REGULAR MULTIPLICATION RINGS

V. ERDOĞDU
Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey
Communicated by M. Barr
Received 30 December 1987

Introduction

Let R be a commutative ring with identity. An R-module M is said to be a multiplication module if every submodule of M is of the form $I M$, for some ideal I of R. We shall call a ring R a regular multiplication ring if every regular ideal of R is a multiplication R-module. (By a regular ideal I is meant one which contains a regular element of R). A multiplication ring is a ring in which every ideal is a multiplication module. It is well known that multiplication domains are precisely Dedekind domains [5].

The regularity in our definition has allowed us to generalize the known results over Dedekind domains to non-domains. In Section 1 , we show that a ring R is a regular multiplication ring if and only if for every regular ideal I of $R, R / I$ is a finite direct sum of special principal ideal rings.

In Section 2, we show that a ring R is a regular multiplication ring if and only if every finitely generated torsion R-module is of finite length and a direct sum of cyclic submodules. We also show that a torsion module over a regular multiplication ring is a direct sum of its primary parts.

We use the following notation: if R is a ring, then $\operatorname{MaxSpec} R$ is the set of all maximal ideals of R; if M is an R-module, then $\operatorname{Supp}(M)=\left\{P \in \operatorname{Spec} R \mid M_{P} \neq 0\right\}$.

1. Some properties of regular multiplication rings

We begin by noting that a ring R is a regular multiplication ring if and only if every regular ideal of R is invertible. Therefore it follows that a ring R is a regular multiplication ring if and only if ever regular ideal of R is a unique product of powers of finitely many maximal ideals of R [4, Theorem 17].

Theorem 1. For a ring R the following statements are equivalent:
(i) R is a regular multiplication ring.
(ii) For each regular ideal $I, R / I$ is a finite direct sum of special principal ideal
rings. (Recall that a principal ideal ring is called special if it has only one prime ideal and the prime ideal is nilpotent).
(iii) For each regular nonunit $r, R / R r$ is a principal ideal ring.

Proof. (i) \Rightarrow (ii). Let I be a regular ideal of R. Then $I=P_{1}^{v_{1}} P_{2}^{\nu_{2}} \ldots P_{n}^{v_{n}}$, where $P_{1}, P_{2}, \ldots, P_{n}$ are distinct maximal ideals of R and $v_{1}, v_{2}, \ldots, v_{n}$ are positive integers. Hence $R / I \simeq \bigoplus_{i=1}^{n} R / P_{i}^{v_{i}}$. Since for each $i=1,2, \ldots, n, P_{i}^{v_{i}}$ is a regular ideal of R, it follows that every ideal of R containing $P_{i}^{v_{i}}$ is a multiplication R-module. But
 principal ideal ring [1, Theorem 1].
(ii) \Rightarrow (iii). Follows from the fact that a finite direct sum of principal ideal rings is a principal ideal ring [7, Theorem 33, p. 245].
(iii) \Rightarrow (i). Let I be a regular ideal of R and r a regular element in I. By hypothesis, $\bar{R}=R /\left(r^{2}\right)$ is a principal ideal ring. Hence \bar{I} is a principal ideal in \bar{R} and $(\bar{r}) \subseteq \bar{I}$ so there is an ideal J of R with $(r) \subseteq J$ such that $\overline{I J}=(\bar{r})$. But then $r^{2} \in I J$ so $I J=$ $I J+\left(r^{2}\right)=(r)+\left(r^{2}\right)=(r)$. Thus I is a factor of a regular principal ideal and hence is invertible. Therefore it follows that R is a regular multiplication ring.

Corollary. In a regular multiplication ring R, every regular ideal I can be generated by at most two elements, one of which can be chosen arbitrarily from among the elements of I which are not zero divisors of R.

It is clear that every multiplication ring is a regular multiplication ring. But it is not the case that every regular multiplication ring is a multiplication ring. As a counterexample take $R=K\left[x^{2}, x^{3}\right] /\left(x^{4}\right)$, where K is a field and x is an indeterminate. Clearly, here R is a regular multiplication ring. But R is not a multiplication ring, because R is a local ring and a local multiplication ring is a principal ideal ring [1, p. 761].

We also note that in a regular multiplication ring every regular prime ideal is maximal.

