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Extended Partial Geometries: Dual2-Designs 

D. R. HUGHES 

The study of EpGs (extended partial geometries) is continued from [5); here we consider 
extended dual 2-designs (EDDs), especially one-point and triangular structures. We concentr
ate on three interesting cases: semibiplanes, which are extensions of the duals of trivial 
2-designs (Section 4); extensions of dual projective geometries (Section 7); extensions of dual 
affine geometries (Section 8). We find non-existence theorems, examples, uniqueness theor
ems, and many open questions. 

1. INTRODUCTION 

In [5] the concept of an extended partial geometry (EpG) was introduced, and we 
refer the reader to that paper for basic definitions, terminology, etc. (but we shall 
recall some of the important definitions and results below). In this paper we continue 
the study of EpGs, especially extensions of dual 2-designs. In particular, we investigate 
triangular extensions and one-point extensions, and especially for the designs which are 
duals of the point-line structures of projective and affine geometries. Throughout this 
paper the dual of the point-block structure g is indicated by gT. 

In Sections 2 and 3 we establish some basic and simple results for triangular and 
one-point extensions, respectively. Then in Section 4 we apply this to circle geometries 
and their duals, which lead to semibiplanes. In Section 5 we study extensions of dual 
unitals, and in Section 6 a class of dual 2-designs associated (sometimes) with a 
hyperoval in a projective plane. Finally Sections 7 and 8 are devoted to the duals of 
projective and affine geometries, respectively. (See [7] for the definition of biplane and 
semibiplane. ) 

DEFINITION 1.1 Let g be a structure with two types of elements, called points and 
blocks: 
(a) Two distinct points p and q are collinear if there is a block containing them both. 
(b) If p is a point of g, then the residue gp of g at p is the structure the points of which 
are collinear with p, and the blocks of which are incident with p. 
(c) g is an extension of a family f/i' of structures if g is connected and every residue gp 
is in f/i'. 
(d) g is a one-point extension of f/i' if g is an extension of f/i' and every two points of g 
are collinear. 
(e) g is triangular if whenever three points x, y and z are pairwise collinear, then there 
is a block of g which contains all three. 
(f) If p is a point and y a block of g, then (p, y) is an antiflag if p is not on y; by 
cp(p, y) we mean the number of points of y which are collinear with p. 
(g) If g is a structure such that every two points are on at most one common block, 
every block has s + 1 points, every point is on t + 1 blocks (with s > 0, t > 0), and 
cp(p, y) = a> 0 for every antiftag, then g is a a-partial geometry of order (s, t), or a 
pG«(s, t), or a pG« or a pG. The blocks of a pG are usually called lines. An extension 
of the family of pG«'s is an EpG«, or an EpG. 
(h) An EpG is cp-uniform (or merely uniform) if every cp(p, y) = 0 or cp; it is strongly 
cp-uniform if every cp(p, y) = cp. 
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In [5] it was shown among other things that in an EpG", Y, for any antifiag (p, y) if 
cp(p, y) * 0, then cp(p, y) ~ a + 1, and that Y is triangular iff all cp(p, y) = 0 or a + 1; 
so Y is triangular if it is (a + I)-uniform. Furthermore, if CPo is the minimum non-zero 
value of cp(p, y), then the diameter of the point-graph r(Y) of an EpG",(s, t) is 
bounded by max{2, s + 5 - 2cpo}. Also in [5] will be found: 

THEOREM 1.2. If Y is an EpG",(s, t), and is strongly cp-uniform with cp ~s, then its 
point-graph r is non-trivial strongly regular with parameters: 

v = 1 + (s + 1)[1 + st(s + 2)/ cpa], k = (s + 1)(1 + st/ a), 
A. = s + st(cp -1)/a, Il = cp(1 +st/a). 

Furthermore, the eigenvalues of r are (besides k) s + 1- cp and -(1 + st/ a), and a 
divides st. 

Throughout this paper, note that 'pG' means partial geometry as above. But since we 
also consider projective geometries in this paper, we point out that PG(n, q) means the 
projective geometry of (geometric) dimension n over the field of q elements; similarly, 
AG(n, q) is the affine geometry. We are only interested as a rule in the point-line 
structure of projective and affine geometries, so these notations usually refer to those 
'rank two' structures only. (But in Section 7, in dealing with algebraic varieties, e.g. 
Grassmanians, we use these notations to refer to the entire projective geometry, with 
its objects of various dimensions; this should cause no confusion.) 

2. TRIANGULARITY 

In [5] it is shown that if Y is an EpG"" then every residue Yp has the same order 
(s, t), and so we can refer to Yas an EpG",(s, t). In fact, it is easy to see that even if Y 
is an extension of the family of pGs, then the parameters (s, t) are constant for all 
residues. But an example (due to Pasini) is given in [5] to show that without the 
insistence that a be constant, it is possible to have residues with different values of a. 
But another result in that paper, also due to Pasini, shows that if Y is triangular, then 
a is constant. 

DEFINITION 2.1. Let Y be a pG",(s, t). Then a subset Cfj of the points of Y is called a 
pre-oval if ICfjI ~ a + 1 and every point of Cfj is joined to exactly a other points of Cfj, by 
a distinct lines (so every line of Y meets Cfj in ~2 points). A pre-oval Cfj such that 
I Cfj I = a + 1 is called a superoval. A triangle in Y is a set of three points which do not lie 
on a common line, but such that any two points are collinear. 

