
Journal of Complexity 22 (2006) 676–690
www.elsevier.com/locate/jco

Almost optimal solution of initial-value problems by
randomized and quantum algorithms�

Bolesław Kacewicz∗
Department of Applied Mathematics, AGH University of Science and Technology, Al. Mickiewicza 30, paw. A3/A4, III p.,

pok. 301, 30-059 Cracow, Poland

Received 8 November 2005; accepted 16 March 2006
Available online 11 May 2006

Abstract

We establish essentially optimal bounds on the complexity of initial-value problems in the randomized
and quantum settings. For this purpose we define a sequence of new algorithms whose error/cost properties
improve from step to step. These algorithms yield new upper complexity bounds, which differ from known
lower bounds by only an arbitrarily small positive parameter in the exponent, and a logarithmic factor. In
both the randomized and quantum settings, initial-value problems turn out to be essentially as difficult as
scalar integration.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Initial-value problems; Randomized algorithms; Quantum computation; Optimality; Complexity

1. Introduction

The complexity of initial-value problems has been well understood for many years in the
deterministic settings, see [4] for a survey of the worst-case and asymptotic results. Much less is
known about the complexity of these problems if randomized methods or quantum computation
are allowed. Other problems related to initial-value problems, such as summation or integration,
have already been well studied in both randomized and quantum settings. A survey of complexity
results for summation and integration can be found in [3].

Randomized and quantum complexity of initial-value problems was first studied in [5]. This
paper showed that a nontrivial speed-up can be achieved by switching from the worst-case de-
terministic setting to the randomized or quantum computation. Improved complexity bounds, the

� This research was partly supported by AGH Grant no. 10.420.03.
∗ Fax: +48 12 617 3165.

E-mail address: kacewicz@uci.agh.edu.pl.

0885-064X/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jco.2006.03.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82434245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jco
mailto:kacewicz@uci.agh.edu.pl

B. Kacewicz / Journal of Complexity 22 (2006) 676–690 677

best known up to now, were next shown in [6]. In the Hölder class of right-hand side functions
with r continuous bounded partial derivatives, with the rth derivative being a Hölder function with
exponent �, the ε-complexity was shown to be O

(
(1/ε)1/(r+�+1/3)

)
in the randomized setting,

and O
(
(1/ε)1/(r+�+1/2)

)
on a quantum computer (logarithmic factors are here neglected).

Unfortunately, these upper bounds do not match known lower bounds on the ε-complexity.
It can be shown [5] that the ε-complexity is �

(
(1/ε)1/(r+�+1/2)

)
in the randomized case, and

�
(
(1/ε)1/(r+�+1)

)
on a quantum computer. Hence, aside from logarithmic factors, there is a

significant difference between the bounds in the exponent. The gap was essentially filled for a
restricted class of scalar autonomous problems in [6]. For systems of equations, the discrepancy
between upper and lower bounds remained an open problem. These results are briefly recalled in
Section 2.

In this paper, we show almost optimal upper complexity bounds in the randomized and quantum
settings for a general initial-value problem. The main results are contained in Theorems 1 and 2.
We recursively define a sequence A1, A2, . . . , Ak of randomized or quantum algorithms (which
are new for k�3) for systems of initial-value problems. The performance of Ak improves as k
grows, which is a crucial component of the complexity analysis. The error and cost bounds for
Ak are shown in Theorem 1.

Properties ofAk , with k properly chosen, lead to new upper complexity bounds given in Theorem
2. These differ from the lower bounds by only an arbitrarily small positive parameter � in the
exponent, and a logarithmic factor. The ε-complexity turns out to be O

(
(1/ε)1/(r+�+1/2−�)) in the

randomized setting, and O
(
(1/ε)1/(r+�+1−�)) on a quantum computer, up to a logarithmic factor.

Hence, in both the randomized and quantum settings, the complexity of initial-value problems is
essentially established. Roughly speaking, the problem is as difficult as scalar integration [3].

2. Problem definition and known complexity bounds

In this section we define the problem to be solved, and briefly introduce basic notions on
randomized and quantum settings used in the rest of the paper. We also recall, for later comparison,
known results on the complexity of initial-value problems in both settings.