2. Modules over regular multiplication rings

Let R be a ring and M an R-module. An element m of M will be called a 'torsion element' if $r m-0$ for some non-zero divisor r in R. If we denote by $T(M)$ the set of all torsion elements in M, then $T(M)$ is an R-submodule of M, and will be called the 'torsion submodule' of M. If $T(M)=M, M$ will be called a 'torsion' R-module.

Theorem 2. Let R be a regular multiplication ring and let M be a 'torsion' R-module (in the above sense). For each maximal ideal P of R, write $M^{P}=\left\{x \in M \mid P^{v} x=0\right.$, for some positive integer $v\}$. Then

$$
M=\bigoplus_{P \in \operatorname{Supp}(M)}^{\oplus} M^{P} \simeq \oplus_{P \in \operatorname{Supp}(M)}^{\oplus} M_{P}
$$

Proof. Since in this case $\operatorname{Supp}(M) \subseteq \operatorname{MaxSpec} R$, we first show that for each maximal ideal P of R, M^{P} is a submodule of M. But this is straightforward.
We also note that for each P in $\operatorname{Supp}(M)$, every non-zero element of M^{P} has its annihilator contained only in P but not in any other maximal ideal of R. For if $0 \neq x \in M^{P}$ and $\operatorname{Ann}(x) \subseteq Q$ for some maximal ideal Q of R, then $P^{v} \subseteq \operatorname{Ann}(x) \subseteq Q$, which implies that $P=Q$.

Let $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ be a subset of $\operatorname{Supp}(M)$ and let Q be an element of $\operatorname{Supp}(M)$ such that $Q \notin\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$. Since every element of $M^{P_{1}}+M^{P_{2}}+\cdots+M^{P_{n}}$ is annihilated by a product of powers of $P_{1}, P_{2}, \ldots, P_{n}$, it follows that $M^{Q} \cap\left\{M^{P_{1}}+\right.$ $\left.M^{P_{2}}+\cdots+M^{P_{n}}\right\}=0$. Thus the submodules M^{P} generate their direct sum $\oplus_{P \in \operatorname{Supp}(M)} M^{P}$ in M.

In order to show that $M=\bigoplus_{P \in \operatorname{Supp}(M)} M^{P}$, we take x to be any non-zero element of M. Since M is a torsion R-module and R is a regular multiplication ring, it follows that $\operatorname{Ann}(x)=P_{1}^{\nu_{1}} P_{2}^{\nu_{2}} \ldots P_{n}^{v_{n}}$, for some unique set $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ of invertible maximal ideals of R and for some unique set of positive integers $v_{1}, v_{2}, \ldots, v_{n}$. But then we have $R x \simeq R / \operatorname{Ann}(x) \simeq \bigoplus_{i=1}^{n} R / P_{i}^{v_{i}}$. That is $R x=\bigoplus_{i=1}^{n} R x_{i}$, where $R x_{i} \simeq R / P_{i}^{v_{i}}$ for $i=1,2, \ldots, n$. Clearly, for each $i=1,2, \ldots, n$ every element of $R x_{i}$ is annihilated by some power of P_{i}. Therefore it follows that $R x_{i} \subseteq M^{P i}$ for $i=1,2, \ldots, n$. Hence $R x \subseteq \bigoplus_{P \in \operatorname{Supp}(M)} M^{P}$. But x was taken arbitrarily from among the non-zero elements of M, so it follows that $M=\bigoplus_{P \in \operatorname{Supp}(M)} M^{P}$.

To see that

$$
M=\underset{P \in \operatorname{Supp}(M)}{\oplus} M^{P} \simeq \bigoplus_{P \in \operatorname{Supp}(M)}^{\oplus} M_{P},
$$

we consider the canonical R-module homomorphism $f: M \rightarrow M \otimes_{R} R_{P} \quad(P \in$ $\operatorname{Supp}(M)$). This induces by restriction, an R-module homomorphism $f_{P}: M^{P} \rightarrow$ $M \otimes_{R} R_{P}$. Since M is a torsion R-module and tensor product commutes with direct sum and every element of M whose annihilator not contained in P becomes zero in $M \otimes_{R} R_{P}$, we have $M \otimes_{R} R_{P}=M^{P} \otimes_{R} R_{P}$. That is, $f_{P}: M^{P} \rightarrow M^{P} \otimes_{R} R_{P}$. We have $\operatorname{Ker} f_{P}=\left\{x \in M^{P} \mid t x=0\right.$, for some $\left.t \in R-P\right\}=0$. (Because for each $0 \neq x \in M^{P}$, $\operatorname{Ann}(x) \subseteq P$). Thus $f_{P}: M^{P} \rightarrow M^{P} \otimes_{R} R_{P}$ is injective.