(Note that a superoval in a projective plane of order q is thus a set of q + 2 points, 
no three on a line: i.e. a standard hyperoval. A superoval in an affine plane of order q 
is a set of q + 1 points, no three collinear; i.e. an affine oval. But a superoval in a dual 
affine plane of order q-thought of as a projective plane with a point and all its lines 
deleted-is, together with the deleted point, a set of q + 2 points no three collinear; i.e. 
a hyperoval again. So superovals can exist in the dual of a projective plane or of an 
affine plane only if the plane has even order; see for example [6]. In Theorem 8.1 there 
is an important application of this.) 

LEMMA 2.2. Suppose that Y is an EpG",(s, t) and y is a block not on the point p, but 
containing points of Yp. Then the set y n Sp is a pre-oval in Yp, and is a superoval if Y is 
triangular. If Y is triangular, then every triangle of Yp lies in exactly one superoval 
ynyp. 
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PROOF. First suppose that q is a point of Yp, on the set y n Ypo Then p is a point in 
Yq and y is a line of Yq, with p not on y. So there are a lines of Yq through p which 
intersect y, and hence in Yp q is joined to exactly a points of y n Yp, and by a distinct 
lines. Hence y n Yp is a pre-oval in Ypo If Y is triangular, then Iy n Spl = a + 1, so 
y n Y is a superoval in Ypo Finally, any triangle in Yp must, by the triangularity of Y, 
lie in a single block y, and y cannot contain p. (Note that in a generalized quadrangle 
superovals are simply pairs of collinear points.) 0 

COROLLARY 2.3. If Y is a triangular EpGa(s, t), then a(a + 1) divides M, where 

M = st(s + 1)(t + 1)(1 + stl a). 

PROOF. Let N be the number of superovals of the form y n Yp in the pG Ypo We 
count pairs (~, .1), where ~ is such a superoval, and .1 is an ordered triangle in ~. 
For each.1, there is one ~. There are v = (1 +s)(1 +stla) points in Yp , each is joined 
to s(1 + t) points, and given two collinear points in Yp , there are t(a -1) points not on 
their common line but collinear with both. So the number of ordered triangles .1 is 
st(s + 1)(t + 1)(1 +stla)(a-l). 

On the other hand, each superoval ~ contains (a + l)a(a -1) ordered triangles, so 
N(a+l)a(a-l)=st(s+I)(t+l)(I+stla)(a-l). If a>l, we have our result; if 
a = 1, the conclusion is trivial. 0 

This last corollary is rather analogous to the result which says that the number of 
blocks in a one-point extension must be an integer, and has similarly wide-ranging 
consequences, as we see later. 

Suppose that Y is an extended dual 2-design, which we abbreviate to 'EDD'. By this 
we shall mean that every residue is a dual 2-design, although often it suffices for our 
results in this paper to impose the condition that at least one residue has the property; 
that is usually the case, for instance, when Y is triangular, and when Y is a one-point 
extension. Let Yp be the dual of a 2-(v, k, 1), with r = (v -1)/(k -1) lines on a point, 
and b = vrlk lines in all. Then Yp is a pGk(r -1, k -1), with b points and v lines. A 
superoval in Yp corresponds to a set of 2 of k + 1 lines in Y: such that any two meet, 
and any point on one of the lines of 2 is on exactly two lines of 2. If there are 'planes' 
in Y:, then 2 and all its points lie in one plane. Note that Y is triangular if it is 
(k + I)-uniform. Substituting s = r -1, t = k -1, a = k in Corollary 2.3 and simplify
ing, we have: 

COROLLARY 2.4. If Y is a triangular EDD, and Y: is a 2-(v, k, 1) with b blocks, 
then k + 1 divides b(v - k). 

If Corollary 2.4 is applied to the dual (PG(n, q»T of a projective geometry, it will 
imply that for each fixed value of n there are only finitely many possible choices for q. 
But we shall show in Section 7 that a better result can be obtained with a more detailed 
analysis. 

All known triangular EDDs fall into a few classes: they are either semibiplanes (the 
associated 2-designs of which are trivial; see Section 4), extensions of dual affine 
geometries (see Section 8), or extensions of dual projective geometries (see Section 7). 
The existence of dual superovals (indeed of many dual superovals) seems to be a 
powerful restriction on a 2-design, and as pointed out in Theorem (7.1) their existence 
suggests that the 2-design has 'planes'. There are triangular extended generalized 
quadrangles (see [2]), and there are triangular extended nets and dual nets (see [5]); 
these triangular structures are among the 'richest' examples of their classes. 
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3. ONE-POINT EXTENSIONS 

Here we consider some one-point extensions. In this case, if Y is a one-point 
EpGa(s, t), then Y is a 2-design with w = 1 + (1 + s)(l + st/ a) points, m = s + 2 points 
on a block, and A = t + 1 on two points. The number of blocks in Y is given by 
b* = AW(W -l)/m(m -1); that b* is an integer is often a very powerful restriction. A 
one-point EDD is exactly a 'quasi-symmetric 2-design' with intersection numbers 0 and 
2, and much additional information will be found about this case in, for example 
[1,8,11] (and see Theorem 3.4). 

THEOREM 3.1. For any fixed value of k > 2, there are only finitely many values of v 
for which there is a one-point extension of a dual2-(v, k, 1). 