We consider the solution of a system of ordinary differential equations with initial conditions

z′(t) = f (z(t)), t ∈ [a, b], z(a) = �, (1)

where f : Rd → Rd , z : [a, b] → Rd and � ∈ Rd (f (�) �= 0). Nonautonomous systems
z′(t) = f (t, z(t)) with f : Rd+1 → Rd can also be written in the form (1), by adding one scalar
equation[

u′(t)
z′(t)

]
=
[

1
f (u(t), z(t))

]
,

with an additional initial condition u(a) = a.
We shall study the complexity of problem (1) in the randomized and quantum settings. We

assume that the right-hand side function f = [f 1, . . . , f d]T belongs to the Hölder class F r,�

given as follows. For an integer r �0, � ∈ (0, 1], and positive numbers D0, D1, . . . , Dr , H,
we define

F r,� = { f : Rd → Rd | f ∈ Cr(Rd), |�i
f j (y)|�Di, |i|�r,

|�r
f j (y) − �r

f j (z)|�H ‖y − z‖�, y, z ∈ Rd , j = 1, 2, . . . , d }, (2)

678 B. Kacewicz / Journal of Complexity 22 (2006) 676–690

where �i
f j represents any partial derivative of order |i| of the jth component of f. Here, and in

the rest of this paper, ‖ · ‖ denotes the maximum norm in Rd .
Let q = r + � denote the regularity parameter for the class F r,�. We assume that q �1, which

assures that f is always a Lipschitz function.
We now briefly recall basic notions related to the randomized and quantum settings. For a com-

plete discussion, in particular of the quantum setting, the reader is referred to [2].
We wish to compute a bounded function l on [a, b] approximating the solution z. Information

available about the right-hand side f in the construction of l is provided by a subroutine that
computes values of a component of f or one of its partial derivatives. In the randomized setting,
the points at which the values are computed can be selected randomly. On a quantum computer,
by subroutine calls we mean either applications of a quantum query operator for (a component of)
f, or evaluations of components of f or its partial derivatives on a classical computer. A detailed
discussion of a quantum query operation can be found in [2]. A mapping A that computes l based
on the available information is called an algorithm. In both randomized and quantum settings, the
approximating function produced by an algorithm is random.

We now define the error of an algorithm in the two settings. Let (�, �, P) be a probability
space. Let {xi} define the uniform partition of [a, b], so that xi = a + ih, i = 0, 1, . . . , n with
h = (b − a)/n. The approximation l = l(t) to z = z(t) in [a, b] is constructed in the algorithm
A based on random approximations yi = y�

i to z(xi), i = 0, 1, . . . , n, � ∈ �. (We assume that
the mappings � �→ y�

i are random variables for each f ∈ F r,�.) More specifically, l = l� is
given by

l�(t) = �(y�
0 , y�

1 , . . . , y�
n)(t), (3)

for t ∈ [a, b], where � is a certain mapping defining an approximation over [a, b] from discrete
approximations y�

i .
The error of A at f is defined by

e�(A, f) = sup
t∈[a,b]

‖z(t) − l�(t)‖. (4)

We assume that the mapping � �→ e�(A, f) is a random variable for each f ∈ F r,�.
In the randomized setting, the error of A in the class F r,� is given by the maximal dispersion

of e�(A, f), namely,

erand(A, F r,�) = sup
f ∈Fr,�

(Ee�(A, f)2)1/2 , (5)

where E is the expectation. (The maximal expected value of e�(A, f) can be considered as well.
This only changes constants in the results.)

In the quantum setting, the error of A in the class F r,� is given probabilistically by

equant(A, F r,�) = equant(A, F r,�, �) = sup
f ∈Fr,�

inf { �| P{ e�(A, f) > � } �� }, (6)

for a given number �, 0 < � < 1
2 .

The cost of an algorithm A, cost(A), in the randomized or quantum settings is measured by
the maximal number (with respect to f ∈ F r,�) of subroutine calls (with a proper meaning of a
subroutine call in the respective setting) needed to compute an approximation. For a given ε > 0,
the ε-complexity of the problem in the respective setting, comprand(quant)(F r,�, ε), is defined to
be the minimal cost of an algorithm A taken among all A such that erand(quant)(A, F r,�)�ε.

B. Kacewicz / Journal of Complexity 22 (2006) 676–690 679

In the quantum setting, to display the dependence on �, we shall denote the complexity by
compquant(F r,�, ε, �).

We now briefly recall known results on the subject. For scalar autonomous problems (1) (with
d = 1), matching complexity bounds, up to logarithmic factors, were established in [6]. It was
shown, in a slightly restricted class F̂ r,�, and for a problem restricted to computing z(b) only, that

comprand(F̂ r,�, ε) = O

((
1

ε

)1/(q+1/2) (
log

1

ε

)2
)

(7)

and

comprand(F̂ r,�, ε) = �

((
1

ε

)1/(q+1/2)
)

. (8)

In the quantum setting

compquant(F̂ r,�, ε, �) = O

((
1

ε

)1/(q+1) (
log log

1

ε
+ log

1

�

)
log

1

ε

)
(9)

and, for 0 < �� 1
4 ,

compquant(F̂ r,�, ε, �) = �

((
1

ε

)1/(q+1)
)

. (10)

The proof of these results was based on switching to an equivalent scalar nonlinear equation.
Such a method cannot be used for systems of equations. The best known complexity bounds for
a general problem are given in [6]. It has been shown that

comprand(F r,�, ε) = O

((
1

ε

)1/(q+1/3)

log
1

ε

)
(11)

and

compquant(F r,�, ε, �) = O

((
1

ε

)1/(q+1/2) (
log

1

ε
+ log

1

�

))
. (12)

Similarly to the case of scalar equations, lower bounds are given by (8) and (10). Hence, there is
a significant gap in known estimates of the complexity for systems of equations.

