
Journal of Pure and Applied Algebra 59 (1989) 55-59 

North-Holland 

55 

REGULAR MULTIPLICATION RINGS 

V. ERDOGDU 

Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey 

Communicated by M. Barr 

Received 30 December 1987 

Introduction 

Let R be a commutative ring with identity. An R-module A4 is said to be a 

multiplication module if every submodule of A4 is of the form IA4, for some ideal 

I of R. We shall call a ring R a regular multiplication ring if every regular ideal of 

R is a multiplication R-module. (By a regular ideal I is meant one which contains 

a regular element of R). A multiplication ring is a ring in which every ideal is a 

multiplication module. It is well known that multiplication domains are precisely 

Dedekind domains [5]. 

The regularity in our definition has allowed us to generalize the known results 

over Dedekind domains to non-domains. In Section 1, we show that a ring R is a 

regular multiplication ring if and only if for every regular ideal I of R, R/I is a finite 

direct sum of special principal ideal rings. 

In Section 2, we show that a ring R is a regular multiplication ring if and only 

if every finitely generated torsion R-module is of finite length and a direct sum of 

cyclic submodules. We also show that a torsion module over a regular multiplication 

ring is a direct sum of its primary parts. 

We use the following notation: if R is a ring, then MaxSpec R is the set of all max- 

imal ideals of R; if M is an R-module, then Supp(M) = { PE Spec R 1 MP#O}. 

1. Some properties of regular multiplication rings 

We begin by noting that a ring R is a regular multiplication ring if and only if 

every regular ideal of R is invertible. Therefore it follows that a ring R is a regular 

multiplication ring if and only if ever regular ideal of R is a unique product of 

powers of finitely many maximal ideals of R [4, Theorem 171. 

Theorem 1. For a ring R the following statements are equivalent: 
(i) R is a regular multiplication ring. 

(ii) For each regular ideal I, R/I is a finite direct sum of special principal ideal 
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rings. (Recall that a principal ideal ring is called special if it has only one prime ideal 
and the prime ideal is nilpotent). 

(iii) For each regular nonunit r, R/Rr is a principal ideal ring. 

Proof. (i) * (ii). Let I be a regular ideal of R. Then Z= PFlPp . . . P>, where 

p,,p2, . . . . P, are distinct maximal ideals of R and ol, u2, . . . , u, are positive integers. 

Hence R/I = @y=, R/P:. Since for each i = 1,2 , . . . , n, P;” is a regular ideal of R, 
it follows that every ideal of R containing P;“’ is a multiplication R-module. But 

then clearly each R/P: is a multiplication ring. Therefore, each R/P:’ is a special 

principal ideal ring [l, Theorem 11. 

(ii) = (iii). Follows from the fact that a finite direct sum of principal ideal rings 

is a principal ideal ring [7, Theorem 33, p. 2451. 

(iii) * (i). Let Z be a regular ideal of R and r a regular element in I. By hypothesis, 

R = R/(r2) is a principal ideal ring. Hence 7 is a principal ideal in R and (P) G 7 so 

there is an ideal J of R with (r) c .I such that IJ= (P). But then r2EIJ so ZJ= 
IJ+ (r2) = (r) + (r2) = (r). Thus Z is a factor of a regular principal ideal and hence is 

invertible. Therefore it follows that R is a regular multiplication ring. 0 

Corollary. In a regular multiplication ring R, every regular ideal I can be generated 
by at most two elements, one of which can be chosen arbitrarily from among the 
elements of I which are not zero divisors of R. I7 

It is clear that every multiplication ring is a regular multiplication ring. But it is 

not the case that every regular multiplication ring is a multiplication ring. As a 

counterexample take R =K[x2,x3]/(x4), where K is a field and x is an indeter- 

minate. Clearly, here R is a regular multiplication ring. But R is not a multiplication 

ring, because R is a local ring and a local multiplication ring is a principal ideal ring 

[l, p. 7611. 

We also note that in a regular multiplication ring every regular prime ideal is 

maximal. 

2. Modules over regular multiplication rings 

Let R be a ring and Man R-module. An element m of M will be called a ‘torsion 

element’ if rm = 0 for some non-zero divisor r in R. If we denote by T(M) the set 

of all torsion elements in M, then T(M) is an R-submodule of M, and will be called 

the ‘torsion submodule’ of M. If T(M) =M, A4 will be called a ‘torsion’ R-module. 