PROOF. If Y is a one-point extension of a duaI2-(v, k, 1), then Y is a 2-design with 
v(v -l)/k(k -1) + points, (v -l)/(k -1) + 1 points on a block, and A = k. So the 
number b * of blocks in Y is 

b* = v[v(v -1) + k(k - l)]/k(v + k - 2). (1) 

Now put v == -k + 2 (mod v + k - 2), in the numerator of (1), to find that 

2(k - If(k - 2) == O(mod v + k - 2). (2) 

Since k > 2, this implies that v ~ (k - 2)(2k2 - 4k + 1). 0 

For small values of k, there are not many candidates for one-point EDDs; some of 
the existing ones are interesting, while others are connected to interesting unsettled 
problems: 

COROLLARY 3.2. Suppose that Y is a one-point EDD with residue Yp isomorphic to 
the dual of a 2-(v, k, 1). We have: 
(i) if k = 3, then Y is the unique 3-(8, 4, 1); 
(ii) if k = 4, then Y is the unique 2-(21, 6, 4) isomorphic to the external restriction of the 
Mathieu design 3-(22, 6, 1); 
(iii) if k = 5, then Y is the unique 3-(22, 6, 1), or is a 2-(100, 12,5) with 375 blocks; 
(iv) if k = 6, then v = 46 or 96 and Y is a 2-(70, 10, 6) or a 2-(305, 20, 6). 

PROOF. We examine the congruence of (2) in the proof of Theorem 3.1 more 
carefully: 
(i) If k = 3, then v + 1 divides 8, so v = 7, hence Y; is the projective plane of order 2, 
and the conclusion is easy. 
(ii) If k = 4, then v + 2 divides 36, and so v = 7, 10, 16 or 34. But v = 7 implies that Y; 
is the biplane 2-(7,4,2), which has no extension; v = 10 and 34 are not possible, since 
the 2-designs for (10,4, 1) and (34,4, 1) do not exist (they would not have an integral 
number of blocks). But v = 16 is possible, and the structure exists as described (see 
Theorem 8.3 for another discussion of this design). 
(iii) If k = 5, then v + 3 divides 96, so v = 9, 13, 21, 29, 45 or 93. Since k(k - 1) = 20 
must divide v(v -1), this implies v = 21 or v = 45. Now v = 21 simply gives us for Y 
the 2-design 2-(22,6,5) isomorphic to the Mathieu design 3-(22,6, 1); v = 45 implies 
that Y; is a 2-(45,5,1), with 99 blocks, and Y will be a 2-(100,12,5) with 375 blocks 
(see the comments at the end). 
(iv) If k = 6, then we proceed as above to find that v + 4 divides 200, so v = 16, 21, 36, 
46, % or 1%. But v = 16 or 21 means that Y; is a 2-design violating the Fisher 
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inequality (see [7]) that b ~ v; v = 36 would imply that Y! is an affine plane of order 6, 
which does not exist. If v = 196, then Y is a 2-(1275,40,6), but such a design cannot 
have an integral number of blocks, so does not exist. This leaves v = 46 or 96, and the 
cases of the Corollary. D 

The structures that arise in Corollary 3.2 are interesting. The 3-designs of cases (i) or 
(iii) have triply transitive groups (respectively AGL(3, 2) and Mzz); the 2-design of 
case (ii) has a doubly transitive group PIL(3, 4). The 2-(100, 12,5) of case (ii) would 
have existed had there been an extended projective plane of order 10, as the set of 
points off a fixed block and the set of blocks not meeting that block. But its existence 
still seems to be unsettled. The 2-(46,6,1) appears to be unsettled as well, and some 
doubt has been cast on its existence; hence the 2-(70, 10,6) might not exist either. And 
this last design, the quasi-symmetric 2-design for (70,10,6), also arises in [1] as a 
'smallest' unsettled case. Some of these EDDs can themselves be extended, more than 
once: 

EXAMPLE 3.3. (i) Let y* be the external restriction of the Mathieu 5-design for 
(24,8,1); so y* is a 4-(23,8,4). Then any residue of y* is an extension of the 
2-(21,6,4) of Corollary 3.2 (ii). 
(ii) Let y* be the Mathieu 5-design for (24,8,1). Then any residue of y* is itself an 
extension of the 3-(22,6,1) of Corollary 3.2 (iii). 

(These two examples have, respectively, M Z3 and MZ4 as automorphism groups, and 
the first casts the Mathieu group M Z3 in yet another 'new' role.) 

In Theorem 3.1 and Corollary 3.2 there seems to be considerable additional 
information not really utilized: that the residue Yp is a dual 2-design. But this simply 
reflects the fact that Y is a quasi-symmetric 2-design and it appears that this 
observation, by itself, contributes little new to classifying EDDs. The techniques of 
Theorem 3.1 can be trivially adapted to prove Theorem 3.4 below, about quasi
symmetric designs; but these are all part of more general results to be found, for 
example, in [8,11]. 

THEOREM 3.4. For fixed values of p and A, with p =1= A, p =1= 1, the family of 
quasi-symmetric 2-designs for (v, k, A), with intersection numbers ° and p, is finite. 

4. CIRCLE GEOMETRIES, THEIR DUALS, AND SEMIBIPLANES 

There is a class of trivial pG's the extensions of which have some interest. A 2-design 
for (n + 2,2, 1) is trivial (as a 2-design), and is a pGz(l, n); it is sometimes called a 
circle geometry. Its dual is a pGz(n, 1) (and conversely). These always have extensions: 

EXAMPLE 4.1. (i) Let T be a pGz(l, n). Then there is an infinite tower of extensions 
of T, being successively the trivial (2 + j)-designs for (n + 2 + j, 2 + j, 1); these extensions 
are unique. 
(ii) Let Y be an EpGz(n, 1). Then Y is a semibiplane with n + 2 points on a block, and 
conversely any semi biplane is such an EpG. 