In the next part of this paper we show that the existing gap can essentially be filled up.

3. Main results

In this section we present main results of this paper. The first result, Theorem 1, assures the
existence of a class of algorithms for solving problem (1) in the randomized (RAND) and quantum
(QUANT) settings, which possess certain error and cost properties. These properties will allow
us to derive the desired complexity bounds. The algorithms are defined constructively in the next
section. The next result, Theorem 2, is an immediate consequence of Theorem 1. It contains new,
and almost optimal, complexity bounds for problem (1) in the randomized and quantum settings.

In what follows, L denotes the Lipschitz constant for f.

680 B. Kacewicz / Journal of Complexity 22 (2006) 676–690

Theorem 1. For any k ∈ N and s = 1, 2, . . . , k, there exists an algorithm As for solving (1) with
the right-hand side f ∈ F r,� that computes for each n ∈ N and � ∈ (0, 1

2) an approximation ls

to the solution z, and has the following properties.
(i) There exist constants C̄s

1 and Cs
1, depending only on the parameters of the class F r,�, a and

b (and independent of �), such that

sup
t∈[a,b]

‖z(t) − ls(t)‖�

⎧⎨
⎩

C̄s
1n

−�s if L(b − a) is arbitrary
and n�L(b − a)/ ln 2,

Cs
1(b − a)q+1n−�s if L(b − a)� ln 2 and n ∈ N,

(13)

where

�s =
{

q(2s − 1) + 2s−1 − 1 in RAND,

qs + s − 1 in QUANT,
(14)

and sup{Cs
1 : b − a�M} < ∞ for any M > 0.

This holds (for n�5) with probability at least 1 − �.
(ii) There exists a constant Cs

2, depending only on the parameters of the class F r,�, a and b
(and independent of �), such that for n ∈ N the cost of As is bounded by

cost(As)�Cs
2n

�s

(
�k log n + log

1

�

)
, (15)

where

�s =
{

2s − 1 in RAND,

s in QUANT.
(16)

and sup{Cs
2 : b − a�M} < ∞ for any M > 0.

Proof. See Section 5. �

Let us comment on the conditions in Theorem 1 satisfied by the constants Cs
1 and Cs

2. The
algorithm As will be defined by recursive application of As−1, . . . , A1 on intervals of length
going to 0. The properties of Cs

1 and Cs
2 assure that constants appearing in the error and cost

estimates do not grow to infinity as the length of the interval tends to 0.
The error and cost estimates for algorithm Ak in the randomized and quantum versions, with

a suitably chosen parameter k, play the main role in establishing the complexity of problem (1).
The crucial point is the convergence from above, as k → ∞, of the sequence {�k/�k} to the
optimal exponent,

lim
k→∞

�k

�k

=

⎧⎪⎨
⎪⎩

1

q + (1/2)
in RAND,

1

q + 1
in QUANT.

Note that the results for k = 2 agree with those from [6], since �2/�2 equals to 1/(q + 1
3) in

RAND, and 1/(q + 1
2) in QUANT.

The following theorem gives essentially optimal upper complexity bounds for problem (1).

B. Kacewicz / Journal of Complexity 22 (2006) 676–690 681

Theorem 2. For any � ∈ (0, 1), there exist positive constants C1(�), C2(�) and ε0(�) (depending
only on �, the parameters of the class F r,�, a and b) such that for all ε ∈ (0, ε0(�)) and � ∈ (0, 1

2)

the ε-complexity in the randomized and quantum settings satisfies

comprand(F r,�, ε)�C1(�)

(
1

ε

)1/(q+1/2−�)

(17)

and

compquant(F r,�, ε, �)�C2(�)

(
1

ε

)1/(q+1−�)

log
1

�
. (18)

Proof. Define

k =
{ 	log (1/� + 1)
 in RAND,

	2/�
 in QUANT.
(19)

Consider the randomized setting. We pass from the probabilistic error to the error given by (5)
in a usual way, by selecting a suitable �. Let K denote a positive (deterministic) upper bound on
e�(Ak, f), depending only on the parameters of the class F r,�, a and b. (One can see from the
proof of Theorem 1 that such a bound exists.) Then the randomized error (5) of Ak is bounded by

erand(Ak, F
r,�)2 �K2� + (C̄k

1n−�k)2

(for n sufficiently large). Selecting � = 3ε2/(4K2) and n = 	(2C̄k
1/ε)1/�k
, we get that

erand(Ak, F
r,�)�ε. The cost of Ak is then bounded by

cost(Ak) = O

((
1

ε

)�k/�k

log
1

ε

)
,

with the constant in the O-notation depending only on k and the parameters of the class F r,�, a
and b. By the definition of k, we have that

�k

�k

�q + 1

2
− �

2
.

