in
R — P. Since Ann(m) is contained only in P and te€ R — P, it follows that Ann(m) +
Rt=R, which implies that 1=a+ bt, for some ae Ann(n) and beR. Hence
m=am+ btm=btm. Thus

1 1 t
y=m®7=btm®7:bm®;=bm®l.

That is, y =f,(bm). Therefore f, is surjective. Hence the R-homomorphism

f= L fiM= @ Mo © M,

P e Supp(M) P e Supp(M) Pe Supp(M)

is an isomorphism. []
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Before formulating our next statement, we recall a well-known theorem of
G. Kothe, 1.S. Cohen and 1. Kaplansky which states that a ring R is an Artinian
principal ideal ring if and only if every R-module is a direct sum of cyclic sub-
modules [6, Theorem 6.7].

Theorem 3. For a ring R, the following statements are equivalent:

(1) R is a regular multiplication ring.

(it) Every R-module whose annihilator contains a regular element is a direct sum
of cyclic submodules.

Proof. (i) = (ii). Let M be an R-module with Ann(M) containing a regular element.
Then R/Ann(M) is a finite direct sum of special principal ideal rings and so an Arti-
nian principal ideal ring. Hence M as an R/Ann(M)-module is a direct sum of cyclic
submodules. But M as an R-module and as an R/Ann(M)-module is one and the
same. Therefore it follows that M as an R-module is a direct sum of cyclic sub-
modules.

(ii) = (i). Let r be a regular element of R. Then any R/Rr-module is an R-module
whose annihilator contains r, and hence is a direct sum of cyclic R-submodules.
Therefore it follows that any R/Rr-module is a direct sum of cyclic submodules.
Hence by the above remark, R/Rr is an Artinian principal ideal ring. Therefore by
Theorem 1, R is a regular multiplication ring. O

Theorem 4. For a ring R the following statements are equivalent:

(i) R is a regular multiplication ring.

(ii) Every finitely generated torsion R-module is of finite length and is a direct
sum of cyclic submodules.

Proof. (i) = (ii). Let M be a finitely generated torsion R-module. Then Ann(M)
contains a regular element and hence by Theorem 3, M is a direct sum of cyclic sub-
modules. Since R/Ann(M) is an Artinian principal ideal ring and M a finitely
generated R/Ann(M)-module, it follows that M is of finite length (both as an
R/Ann(M)-module and as an R-module).

(ii) = (i). Let r be a regular element of R. Since, by hypothesis, as an R-module
R =R/(r) is of finite length, it follows that R is an Artinian ring and so a direct sum
of local Artinian rings, say R=R;® R, ® --- ® R,,. Since any finitely generated
R-module is a finitely generated torsion R-module, it therefore follows that every
finitely generated R-module is a direct sum of cyclic submodules. But then the same
is true for any finitely generated R;,-module (1=<i=<n) (see [6], pp.164-165).
Therefore each R, is an almost maximal valuation ring [3]. Since each R; is an
Artinian almost maximal valuation ring, it is an Artinian principal ideal ring (see
[6, p.185], where a reference is given to A.I. Uzkov). But then it follows that
R=R/(r)is an Artinian principal ideal ring. Therefore by Theorem 1, R is a regular
multiplication ring. [
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Let M be an R-module and x an element of M. Then x is said to be regular if
Anng(x)=0. If the module M has a regular element, then we call M a regular R-
module.

Let M and N be two R-modules with M a submodule of N. We say that M C N
is distributive if MN(X+ Y)=(MNX)+(MNY) for all submodules X, Y of N.

Theorem 5. Let R be a ring and M a regular R-module. Suppose that every regular
submodule of M is a multiplication R-module. Then
(i) R is a regular multiplication ring.
(i1) Every regular submodule of M is a distributive submodule of M.
(iii) Every finitely generated regular submodule of M is projective of rank one.

Proof. (i) Let xe M be regular, so Rx = R and every regular submodule of Rx is
a multiplication R-module. Hence, since Rx = R, every regular ideal of R is a
multiplication R-module. Therefore R is a regular multiplication ring.

(i) Let X be any regular submodule of M and let P be any maximal ideal of R
such that Xp & Mp. Then there exists an element m in M such that m/1 € Mp and
m/1 ¢ Xp. Hence a fortiori such an m is not in X. So we have X & X+ Rm. Since
X is a regular submodule of M, it follows that X+ Rm is a regular submodule of
M. Therefore X + Rm is a multiplication R-module. Hence X = I (X + Rm), for some
ideal I of R. Now by localizing X=1(X+ Rm) at P, we get Xp=I1pXp+Ip(m/1).
Clearly Ip# Rp (because m/1 ¢ Xp). That is, Ip is contained in the maximal ideal Pp
of Rp. Since X is a regular submodule of M, X is a multiplication R-module.
Hence Xp is a multiplication Rp-module [1, pp. 760-761]. Therefore, X is a cyclic
Rp-module [1, Theorem 1]. Hence by Nakayama’s Lemma, it follows that Xp=
Ip(m/1) and so Xp=1Ip(m/1) C Rp(m/1). Hence by {2, Lemma 2.7], it follows that
Xp C Mpis Rp-distributive, for all Pe MaxSpec R. Therefore X € M is R-distribu-
tive [2, Lemma 2.6].

(iii) Let X be a finitely generated regular submodule of M. Then as in the proof
of (ii) above, Xp is a cyclic Rp-module, for all Pe MaxSpec R. Since X is a cyclic
regular multiplication Rp-module, it follows that Xp = Rp, for all Pe MaxSpecR.
Hence X is a projective R-module of rank one. [J
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