PROOF. (i) is easy. For (ii) we refer to first principles: in a pGz(n, 1) every two lines 
meet once, so in an extension, if two blocks meet, they meet exactly one more time; 
while every point of a pGz(n, 1) is on 2 lines, so if two points are collinear, then they 
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are on two blocks. But we could also notice that a pG2(1, n) is a geometry for the 
diagram o--S-o, and hence a pG2(n, 1) goes with 0-2--0. Thus an extension of this last 
geometry must be a geometry for o--S-02-o, which is well known to be the diagram 
for semibiplanes. 0 

The case of triangular semibiplanes (i.e. a triangular EpG2(1, n» is different: the 
conditions of Corollary 2.3 are satisfied by every semibiplane. But they are not all 
triangular, since qJ(p, y) = 3 is often violated in semibiplanes (and always in biplanes 
unless the block size is 3). But, in fact, triangular examples exist of every block size: 

EXAMPLE 4.2. (i) Let 00 be a triangular semi biplane with incidence matrix B. Then 
the semibiplane 001 , with incidence matrix 

is triangular (001 is called the double of 00.) 
(ii) There is a triangular semibiplane with v = 2k

-
1 points and k points on a block, for 

every value of k ;;. 3. 

PROOF. That 001 is a semibiplane is standard; see for instance [7]. To prove (i) we 
need to see that if p is a point of 001 , then two points in its residue are collinear in 00) if 
they are collinear in the residue. Now 001 is the union of 00 and ooT, i.e. if x is a point of 
00, then x is a point of 001 and x T is a block of 001> while if y is a block of 00, then y is a 
block of 001 and y T is a point of 001• Incidence is 'natural': that is, x is on x T and is on y 
if x is on yin 00, and so on. We may suppose that p is in 00. If c and d are points in the 
residue of p, then there are three cases: (i) c, dE 00; (ii) c, dE OOT; (iii) c E 00, dE OOT. 
With this much guidance, it is easy to finish the proof, and we omit it. 

For (ii) we start with the triangular biplane which is a 2-design for (4,3,2), and the 
construction of (i) produces our infinite family. 0 

EXAMPLE 4.3. (i) Let V = Vn (2) be the n-dimensional vector space over GF(2), and 
let D be a spanning set of k > n vectors in V such that no sum of 6 vectors in D is the 
zero vector. Then if Y is the structure the points of which are the vectors of V and the 
blocks of which are the point sets D + v as v ranges over V, then Y is a triangular 
semibiplane. The first 'new' example of this sort is for n = 6, k = 8, with 

where {e;} is a basis of V. Then Y has 64 points and block size 8. As n grows, these 
semibiplanes are smaller than those of Example 4.2. 
(ii) The structures of Example 8.2 are triangular semibiplanes, and when n > 3, they 
give examples with a smaller number of points than those obtained from Example 4.2. 
(e.g. if n = 4, this gives k = 16, v = 210

). 

Example 4.3 (i) is based on a suggestion of Peter Wild's; there are other triangular 
semibiplanes yet, constructed by Wild in [12] for instance. A triangular semibiplane 
with block-size k is equivalent to a regular graph r with the property that for every 
vertex p, the neighbourhood-graph 1;, is the complement of a triangular graph T(k). 
Hence we pose the natural problem (see also the comments following Example 6.3): 

PROBLEM 4.4. Find all triangular semibiplanes. 
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5. UNITALS 

The original unitals were the 2-designs of absolute points and non-absolute lines of a 
unitary polarity of a projective plane PG(2, q2), and the name is now given to any 
2-design for (q3 + 1, q + 1, 1), q > 1, examples of which exist in non-Desarguesian 
planes, and even coming from no projective plane at all. Their duals do not appear to 
have very many extensions. Here Corollary 2.4 works fairly well: 

COROLLARY 5.1. If Y is a triangular EDD with a residue which is a dual unital, then 
q is one of {2, 4, 5, 6, 10, 12, 19, 22, 26, 40, 54, 82, 166}. There is no such extension Y 
which is strongly (q + 2)-uniform. 

PROOF. In this case we have b = q2(q2 - q + 1), so Corollary 2.4 asserts that q + 2 
divides q3(q - 1)(q3 + 1). Put q == -2 (mod q + 2) in this last expression, which implies 
that q + 2 divides 168, and we have the first part. 

For the second part apply Theorem 1.2, and compute the multiplicities of the 
eigenvalues: none of the values of q give integral multiplicities. 0 

We have little idea whether any of these extensions exist: it is a consequence of 
Theorem 7.1 below that such an Y does not exist for q = 2. Since unitals themselves 
are known to exist for q a prime power, and a few other values such as q = 6, it might 
be worthwhile to investigate at least the cases q = 4, 5, 6 and 19. The discussion 
preceding Corollary 2.4 implies that the unital contains a dual superoval, i.e. a set 5£ of 
q + 2 lines such that each point on any of these lines is on exactly two of the lines. Such 
substructures might not be easy to find. 

THEOREM 5.2. No dual unital has a one-point extension. 