Hence,

cost(Ak)�Ĉ1(�)

(
1

ε

)1/(q+1/2−�/2)

log
1

ε
�C1(�)

(
1

ε

)1/(q+1/2−�)

,

for suitable constants Ĉ1(�), C1(�), and ε sufficiently small. This proves (17).
We handle the quantum setting similarly. We estimate the error equant(Ak, F

r,�, �) using (13)
and (14), select n to assure that equant(Ak, F

r,�, �)�ε, and use the cost bound (15). The choice
(19) of k leads to (18). �

Comparing upper bounds from Theorem 2 with lower bounds given in (8) and (10), we see that
they match up to a small parameter � in the exponent. In the quantum setting this holds up to a
logarithmic factor that depends on �.

682 B. Kacewicz / Journal of Complexity 22 (2006) 676–690

4. Algorithms in the randomized and quantum settings

We define algorithms whose properties are the subject of Theorem 1. The definition is recursive.
In both the randomized and quantum settings, we inductively define a sequence of algorithms
A1, A2, . . . , As, . . . , Ak for solving problem (1). The algorithm Ak , with a properly chosen index
k, will be our final algorithm.

The points {xi} define the uniform partition of [a, b], xi = a + ih, i = 0, 1, . . . , n with
h = (b − a)/n. We shall call n a basic parameter. To display the dependence on the interval
over which the algorithm is applied and on the basic parameter used, we shall use the notation
As = As([a, b], n). An approximation to the solution z computed in As([a, b], n) is denoted by
ls = ls(t), t ∈ [a, b].

We start the induction with s = 1. The algorithm A1([a, b], n) is defined to be Taylor’s
algorithm in [a, b] with step size h. We set y0 = �. For a given yi (an approximation to z(xi)),
we let zi be the solution of the local problem

z′
i (t) = f (zi(t)), t ∈ [xi, xi+1], zi(xi) = yi, (20)

and we define yi+1 = l0
i (xi+1). Here, l0

i (t) is the truncated Taylor’s expansion of zi for t ∈
[xi, xi+1], given by

l0
i (t) =

r+1∑
j=0

(1/j !)z(j)
i (xi)(t − xi)

j .

The approximation to z in A1([a, b], n) is defined by

l1(t) = l0
i (t) for t ∈ [xi, xi+1]. (21)

Suppose that the algorithm As([a, b], n) is defined for any [a, b] and n. We now describe how to
get As+1([a, b], n) from As([a, b], n).

We first inductively define a sequence of approximations {yi} in As+1([a, b], n), where yi ≈
z(xi), i = 0, 1, . . . , n. We set y0 = �. For a given yi , we apply the algorithm As([xi, xi+1], m)

to the problem (20), with a certain basic parameter m to be chosen later on. The approximating
function obtained in this way is denoted by lsi = lsi (t), t ∈ [xi, xi+1].

The crucial point, which we now describe, is how we obtain yi+1 from yi and lsi . We divide the
interval [xi, xi+1] into ml subintervals of equal length, with end points

zi
j = xi + j h̄,

with j = 0, 1, . . . , ml, where h̄ = (xi+1 − xi)/(ml). Here l is another parameter that will
be chosen in the sequel. (The notation l used for the parameter will not be confused with ls =
ls(t) denoting the approximating function, since the latter always appears with a superscript.
The distinction is clear from the context.)

The solution of (20) satisfies the identity

zi(xi+1) = zi(xi) +
ml−1∑
j=0

∫ zi
j+1

zi
j

f (zi(t)) dt.

B. Kacewicz / Journal of Complexity 22 (2006) 676–690 683

For j = 0, 1, . . . , ml − 1 and i = 0, 1, . . . , n − 1, define the polynomial

wij (y) =
r∑

k=0

1

k!f
(k)(lsi (z

i
j))(y − lsi (z

i
j))

k. (22)

Then we can equivalently write

zi(xi+1) = zi(xi) +
ml−1∑
j=0

∫ zi
j+1

zi
j

wij (l
s
i (t)) dt

+h̄q+1ml
1

ml

ml−1∑
j=0

∫ 1

0
gij (u) du

+
ml−1∑
j=0

∫ zi
j+1

zi
j

(
f (zi(t)) − f (lsi (t))

)
dt, (23)

where function gij is defined for u ∈ [0, 1] by

gij (u) = f (lsi (z
i
j + uh̄)) − wij (l

s
i (z

i
j + uh̄))

h̄q
. (24)

(The value lsi (z
i
j+1) is meant here as the limit lim lsi (t) as t → zi

j+1 from the left.)
To get the formula for yi+1, we neglect the last right-hand side term in (23), and we approximate

the penultimate term. We arrive at the formula

yi+1 = yi +
ml−1∑
j=0

∫ zi
j+1

zi
j

wij (l
s
i (t)) dt + h̄q+1ml APi (f). (25)