We now show that f_{P} is surjective. Let y be any non-zero element of $M^{P} \otimes_{R} R_{P}$. Then y can be written in the form $y=m \otimes 1 / t$, for some element m in M^{P} and t in $R-P$. Since $\operatorname{Ann}(m)$ is contained only in P and $t \in R-P$, it follows that $\operatorname{Ann}(m)+$ $R t=R$, which implies that $1=a+b t$, for some $a \in \operatorname{Ann}(m)$ and $b \in R$. Hence $m=a m+b t m=b t m$. Thus

$$
y=m \otimes \frac{1}{t}=b t m \otimes \frac{1}{t}=b m \otimes \frac{t}{t}=b m \otimes 1 .
$$

That is, $y=f_{p}(b m)$. Therefore f_{p} is surjective. Hence the R-homomorphism

$$
f=\sum_{P \in \operatorname{Supp}(M)} f_{p}: M=\underset{P \in \operatorname{Supp}(M)}{\oplus} M^{P} \rightarrow \bigoplus_{P \in \operatorname{Supp}(M)} M_{P}
$$

is an isomorphism.

Before formulating our next statement, we recall a well-known theorem of G. Köthe, I.S. Cohen and I. Kaplansky which states that a ring R is an Artinian principal ideal ring if and only if every R-module is a direct sum of cyclic submodules [6, Theorem 6.7].

Theorem 3. For a ring R, the following statements are equivalent:
(i) R is a regular multiplication ring.
(ii) Every R-module whose annihilator contains a regular element is a direct sum of cyclic submodules.

Proof. (i) \Rightarrow (ii). Let M be an R-module with $\operatorname{Ann}(M)$ containing a regular element. Then $R / \operatorname{Ann}(M)$ is a finite direct sum of special principal ideal rings and so an Artinian principal ideal ring. Hence M as an $R / \mathrm{Ann}(M)$-module is a dircet sum of cyclic submodules. But M as an R-module and as an $R / \operatorname{Ann}(M)$-module is one and the same. Therefore it follows that M as an R-module is a direct sum of cyclic submodules.
(ii) \Rightarrow (i). Let r be a regular element of R. Then any $R / R r$-module is an R-module whose annihilator contains r, and hence is a direct sum of cyclic R-submodules. Therefore it follows that any $R / R r$-module is a direct sum of cyclic submodules. Hence by the above remark, $R / R r$ is an Artinian principal ideal ring. Therefore by Theorem $1, R$ is a regular multiplication ring.

Theorem 4. For a ring R the following statements are equivalent:
(i) R is a regular multiplication ring.
(ii) Every finitely generated torsion R-module is of finite length and is a direct sum of cyclic submodules.

Proof. (i) \Rightarrow (ii). Let M be a finitely generated torsion R-module. Then Ann(M) contains a regular element and hence by Theorem 3, M is a direct sum of cyclic submodules. Since $R / \operatorname{Ann}(M)$ is an Artinian principal ideal ring and M a finitely generated $R / \operatorname{Ann}(M)$-module, it follows that M is of finite length (both as an $R / \operatorname{Ann}(M)$-module and as an R-module).
(ii) \Rightarrow (i). Let r be a regular element of R. Since, by hypothesis, as an R-module $\bar{R}=R /(r)$ is of finite length, it follows that \bar{R} is an Artinian ring and so a direct sum of local Artinian rings, say $\bar{R}=\bar{R}_{1} \otimes \bar{R}_{2} \oplus \cdots \oplus \bar{R}_{n}$. Since any finitely generated \bar{R}-module is a finitely generated torsion R-module, it therefore follows that every finitely generated \bar{R}-module is a direct sum of cyclic submodules. But then the same is true for any finitely generated \bar{R}_{i}-module ($1 \leq i \leq n$) (see [6], pp. 164-165). Therefore each \bar{R}_{i} is an almost maximal valuation ring [3]. Since each \bar{R}_{i} is an Artinian almost maximal valuation ring, it is an Artinian principal ideal ring (see [6, p. 185], where a reference is given to A.I. Uzkov). But then it follows that $\bar{R}=R /(r)$ is an Artinian principal ideal ring. Therefore by Theorem $1, R$ is a regular multiplication ring.