PROOF. If Y is a one-point extension of a dual unital, then it is a 

2_(q2(q2 - q + 1) + 1, q2 + 1, q + 1), 

and so has b* = (q + 1)(q4 - q3 + q2 + 1)(q2 - q + 1)/(q2 + 1) blocks. In the standard 
way, put q2 == -1 (mod q2 + 1) in the numerator of b*; this gives 2 == ° (mod q2 + 1). 
This is impossible. 0 

6. A CLASS ASSOCIATED WITH HYPEROVALS 

If PP is a projective plane of even order q, with a hyperoval o/J (a set of q + 2 points, 
no three collinear), then the structure of the q2 - 1 points not on o/J and of the 
q(q - 1)/2 lines which do not meet o/J is itself a dual 2-design. Its dual is a 
2-(q(q -1)/2, q/2, 1); however, such designs do not have to come from projective 
planes. We consider them next. 

COROLLARY 6.1. Suppose Y is a triangular EDD with a residue which is the dual of a 
2-(q(q -1)/2, q/2, 1), q > 2. Then q E {4, 6, 10, 22}, If, in addition, Y is strongly 
(q + 2)/2-uniform, then q = 6. 

PROOF. As in Corollary 5.1: here b = q2 -1, so q + 2 must divide q(q2 -l)(q - 2), 
which implies that q + 2 divides 24, so q has one of the given values. 

If Y is strongly uniform as well, then we refer to Theorem 1.2 and compute the 
multiplicities ml> m2 of the eigenvalues PI and P2 (which are, respectively, s + 1- cp = 
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q/2 and -(1 +st/a) = -q + 1) from the equations: 

ml + m2 == v-I = (q + 1)(2q - 3), 
(q/2)ml - (q -1)m2 = -k = -(q + 1)(q -1). 

This gives (3q - 2)ml = 4(q2 - 1)(q - 2); but for q = 10 or 22, 3q - 2 does not divide 
4(q2 - 1)(q - 2). 

If q = 4, then the graph run would be SR with parameters (26,15,8,9), and the 
structure would be in fact a semibiplane with block size 6 (see Example 4.1 (ii». Its 26 
blocks must come from 26 6-cliques in this graph, but no SR graph with these 
parameters has more than 13 such 6-cliques (private communication from Andries 
Brouwer). 0 

There is no projective plane for q = 6, 10 or 22, but the 2-designs may exist, (as 
indeed they do for q = 6) and may have extensions (triangular or not). The cases q = 4 
and 6 are interesting: 

EXAMPLE 6.2. For q = 6, the dual of the 2-(15,3,1) isomorphic to the projective 
geometry PG(3, q) has: 
(i) a strongly 4-uniform extension with 64 points, given in Example 7.3 (i) with n = 3 
(or also in 7.3 (iii)(a»; and 
(ii) a triangular but not strongly uniform extension given in Example 7.3 (iii)(b), with 
72 points. 

EXAMPLE 6.3. For q = 4, the semibiplane of Example 4.2 (ii) with block size 6 is a 
triangular extension of a dual 2-(6,2,1), with 32 points. 

A triangular semibiplane with block size 6 has at least 26 points (and at most 32), 
and has 26 points if it is strongly uniform; as pointed out in the proof of Corollary 6.1 
this structure does not exist. It can be shown that there is no triangular semibiplane of 
block size 6 with 27 or 28 points, and it seems plausible that the example with 32 points 
is unique. For k = 3, 4, 5 the semibiplanes with 4, 8, 16 points, respectively, given by 
Example 4.2 can be shown to be the only triangular examples (see Problem 4.4). 

Now we consider the one-point extensions of our class of dual 2-designs: 

COROLLARY 6.4. If Y is a one-point EDD, one of the residues Yp of which is 
isomorphic to the dual of a 2-(q(q -1)/2, q/2, 1), then q = 4 and Y is a biplane 
2-(16,6,2) (and conversely), or q = 10 and Y is a 2-design for (100, 12,5). 

PROOF. A 2-(q(q -1)/2, q/2, 1) has q2 -1 blocks and q + 1 blocks on a point. So 
Y is a 2_(q2, q + 2, q /2), and its number of blocks is given by q3(q - 1)/2(q + 2). As 
usual, we put q == -2 (mod q + 2) in the numerator to find that q = 4, 6, 10, or 22. But 
q = 6 or 22 does not give an integral number of blocks for Y. 

If q = 4, then Y is a 2-(16,6,2), i.e. one of the three biplanes with 16 points. Any 
one of these biplanes is an extension of a dual 2-(6,2,1) (see also Example 4.1). 
Similarly, if q = 10, then Y is a 2-(100,12,5); we have met this design before, in 
Corollary 3.2(iii), and as expressed in the proof there, the design might well not exist. 

o 

7. PROJECTIVE GEOMETRIES 

In this section we consider one of the most interesting kinds of EDDs: extensions of 
dual projective geometries. If any EDD is triangular, then Y!, the dual of a residue, 
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contains a dual superoval (see the discussion following Corollary 2.3); that is, a set of 
k + 1 lines such that any two meet, and any point on one of the lines is on exactly two. 
This is suggestively close to Pasch's axiom; if the 2-design whose dual is extended has 
block size 3, it is exactly Pasch's axiom: 

THEOREM 7.1. If Y is a triangular EDD and Y! is a 2-(v, 3, 1), then Y! is the 
point-line structure of PG(n, 2) for some n. 