The vector APi (f) is constructed to approximate the mean of ml integrals

APi (f) ≈ 1

ml

ml−1∑
j=0

∫ 1

0
gij (u) du (26)

as follows.
Approximate the integral of gij by the mid-point rule with N knots uk , i.e.,

∫ 1

0
gij (u) du ≈ 1

N

N−1∑
k=0

gij (uk). (27)

Hence,

1

ml

ml−1∑
j=0

∫ 1

0
gij (u) du ≈ 1

mlN

ml−1∑
j=0

N−1∑
k=0

gij (uk). (28)

The (random) vector APi (f) is computed, in the appropriate setting, by applying the optimal
randomized or quantum algorithm (with repetitions) to approximate each component of the mean

684 B. Kacewicz / Journal of Complexity 22 (2006) 676–690

of mlN vectors in the right-hand side of (28). For a discussion of algorithms for computing the
mean, see [2,3]. The approximation error is required to be bounded by ε1,∥∥∥∥∥∥APi (f) − 1

mlN

ml−1∑
j=0

N−1∑
k=0

gij (uk)

∥∥∥∥∥∥ �ε1, (29)

with probability at least 1 − �1. The parameters N, ε1 and �1 are to be chosen, and will be defined
soon.

An approximation ls+1 to z over [a, b] in the algorithm As+1([a, b], n) is defined by ls+1(t) =
lsi (t) for t ∈ [xi, xi+1), and ls+1(b) = lsn−1(b). This completes the definition of As+1 and, by
induction, of the sequence of algorithms {As([a, b], n)}s �1.

It remains to define the parameters m, l, N, ε1 and �1. They are selected to assure the best
performance of the algorithms, and result from solving a number of auxiliary optimization prob-
lems. We do not present here the rather technical analysis leading to the proper selection. We
give instead the resulting values of the parameters, and prove in the next sections the correctness
of our choice. To accomplish the definition of algorithm As+1 we make the following choice of
parameters:

(m, l, N) =
{

(n2, n2s+1−4, n2s−1) in RAND,

(n, ns−1, ns) in QUANT,
(30)

and we set ε1 = 1/N . The parameter �1 is chosen as a function of �, the basic parameter n and k
to be

�1 =
{

1 − (1 − �)1/n2k−1
in RAND,

1 − (1 − �)1/nk
in QUANT.

(31)

It is useful to illustrate with an example the choice of the basic parameter in the recursive procedure
described above. Consider the randomized case with s = 3. We have that m = n2, i.e., at each step
a new basic parameter is obtained by squaring the current one. The algorithm A3([a, b], n) is thus
defined by n applications of A2([xi, xi+1], n2) for 0� i�n − 1. Computing A2([xi, xi+1], n2)

requires in turn applications of A1 on subintervals of length (xi+1 − xi)/n2 = (b − a)/n3, with
the basic parameter m = (n2)2 = n4. At the final step, the function l3 is given by Taylor’s
approximations (polynomials) on subintervals of length (b − a)/(n3m) = (b − a)/n7. (For an
arbitrary s, intervals in which ls is a polynomial will be established in the next section.)

Let us remark that the algorithms A1 and A2 defined above are the well known Taylor algorithm
and the algorithm analyzed in [6], respectively. For k�3, algorithms Ak are new.

5. Performance analysis

This section is devoted to the proof of Theorem 1. We first show error bounds for the algorithm
As , neglecting all probabilistic considerations related to the bounds. Such issues are considered
in the next subsection, as well as the cost of the algorithm.

5.1. Error bounds

We shall prove (13). To derive error bounds, we first discuss the regularity of the approximation
ls computed in As([a, b], n), and the regularity of the function gij given by (24). Note that the

B. Kacewicz / Journal of Complexity 22 (2006) 676–690 685

function ls is in general not continuous. It is a polynomial on each subinterval [c, p) of a uniform
partition of [a, b] (the last subinterval ending with b is a closed one), with length

(b − a)/n2s−1 in RAND and (b − a)/ns in QUANT. (32)

To prove this, note that the length of each subinterval in which the approximation l1 in A1([a, b], n)

is a polynomial equals to (b−a)/n. Let the length of each subinterval in which ls in As([a, b], n)

is a polynomial be equal to (b − a)/n	s . From the definition, the function lsi is a polynomial on
each subinterval of length

(b − a)/(nm	s) =
{

(b − a)/n1+2	s in RAND,

(b − a)/n1+	s in QUANT.
(33)

Since functions lsi define ls+1, we get the recurrence relation

	s+1 =
{

1 + 2	s in RAND,

1 + 	s in QUANT,
(34)

with 	1 = 1. This gives the desired statement (32).
Function lsi is thus a polynomial on each interval [zi

j , z
i
j+1), see (23), (24) and (25). We use

this property to observe that the following fact concerning gij holds.