Let M be an R-module and x an element of M. Then x is said to be regular if $\operatorname{Ann}_{R}(x)=0$. If the module M has a regular element, then we call M a regular R module.

Let M and N be two R-modules with M a submodule of N. We say that $M \subseteq N$ is distributive if $M \cap(X+Y)=(M \cap X)+(M \cap Y)$ for all submodules X, Y of N.

Theorem 5. Let R be a ring and M a regular R-module. Suppose that every regular submodule of M is a multiplication R-module. Then
(i) R is a regular multiplication ring.
(ii) Every regular submodule of M is a distributive submodule of M.
(iii) Every finitely generated regular submodule of M is projective of rank one.

Proof. (i) Let $x \in M$ be regular, so $R x \simeq R$ and cvery regular submodule of $R x$ is a multiplication R-module. Hence, since $R x \simeq R$, every regular ideal of R is a multiplication R-module. Therefore R is a regular multiplication ring.
(ii) Let X be any regular submodule of M and let P be any maximal ideal of R such that $X_{P} \varsubsetneqq M_{P}$. Then there exists an element m in M such that $m / 1 \in M_{P}$ and $m / 1 \notin X_{P}$. Hence a fortiori such an m is not in X. So we have $X \varsubsetneqq X+R m$. Since X is a regular submodule of M, it follows that $X+R m$ is a regular submodule of M. Therefore $X+R m$ is a multiplication R-module. Hence $X=I(X+R m)$, for some ideal I of R. Now by localizing $X=I(X+R m)$ at P, we get $X_{P}=I_{P} X_{P}+I_{P}(m / 1)$. Clearly $I_{P} \neq R_{P}$ (because $m / 1 \notin X_{P}$). That is, I_{P} is contained in the maximal ideal P_{P} of R_{P}. Since X is a regular submodule of M, X is a multiplication R-module. Hence X_{P} is a multiplication R_{P}-module [1, pp. 760-761]. Therefore, X_{P} is a cyclic R_{P}-module [1, Theorem 1]. Hence by Nakayama's Lemma, it follows that $X_{P}=$ $I_{P}(m / 1)$ and so $X_{P}=I_{P}(m / 1) \subseteq R_{P}(m / 1)$. Hence by [2, Lemma 2.7], it follows that $X_{P} \subseteq M_{P}$ is R_{P}-distributive, for all $P \in \operatorname{MaxSpec} R$. Therefore $X \subseteq M$ is R-distributive [2, I emma 2.6].
(iii) Let X be a finitely generated regular submodule of M. Then as in the proof of (ii) above, X_{P} is a cyclic R_{P}-module, for all $P \in \operatorname{MaxSpec} R$. Since X_{P} is a cyclic regular multiplication R_{P}-module, it follows that $X_{P} \simeq R_{P}$, for all $P \in \operatorname{MaxSpec} R$. Hence X is a projective R-module of rank one.

References

[1] D.D. Anderson, Multiplication ideals, multiplication rings, and the ring $R(X)$, Canad. J. Math. 28 (1976) 760-768.
[2] T.M.K. Davison, Distributive homomorphisms of rings and modules, J. Reine Angew. Math. 271 (1974) 28-34.
[3] D.T. Gill, Almost maximal valuation rings, J. London Math. Soc. 4 (2) (1971) 140-146.
[4] M. Griffin, Prüfer rings with zero divisors, J. Reine Angew. Math. 239/240 (1969) 55-67.
[5] M.D. Larsen and P.J. McCarthy, Multiplicative Theory of Ideals (Academic Press, New York, 1971).
[6] D.W. Sharpe and P. Vámos, Injective modules (Cambridge University Press, Cambridge, 1972).
[7] O. Zariski and P. Samuel, Commutative Algebra, Vol. 1 (Springer, Berlin, 1958).