PROOF. Y! is a structure of points and lines in which any two points are collinear 
and in which Pasch's axiom holds: for if a, band c are a triangle of points in Y!, then 
on any of the three lines x, y and z joining them two at a time there is a unique third 
point. Since the three lines x, y and z correspond to a triangle in Yp , there is a fourth 
point in Yp which forms a superoval with x, y and z. But this fourth point in Yp 
corresponds to a fourth line in Y! which contains the third point on each of the three 
lines x, y and z. This is Pasch's axiom and hence (e.g. see [3, 10]) Y! is a projective 
geometry with three points on every line, and so is a PG(n, 2). 0 

THEOREM 7.2. If Y is a triangular EDD with Yp isomorphic to (PG(n, q»T, then 
q = 2 or 4. 

PROOF. Every triangle of points in Yp is in a superoval y n Yp of Yp: this implies 
that every triangle of PG(n, q) is in a dual superoval of PG(n, q). Superovals in Yp 
contain k + 1 = q + 2 lines. Any dual superoval lies completely in a plane PG(2 q) of 
PG(n, q) (and so it is a dual hyperoval of that plane). We shall count pairs ('/Ie, ..1), 
where 'JeT = Y n Yp as above, and ..1 is a triangle in 'Je, all lying in one fixed plane of 
PG(n, q). Suppose that there are T such dual superovals in the plane; each dual 
superoval contains (q + 2)(q + l)q triangles, and each triangle lies in one dual 
superoval. The number of triangles in a plane PG(2, q) is (q2 + q + 1)(q2 + q)q2. So: 

T(q + 2)(q + l)q = (q2 + q + 1)(q2 + q)q2 

and thus q + 2 divides q2(q2 + q + 1); this immediately implies that q + 2 divides 12, so 
q = 2, 4 or 10. There is no projective plane of order 10, so q = 2 or 4. 0 

By an 'affine Grassmanian' construction, we can find triangular EDDs the residues of 
which are dual to a PG(n, 2), for every n > 2. (See [4,9] for more about Grassmanian 
varieties. ) 

EXAMPLE 7.3. Let 'Y = 'VN (2) be the Grassmanian variety over GF(2) of embedding 
dimension N = n(n + 1)/2 - 1 (i.e. 'V lies naturally in PG(N, 2», in which the 
point-line structure of PG(n, 2) is 'dually' embedded, i.e. with points of PG(n, 2) 
corresponding to the 'special' subspaces PG(n - 1, 2) of 'V and lines of PG(n, 2) 
corresponding to points of "If (see [4,9]). 

(i) Let 'Je be a hyperplane in PG(N + 1, 2), with 'V embedded in 'Je. Let Y be the 
structure the points of which are the points of AG(N + 1, 2) = PG(N + 1, 2)\'/Ie, and 
the blocks of which are the subspaces PG(n, 2) which meet 'Je in one of the special 
subspaces PG(n -1, 2) of 'V. Then Y is a triangular EDD, all of whose residues are 
dual to PG(n, 2). 

(ii) In PG(N + 2, 2), let 'W be an algebraic variety such that some hyperplane 'Je 
meets 'W in an algebraic variety 'W n 'Je (of '/Ie) with the property: the set of points of 
'W n 'Je which are collinear with a fixed point of 'W\'Je, by lines that lie in 'Wand meet 
'Je in one point only, is the point-set of a 'Y. Let Y be the structure the points of which 
are the points of 'W\'Je and the blocks of which are the subspaces PG(n, 2) in 'W which 
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meet 'J{ in the special subspaces of some 'VN (2). Then Y is a triangular EDD all of 
whose residues are dual to PG(n, 2). 

(iii) If n = 3, then N = 5, and 'Ys is the quadric Qt(2) (minus some of its isotropic 
planes, since we only want the 'special' subplanes of one family in our construction, but 
this need not concern us here). Here we can carry out the construction of (ii) above in 
(at least) two ways. In each we let 'W be the quadric Q.j(2), embedded in PG(7, 2), 
and 'J{ is a hyperplane of PG(7, 2): 

(a) Let 'J{ be a tangent hyperplane to 'W; so 'W n 'J{ is a cone over a Q;(2), and the 
structure Y will be an EDD with Y; isomorphic to PG(3, 2). Now Q.j(2) has 135 
points, and the cone over Qt(2) contains 71 points, so Y has 64 points. This structure 
is isomorphic to the one constructed in (i) with n = 3. Its graph is SR with parameters 
(64,35,18,20). 

(b) Let 'J{ be a secant hyperplane to 'W; so 'W n 'J{ is a Q6(2), and the structure Y 
will be an EDD with Y; isomorphic to PG(3, 2). Since Q6(2) has 63 points, Y will 
have 72 points. It is triangular, not strongly uniform, but distance regular. Its 
point-graph r(Y) has 'picture': 

(1) (3'5) (3'5) (1 ) 

It can be shown that if Y is a triangular extension of a dual PG(n,2), and also 
strongly uniform, then n = 3 or 5 (the proof is like that of Theorem 7.4, but we omit 
it). The example above with n = 3 and 64 points is strongly uniform, but whether there 
is a strongly 4-uniform extension of a dual PG(5, 2) is not known: it would have 4992 
points, and hence is not constructed as in Example 7.3(i), for the example there with 
n =5 has 215 points. 

We know of no example of a triangular EDD which extends a dual PG(n, 4), except 
for the case n = 2, where Y is the Mathieu 3-design for (22,6,1). Such an extension 
would be 6-uniform; it cannot be strongly uniform as well: 

THEOREM 7.4. If n >2, then (PG(n, 4»T never has a strongly 6-uniform extension. 