Theorem 2. Let R be a regular multiplication ring and let A4 be a ‘torsion’ R-module 
(in the above sense). For each maximal ideal P of R, write MP= {XE M 1 P’x= 0, 
for some positive integer v>. Then 

M= @ MP= @ Mp. 
PC SuPPw) PE SUPPW 
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Proof. Since in this case Supp(M) c MaxSpecR, we first show that for each max- 

imal ideal P of R, MP is a submodule of M. But this is straightforward. 

We also note that for each P in Supp(M), every non-zero element of MP has its 

annihilator contained only in P but not in any other maximal ideal of R. For if 

O#xeMP and Ann(x) c Q for some maximal ideal Q of R, then P” c Ann(x) C_ Q, 

which implies that P= Q. 

Let {Pl,P2, . . . . P,,} be a subset of Supp(M) and let Q be an element of Supp(M) 

such that Qe {P,,P,, . . . . P,}. Since every element of MP’ + MS + . . . + MC is 

annihilated by a product of powers of PI, P2, . . . . P,,, it follows that MQ tl {Me + 
Mp2 + *.a +MPn} = 0. Thus the submodules MP generate their direct sum 

0 PESupp(M) bfP in M* 

In order to show that M= @PESUPP~M~ MP, we take x to be any non-zero element 

of M. Since Mis a torsion R-module and R is a regular multiplication ring, it follows 

that Ann(x) = P,“‘Pi . . . P>, for some unique set {PI, Pz, . . . , P,,} of invertible max- 

imal ideals of R and for some unique set of positive integers ui, I+, . . . , u,. But then 

we have Rx 2: R/Ann(x) = @YE, R/P:‘. That is Rx= @y=, Rx,, where Rxi = R/P: 

for i= 1,2, . . . . IZ. Clearly, for each i= 1,2, . . . , n every element of Rx; is annihilated 

by some power of Pi. Therefore it follows that RXi c Mpi for i = 1,2,. . . , n. Hence 

Rxc @ PESUPP~M~ MP. But x was taken arbitrarily from among the non-zero 

elements of M, so it follows that M= @PESUPP~M~ MP. 

To see that 

M= 0 
PE SuPPW) 

MP = pts$p(lM) MP, 

we consider the canonical R-module homomorphism f:M+MO,R, (PE 

Supp(M)). This induces by restriction, an R-module homomorphism fp:MP+ 

M@,R,. Since M is a torsion R-module and tensor product commutes with direct 

sum and every element of M whose annihilator not contained in P becomes zero in 

M@,Rp, we have M@,Rp=MP@RRP. That is, fp:MP+MP@RRP. We have 

Kerfp={xEMP)tx=O, for some tER-P}=O. (Because for each O#XEM~, 

Ann(x) c P). Thus fp : MP + MP $JRRP is injective. 

We now show-that fp is surjective. Let y be any non-zero element of MPORRp. 

Then y can be written in the form y = m @ l/t, for some element m in MP and t in 

R -P. Since Ann(m) is contained only in P and t E R -P, it follows that Ann(m) + 

Rt= R, which implies that 1 = a+ bt, for some a Mann and b E R. Hence 

m=am+btm=btm. Thus 

y=m@f=btm@f=bm@f=bm@l. 

That is, _~=f,(bm). Therefore fp is surjective. Hence the R-homomorphism 

f= c f,:M= @ MP+ @ Mp 
PE SuPPW PE SuppOW PC S~PPW) 

is an isomorphism. 0 
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Before formulating our next statement, we recall a well-known theorem of 

G. K&he, I.S. Cohen and I. Kaplansky which states that a ring R is an Artinian 

principal ideal ring if and only if every R-module is a direct sum of cyclic sub- 

modules [6, Theorem 6.71. 

Theorem 3. For a ring R, the following statements are equivalent: 
(i) R is a regular multiplication ring. 

(ii) Every R-module whose annihilator contains a regular element is a direct sum 
of cyclic submodules. 

Proof. (i) * (ii). Let A4 be an R-module with Ann(M) containing a regular element. 

Then R/Ann(M) is a finite direct sum of special principal ideal rings and so an Arti- 

nian principal ideal ring. Hence M as an R/Ann(M)-module is a direct sum of cyclic 

submodules. But M as an R-module and as an R/Ann(M)-module is one and the 

same. Therefore it follows that A4 as an R-module is a direct sum of cyclic sub- 

modules. 