Fact 1. There exist positive constants M1 and M2, depending only on the parameters of the class
F r,�, a and b (and independent of i, j, zi

j , yi
j), such that

‖gij (u)‖�M1, u ∈ [0, 1], (35)

‖gij (u1) − gij (u2)‖�M2|u1 − u2|, u1, u2 ∈ [0, 1], (36)

and sup{ max{M1, M2} : b − a�M } < ∞ for any M > 0.

Proof. The proof follows from arguments used in the proof of Lemma on p. 828 in [5]. We replace
h := h̄, xi := zi

j , xi+1 := zi
j+1, l∗i := lsi , y∗

i := lsi (z
i
j) and w∗

i := wij in that Lemma. We use the

fact that function lsi is a polynomial in [zi
j , z

i
j+1) of the form

lsi (t) =
r+1∑
k=0

(1/k!)z(k)
ij (zi

j)(t − zi
j)

k,

where zij satisfies the equation z′
ij (t) = f (zij (t)), t ∈ [zi

j , z
i
j+1), with the initial condition

zij (z
i
j) = c resulting from the recursive definition of the algorithms. �

We are ready to prove (13). We proceed by induction. Let s = 1. The desired bound in this case
is a version of the well-known error estimate for Taylor’s method. The error of Taylor’s expansion
formula satisfies

‖zi(t) − l0
i (t)‖�M̂(t − xi)

q+1,

for t ∈ [xi, xi+1], where M̂ depends only on the parameters of the class F r,�, a, b and is bounded
for bounded b − a. First estimating the error ‖z(xi) − yi‖ in the usual way, and then passing to

686 B. Kacewicz / Journal of Complexity 22 (2006) 676–690

the error over [a, b], we arrive at the bounds

sup
t∈[a,b]

‖z(t) − l1(t)‖�
{

eLh(eL(b−a) − 1)L−1M̂hq + M̂hq+1 if L(b − a) is arbitrary,

5M̂(b − a)hq if L(b − a)� ln 2.

Hence, (13) holds with

C̄1
1 = 2(eL(b−a) − 1)L−1M̂(b − a)q + M̂(b − a)q+1, C1

1 = 5M̂ and �1 = q.

Suppose by induction that (13) holds for ls , for any [a, b] and n. Let ei = z(xi) − yi . By the
triangle inequality,

‖ei+1‖�‖z(xi+1) − zi(xi+1)‖ + ‖zi(xi+1) − yi+1‖. (37)

From the dependence of the solution on initial conditions, we see that the first term is bounded by

‖z(xi+1) − zi(xi+1)‖�eLh‖ei‖. (38)

To estimate the second term, we subtract (25) from (23) to get

zi(xi+1) − yi+1 = h̄q+1ml

⎛
⎝ 1

ml

ml−1∑
j=0

∫ 1

0
gij (u) du − APi (f)

⎞
⎠

+
ml−1∑
j=0

∫ zi
j+1

zi
j

(
f (zi(t)) − f (lsi (t))

)
dt. (39)

From the definition of APi (f), and the properties of gij stated in Fact 1, we write the bound

∥∥∥∥ 1

ml

ml−1∑
j=0

∫ 1

0
gij (u) du − APi (f)

∥∥∥∥�CN−1 + ε1. (40)

Here, the term CN−1 is the estimate of the mid-point rule error, and ε1 comes from the randomized
or quantum approximation of the mean of mlN vectors, see (29). (The last bound holds with
probability at least 1 − �1.) The constant C depends only on the parameters of the class F r,�, a
and b, and is bounded for bounded b − a.

The second right-hand side term in (39) will be estimated from the definition of lsi (t).
Let n�L(b − a)/ ln 2. Then L(xi+1 − xi)� ln 2, so that the second inequality in (13) holds

for As([xi, xi+1], m) (with m = n2 in RAND and m = n in QUANT). We have

‖f (zi(t)) − f (lsi (t))‖�L‖zi(t) − lsi (t)‖�LCs
1(xi+1 − xi)

q+1m−�s . (41)

(The coefficient Cs
1 for As([xi, xi+1], m) depends on xi , xi+1, but, due to the inductive assumption

on Cs
1, it is bounded by a constant depending only on the parameters of the class F r,�, a and b.

We denote the bound by the same symbol Cs
1.)