PROOF. If such an extension Y exists, then its point-graph r is strongly regular. 
Using Theorem 1.2, we first see that the condition' a divides st' implies that n is odd. 
But the more important results come from computing the multiplicities of the 
eigenvalues. The eigenvalues are PI = 42(4n- 3 + 4n- 4 + ... + 4 + 1) - 1, and P2 = -
[1 + 42(4n-2 + 4n- 3 + ... + 4 + 1)], and the equations for the multiplicities ml and m 2 

are: 

ml + m2 = v-I, Plm) + P2m2 = -k. 

Multiplying the first of these by - P2 and adding to the second, we find an equation of 
the form AmI = B, and if n ~ 3, then A == 0 (mod 32) while B == 16 (mod 32), which is a 
contradiction (we leave the straightforward but messy details to the reader). 0 

PROBLEM 7.5. There remain some problems, and possible conjectures: 
(1) Is it possible to find algebraic varieties 'Wof embedding dimension N + 2 with the 
structure of Example 7.3(ii) , as in the case N = 5? (By analogy with that situation, and 
with quadrics in general, it seems reasonable to expect a couple of ways to do this , for 
each N; it also seems reasonable to expect one of them to be isomorphic with the 
example constructed in 7.3(i).) If 'W can be found , what are the graphs r(Y) which 
result? 
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(2) Is it reasonable to conjecture that all triangular extensions of (PG(n, 2»T, n > 2, 
are constructed as in Example 7.3? 
(3) Is it reasonable to conjecture that (PG(n, 4»T never has a triangular extension if 
n>2? 

Now we consider one-point extensions of (PG(n,2»T. This situation is not as 
interesting as the triangular case: 

THEOREM 7.6. If n > 2, then no EDD is a one-point extension of a (PG(n , q»T. 

PROOF. Suppose g is an extension of a (PG(n, q»T. Each residue of g has b 
points, and has r points on a block, where 

b = (qn+l - 1)(qn - 1)/(q + 1)(q - 1)2, r = (qn - 1)/(q - 1). 

Hence f:I is a 2-(b + 1, r + 1, q + 1), and its number of blocks is 

b* = (b + l)b(q + 1)/(r + l)r. (1) 

This unpleasant expression can be simplified to: 

b* = (qn+l - 1)[(qn+l - 1)(qn - 1) + (q + 1)(q - 1)2]/(q + 1)(q - 1)2(qn + q - 2), (2) 

which is also not very attractive. 
If we put qn == -q + 2 (mod q" + q - 2) in the numerator of (2) then we find that 

2(q + 1)2(q -If == 0 (mod qn + q - 2), (3) 

and since qn + q - 2 = (q - 1)(qn-l + qn-2 + ... + q + 2), this becomes 

2(q2 -If== 0 (mod qn-l + qn-2 + . . . + q + 2). 

Then qn-l < qn-l + qn-2 + . . . + q + 2.:;; 2(q2 -1)2 < 2q4, and so n':;; 5. For n = 3, (4) 
implies that q2 + q + 2 divides 2(3q + 2), so q = 2; but q = 2 and n = 3 do not give 
integral b* in (2). If n = 4, (4) becomes 2q == 0 (mod q3 + q2 + q + 2), which is not 
possible. If n = 5, then (4) implies that q4 + q3 + q2 + q + 2 divides 2(q3 + 3q2 + q + 1), 
and so is bounded by it; hence q = 2, which does not satisfy the congruence (4). 0 

Now we return to (7.5): 

PROBLEM 7.5 (continued): 
(4) What other extensions of (PG(n, q»T are there (i.e. not triangular or one-point)? 
(5) Is it possible that every extension of a (PG(n, q»T has q = 2 or 4? 

8. AFFINE GEOMETRIES 

Here we consider (AG(n , q»T, again for the triangular and one-point cases. (See [5] 
for more about the case n = 2.) The results are certainly not complete in the triangular 
case: 

THEOREM 8.1. Suppose that g is a triangular extension of (AG(n, q»T. Then q is 
even. 

PROOF. As in Theorem 7.2, we consider the superovals y n f:lp in f:lp: these become 
sets of q + 1 lines in g; = AG(n, q) such that every point is on 0 or 2 of the lines. Since 
there are planes in AG(n, q), it will follow that these q + 1 lines all lie in a plane 
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AG(2, q), and hence they form a dual oval, in the projective plane sense of the term. 
The line at infinity of this AG(2, q) contains no one of the (q + 1)q/2 of the points 
which lie on two lines of the dual oval, so adjoining it, we have a set of q + 2 lines, 
such that every point of the projective plane lies on 0 or 2 of the lines. This is a dual 
hyperoval, again in the projective plane sense of the term, and so q is even (see [6]). 
Also see the comments following Definition 2.1 about this dual superoval/hyperoval. 

o 

EXAMPLE 8.2. In the embedding of Example 7.3 of the points and lines of PG(n, 2) 
as the special subspaces PG(n -1, 2) and points of the Grassman variety 'YN(2) , we 
can 'restrict' the embedding to the points and lines of an affine geometry AG(n, 2) in 
PG(n, 2), and obtain an embedding of the points and lines of AG(n, 2) as certain 
special subspaces and certain points, in 'YN(2). Call this substructure [llJN. Then 
embedding [llJN in a hyperplane 'If of PG(N + 1, 2), we can exactly copy the 
construction of 7.3(i), and obtain a triangular extension of the dual of AG(n, 2), for 
each n > 2. This EDD is also a triangular semibiplane, and has block size 2n

, with 2N
+ 1 

points. 