(ii) * (i). Let r be a regular element of R. Then any R/Rr-module is an R-module 

whose annihilator contains r, and hence is a direct sum of cyclic R-submodules. 

Therefore it follows that any R/Rr-module is a direct sum of cyclic submodules. 

Hence by the above remark, R/Rr is an Artinian principal ideal ring. Therefore by 

Theorem 1, R is a regular multiplication ring. 0 

Theorem 4. For a ring R the following statements are equivalent: 
(i) R is a regular multiplication ring. 

(ii) Every finitely generated torsion R-module is of finite length and is a direct 
sum of cyclic submodules. 

Proof. (i) = (ii). Let M be a finitely generated torsion R-module. Then Ann(M) 

contains a regular element and hence by Theorem 3, M is a direct sum of cyclic sub- 

modules. Since R/Ann(M) is an Artinian principal ideal ring and A4 a finitely 

generated R/Ann(M)-module, it follows that A4 is of finite length (both as an 

R/Ann(M)-module and as an R-module). 

(ii) = (i). Let r be a regular element of R. Since, by hypothesis, as an R-module 

R = R/(r) is of finite length, it follows that R is an Artinian ring and so a direct sum 

of local Artinian rings, say R = R, @R, @ ... @ R,. Since any finitely generated 

R-module is a finitely generated torsion R-module, it therefore follows that every 

finitely generated R-module is a direct sum of cyclic submodules. But then the same 

is true for any finitely generated Rj-module (1 rim) (see [6], pp. 164-165). 

Therefore each Ri is an almost maximal valuation ring [3]. Since each Rj is an 

Artinian almost maximal valuation ring, it is an Artinian principal ideal ring (see 

[6, p. 1851, where a reference is given to A.I. Uzkov). But then it follows that 

R = R/(r) is an Artinian principal ideal ring. Therefore by Theorem 1, R is a regular 

multiplication ring. 0 
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Let A4 be an R-module and x an element of M. Then x is said to be regular if 

Ann,(x) = 0. If the module A4 has a regular element, then we call M a regular R- 
module. 

Let M and N be two R-modules with M a submodule of N. We say that M c N 
is distributive if M (l (X+ Y) = (M nX) + (M fl Y) for all submodules X, Y of N. 

Theorem 5. Let R be a ring and M a regular R-module. Suppose that every regular 
submodule of M is a multiplication R-module. Then 

(i) R is a regular multiplication ring. 
(ii) Every regular submodule of M is a distributive submodule of M. 

(iii) Every finitely generated regular submodule of M is projective of rank one. 

Proof. (i) Let xeM be regular, so Rx = R and every regular submodule of Rx is 

a multiplication R-module. Hence, since Rx 2: R, every regular ideal of R is a 

multiplication R-module. Therefore R is a regular multiplication ring. 

(ii) Let X be any regular submodule of M and let P be any maximal ideal of R 
such that X, 5 Mp. Then there exists an element m in M such that m/l EMU and 

m/l GX,. Hence a fortiori such an m is not in X. So we have XC, X+ Rm. Since 

X is a regular submodule of M, it follows that X+ Rm is a regular submodule of 

M. Therefore X+ Rm is a multiplication R-module. Hence X= Z(X+ Rm), for some 

ideal Z of R. Now by localizing X=Z(X+Rm) at P, we get X,=Z,X,+Z,(m/l). 

Clearly I,, # R, (because m/l $X,). That is, ZP is contained in the maximal ideal Pt, 
of R,. Since X is a regular submodule of M, X is a multiplication R-module. 

Hence X, is a multiplication R,-module [ 1, pp. 760-7611. Therefore, X, is a cyclic 

Rpmodule [l, Theorem 11. Hence by Nakayama’s Lemma, it follows that X,= 

Z,(m/l) and so X,=Z,(m/l) C R,(m/l). Hence by [2, Lemma 2.71, it follows that 

X, c Mp is R,-distributive, for all PE MaxSpec R. Therefore X c M is R-distribu- 

tive [2, Lemma2.61. 

(iii) Let X be a finitely generated regular submodule of M. Then as in the proof 

of (ii) above, X, is a cyclic R,-module, for all PE MaxSpec R. Since X, is a cyclic 

regular multiplication R,module, it follows that X, = R,, for all PE MaxSpec R. 
Hence X is a projective R-module of rank one. 0 
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