B. Kacewicz / Journal of Complexity 22 (2006) 676–690 687

Putting together relations (38)–(41), we can use (37) to see that

‖ei+1‖�eLh‖ei‖ + h̄q+1ml
(
CN−1 + ε1

)
+ LCs

1(b − a)q+2n−(q+2)m−�s , (42)

for i = 0, 1, . . . , n − 1, where e0 = 0. Hence,

‖ei‖� eLhn − 1

eLh − 1

(
h̄q+1ml

(
CN−1 + ε1

)
+ LCs

1(b − a)q+2n−(q+2)m−�s

)
, (43)

for i = 0, 1, . . . , n.
We now pass to the error in [a, b]. For t ∈ [xi, xi+1], we have

‖z(t) − ls+1(t)‖ = ‖z(t) − lsi (t)‖�‖z(t) − zi(t)‖ + ‖zi(t) − lsi (t)‖
� eLh‖ei‖ + Cs

1h
q+1m−�s . (44)

We now use (43) in (44). Since eLh −1�Lh, we get for arbitrary L(b−a) and n�L(b−a)/ ln 2
that

sup
t∈[a,b]

‖z(t) − ls+1(t)‖ � 2
(
eL(b−a) − 1

)
L−1(b − a)q(mln)−q(CN−1 + ε1)

+
(

2eL(b−a) − 1
)

Cs
1(b − a)q+1n−(q+1)m−�s . (45)

If the interval [a, b] is small enough that L(b − a)� ln 2, then exp(L(b − a)) − 1�2L(b − a),
and we obtain

sup
t∈[a,b]

‖z(t) − ls+1(t)‖ � 4(b − a)q+1(mln)−q(CN−1 + ε1)

+ (4L(b − a) + 1) Cs
1(b − a)q+1n−(q+1)m−�s . (46)

Bounds (45) and (46) allow us to finish the inductive proof of (13). To close the induction, we
continue with two cases, randomized and quantum, introducing proper parameters m, l, N and ε1
given in (30).

Consider the randomized setting. Introducing the parameters we get

sup
t∈[a,b]

‖z(t) − ls+1(t)‖�

⎧⎨
⎩

C̄s+1
1 n−�s+1 if L(b − a) is arbitrary

and n�L(b − a)/ ln 2,

Cs+1
1 (b − a)q+1n−�s+1 if L(b − a)� ln 2 and n ∈ N,

(47)

where

�s+1 = min{ (2s+1 − 1)q + 2s − 1, q + 1 + 2�s }. (48)

Constants C̄s+1
1 and Cs+1

1 are given by

C̄s+1
1 = (b − a)q

(
2
(
eL(b−a) − 1

)
L−1(C + 1) +

(
2eL(b−a) − 1

)
Cs

1(b − a)
)

(49)

and

Cs+1
1 = 4(Cs

1 + C + 1). (50)

Since �s is given by (14), the same holds due to (48) for �s+1, and the induction is closed in the
randomized setting.

688 B. Kacewicz / Journal of Complexity 22 (2006) 676–690

In the quantum setting, after introducing the parameters from (30), we arrive at the bound (47),
where only the exponent �s+1 differs from that in the randomized setting. It is now given by

�s+1 = min{ (s + 1)q + s , q + 1 + �s }. (51)

Constants C̄s+1
1 and Cs+1

1 remain the same as in the randomized setting, see (49) and (50).
Since �s+1 agrees with (14), the inductive proof of (13) is completed in the quantum setting.

5.2. Probability and cost

In the previous subsection we neglected probability issues related to the bounds obtained. The
cost of computations was also not considered. We now show that (13) holds with probability at
least 1 − �, and we prove the cost bound (15).

We first show that

bound (13) holds with probability at least (1 − �1)
�(n,s), (52)

where �(n, 1) = 0 for all n, and

�(n, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s−1∑
i=1

n2i−1 in RAND,

ns − n

n − 1
in QUANT,

(53)

for s�2 and n�2. Indeed, for s = 1 the error bound for Taylor’s algorithm holds with certainty,
that is, �(n, 1) = 0. For s = 2, (13) holds with probability at least (1 − �1)

n, so that �(n, 2) = n,
which agrees with (53). Suppose that (52) and (53) hold for some s�2. The error estimate for
ls+1 holds true if the error bounds for lsi and bounds (29) are satisfied for i = 0, 1, . . . , n − 1.
This holds with probability at least (1 − �1)

n�(m,s)+n. Hence, we have that

�(n, s + 1) = n�(m, s) + n. (54)

This yields that �(n, s + 1) satisfies (53), which follows after introducing m = n2 in the random-
ized case, and m = n in the quantum case.

Note that for n�5, we have

�(n, s)�
{

n2s−1 in RAND,

ns in QUANT.

This, and the choice of �1 given in (31), assures that

(1 − �1)
�(n,s) �1 − �

for s = 1, 2, . . . , k, as claimed.
We now prove the cost estimate (15) by induction. For s = 1, the cost is bounded by c1(r, d)n

classical evaluations of components of f or its partial derivatives, where c1(r, d) depends only on
r and d. Hence, (15) holds with �1 = 1.