(We thank Antonio Pasini for putting the finishing touches to the above construction 
for us.) We do not know of any example of such an extension for n > 2 with q > 2. 
However, for n = 2, Example 4.6 of [5] gives triangular examples for every q = 2m

, so 
perhaps we should expect to find examples for even q with n > 2 as well. 

The one-point case is both curious and interesting: 

THEOREM 8.3. Suppose that g is a one-point extension of an (AG(n, q»T, with 
n > 1. Then n is even, q = 2, and g is a biplane with block size 2n, or g is a 2-(21, 6, 4) 
isomorphic to the external restriction at a point of the Mathieu design 3-(22, 6, 1). 
Conversely, every biplane with block size 2n is an example of such an EDD. 

PROOF. An AG(n, q) has b = qn-l(qn -l)/(q -1) blocks, and r = (qn - l)/(q -1) 
blocks on a point, so a one-point extensions of its dual will be a 2-design for 
(b + 1, r + 1, q), with b* = qb(b + l)/(r + l)r blocks. Substituting, we find: 

b* = qn[qn-l(qn - 1) + q - l]/(qn + q - 2). (1) 

Then in the standard way, we put qn = -q + 2 (modqn + q - 2) in the numerator of 
(1) and successively simplify to obtain: 

2(qn-l - q2 + 4q - 4) = 0 (mod qn + q - 2). (2) 

Thus, in particular: 

qn + q _ 2 ~ 2(qn-l - q2 + 4q - 4) or qn-l _ q2 + 4q - 4 = o. (3) 

The second possibility of (3) means that qn-l = (q - 2f, so n = 2 and q = 4; then it is 
straightforward that g is a 2-(21,6,4); this design exists and is the external restriction 
of the unique 3-(22,6,1), and this can be proved directly, or be found in [5], Theorem 
4.1. (See also Example 3.3: it can be extended twice.) 

If the first possibility of (3) happens, then since 2(qn-l - q2 + 4q - 4) ~ 2qn-t, and 
qn + q _ 2~qn, we have q ~2; hence q = 2. Then b* = 2n- 1(2n -1) + 1 = b + 1, and Y 
is a biplane; the number of points on a block is r + 1 = 2n. Using the Bruck-Ryser
Chowla Theorem (e.g. see [7]), it follows that a biplane with block size 2n must have 
n =0 (mod 2). 

Now the point-line structure of AG(n, 2) is trivial: every pair of points are on a line, 
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and it is a 2-(2n, 2, 1). So it is straightforward that any biplane with blocksize 2n can be 
identified as an extension of an (AG(n, 2»T, as already explained in Example 4.1. 0 

While the point-line structure AG(n, 2) is trivial, there is a lot of structure in the 
geometry and it might be possible to exploit this to find more biplanes. Notice that the 
first 'unknown' biplane covered by this situation is also the first case where existence of 
a biplane is unsettled: k = 16, that is, a 2-(121, 16,2). 

9. COMMENTS 

There are obviously many more 2-designs the duals of which might be extended; 
there are also many possibilities of extensions not studied here, i.e. non-triangular and 
not one-point. It is not easy to say which of these will prove interesting. The problems 
raised in Example 7.3(ii) concerning algebraic varieties should certainly be resolved. 

ACKNOWLEDGEMENTS 

A number of colleagues have contributed useful comments at various stages in 
writing this paper, and while they are often referred to at the appropriate point above, 
the author is pleased to thank them all here: Andries Brouwer, Frank De Clerck, 
Alberto Del Fra, Dina Ghinelli, James Hirschfeld, Antonio Pasini, Mohan Shrikh
ande, Giuseppe Tallini, Joseph Thas and Peter Wild. 

Much of this work was carried out while the author was a Visiting Professor at the 
Universita di Roma 'La Sapienza', supported by the Consiglio Nazionale delle 
Ricerche. 

REFERENCES 

1. P. J. Cameron, Quasi-symmetric designs possessing a spread, Proceedings of the 1988 Combinatorics 
Conference in Ravello (to appear). 

2. P . J . Cameron, D. R. Hughes and A . Pasini, Extended generalised quadrangles, Geom. Ded. 3S (1990), 
193-228. 

3. J . W. P. Hirschfeld, Projective Geometries over Finite Fields , Oxford University Press, 1979. 
4. J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries (to appear) . 
5. S. A. Hobart and D . R . Hughes, Extended partial geometries: nets and dual nets , Europ. 1. Combin. 

11 (1990), 357-372. 
6. D . R. Hughes and F. C . Piper, Projective Planes, GTM 6, Springer-Verlag, Berlin, 1972. 
7. D. R. Hughes and F. C . Piper, Design Theory, Cambridge University Press, 1985. 
8. V. C. Mavron and M. S. Shrikhande, On designs with intersection numbers 0 and 2, Arch. Math., S2 

(1989), 407-412. 
9. Beniamino Segre, Lectures on Modern Geometry, Cremonese, Rome, 1961. 

10. O. Veblen and J. W. Young, Projective Geometry, vol. 1, Ginn and Co., Boston, 1938. 
11. S. S. Sane and M. S. Shrikhande, Finiteness questions in quasi-symmetric designs, 1. Combin. Th. Ser. 

A, 42 (1986), 252-258. 
12. P. Wild, On semibiplanes, Ph.D. Thesis, University of London, 1980. 

Received 26 December 1989 and accepted in revised form 13 April 1990 

D. R. HUGHES 

School of Mathematical Sciences, 
Queen Mary and Westfield College, 

London E14NS, U.K. 