Suppose that (15) is satisfied for As . The costs of computing successive components that define
the approximation ls+1 in As+1 are bounded as follows. The cost of computing lsi for all i is

B. Kacewicz / Journal of Complexity 22 (2006) 676–690 689

bounded by

Cs
2nm�s

(
�k log m + log

1

�

)
,

and the cost of wij for all i, j by

c2(r, d)nml,

where c2(r, d) depends only on r and d. Here, Cs
2 can be chosen to depend only on the parameters

of the class F r,�, a and b, and is bounded for bounded b − a.
It remains to take into account the cost of computing APi (f), i = 0, 1, . . . , n − 1. We shall

use the results on computation of the mean of real numbers, those of Mathé [3] in the randomized
setting, and of Brassard et al. [1] in the quantum setting. Let
 = 2 in RAND, and
 = 1 in
QUANT. To compute APi (f) for i = 0, 1, . . . , n − 1, each satisfying (29), we need at most

Pn min

{
mlN,

(
1

ε1

)
 }
log

1

�1

evaluations of f in RAND, or quantum queries on f in QUANT. The constant P depends only on
the parameters of the class F r,�, a and b, and is bounded for bounded b − a. The logarithmic
factor is related to the number of repetitions needed to increase probability of (29). For the basic
algorithm for computing the mean, (29) holds with probability at least 3

4 , and for our purposes it
must be at least 1 − �1. For a discussion of the role of repetitions and computing the median of a
number of results, see [2].

Putting together these bounds, we get

cost(As+1) � Cs
2nm�s

(
�k log m + log

1

�

)
+ c2(r, d)nml

+Pn min

{
mlN,

(
1

ε1

)
 }
log

1

�1
. (55)

Note that

log
1

�1
= log

1

1 − (1 − �)1/n�k
�c

(
log

1

�
+ �k log n

)
,

where c is an absolute constant.
Finally, we introduce in (55) the parameters m, l, N and ε1 defined by (30).
In the randomized case, we arrive at

cost(As+1)�Cs+1
2 n�s+1

(
�k log n + log

1

�

)
, (56)

where �s+1 = max{ 2�s+1, 2s+1−1 } (which agrees with (16)), and Cs+1
2 = 2Cs

2+c2(r, d)+Pc.
In the quantum case, (56) holds with �s+1 = max{ �s + 1, s + 1 } (which again agrees with

(16)) and Cs+1
2 = Cs

2 + c2(r, d) + Pc.
The inductive proof of (15) is thus completed. This also ends the proof of Theorem 1.

6. Final remarks

We have established, up to arbitrarily small � in the exponent and a logarithmic factor, the
randomized and quantum complexity of initial-value problems. The matching upper bound is

690 B. Kacewicz / Journal of Complexity 22 (2006) 676–690

obtained by defining a sequence of randomized and quantum algorithms for solving the problem.
The main issues here are the following:

• the use of integral identity (23) satisfied by the solution,
• proper application of randomized and quantum algorithms for computing the mean of real

numbers, and
• the recursive definition of the algorithms. To compute the approximation at the final level k,

we pass a number of times through all the proceeding levels.

Let us summarize the results in various settings. Neglecting � and the logarithmic factor, we have
that the complexity is of order (1/ε)1/(q+1) in the worst-case deterministic setting with linear
information [4], and the same holds in the quantum case. In the worst-case deterministic setting
with standard information, it is of order (1/ε)1/q , see [4]. In the randomized setting, we stay
between these results with complexity of order (1/ε)1/(q+1/2).

Acknowledgments

I thank the referees for the suggestions which allowed to improve the exposition.

References

[1] G. Brassard, P. HZyer, M. Mosca, A. Tapp, Quantum amplitude amplification and estimation 〈http://arXiv.org/abs/
quant-ph/0005055〉, 2000.

[2] S. Heinrich, Quantum summation with an application to integration, J. Complexity 18 (2002) 1–50.
[3] S. Heinrich, E. Novak, Optimal summation and integration by deterministic, randomized, and quantum algorithms,

in: K.-T. Fang, F. J. Hickernell, H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2000, Springer,
Berlin, 2002, pp. 50–62, see also 〈http://arXiv.org/abs/quant-ph/0105114〉.

[4] B. Kacewicz, Optimal solution of ordinary differential equations, J. Complexity 3 (1987) 451–465.
[5] B. Kacewicz, Randomized and quantum algorithms yield a speed-up for initial-value problems, J. Complexity 20

(2004) 821–834 see also 〈http://arXiv.org/abs/quant-ph/0311148〉.
[6] B. Kacewicz, Improved bounds on the randomized and quantum complexity of initial-value problems, J. Complexity

21 (2005) 740–756 see also 〈http://arXiv.org/abs/quant-ph/0405018〉.

http://arXiv.org/abs/quant-ph/0005055
http://arXiv.org/abs/quant-ph/0005055
http://arXiv.org/abs/quant-ph/0105114
http://arXiv.org/abs/quant-ph/0311148
http://arXiv.org/abs/quant-ph/0405018

